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Abstract: High efficient electrocatalytic activity and strong stability to both oxygen reduction
reaction (ORR) and oxygen evolution (OER) are very critical to rechargeable Zn-air battery and other
renewable energy technologies. As a class of promising catalysts, the nanocoposites of transition
metal nanoparticles that are encapsulated with nitrogen-doped carbon nanoshells are considered as
promising substitutes to expensive precious metal based catalysts. In this work, we demonstrate the
successful preparation of high-density cobalt nanoparticles encapsulated in very thin N-doped carbon
nanoshells by the pyrolysis of solid state cyclen-Co-dicyandiamide complex. The morphologies and
properties of products can be conveniently tuned by adjusting the pyrolysis temperature. Owing to the
synergetic effect of hybrid nanostructure, the optimized Co@N-C-800 sample possesses outstanding
bifunctional activity for both ORR and OER in alkaline electrolyte. Meanwhile, the corresponding
rechargeable zinc-air battery that is based on Co@N-C-800 air cathode also has excellent current
density, low charge-discharge voltage gap, high power density, and strong cycle stability, making it a
suitable alternative to take the place of precious metal catalysts for practical utilization.
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1. Introduction

The growing environmental degradation and the increasing requirements for renewable energy
have stimulated great interest in exploring sustainable energy storage and conversion devices from
hydrogen production by water splitting to metal-air battery [1]. Among various energy storage and
conversion devices, zinc-air battery has been regarded as one of the promising candidates for the
electrical vehicles (EVs), owing to its low-cost, high safety, and high energy density [2–5]. However,
the electrochemical properties of rechargeable Zn-air battery are still far from large-scale applications
due to the limitation of oxygen electrode, which is suffering from not only the large overpotential
resulting from the sluggish kinetics of oxygen reduction reaction (ORR) and oxygen evolution reaction
(OER), but also the electrochemical instability during repeated charge and discharge processes [3,6–8].
Therefore, exploring highly efficient and robust bifunctional catalysts to accelerate sluggish ORR and
OER processes and enhanced stability is still a great challenge.

Currently, the noble metals with the high catalyst activity, good conductivity, and favorable
mechanical properties are used as the state-of-the-art benchmark catalysts for ORR and OER.
Unfortunately, a good catalyst for ORR usually has poor activity toward OER and vice versa.
For example, Pt-based catalysts exhibit excellent ORR activity, while Ir (or Ru)-based catalysts
show remarkable OER activity [9,10]. Furthermore, high cost, scarcity, and poor stability terribly
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hinder their extensive applications in Zn-air batteries [11–13]. Therefore, non-noble metal based
catalysts with the merits of low-cost, earth-abundant reserves, and excellent stability have attracted
tremendous attention. So far, a series of great achievements have been accomplished, such as oxides [14],
metal carbides [15], chalcogenides [16], non-noble metal complexes [17,18], and heteroatoms doped
carbon materials [19,20]. Among them, a class of composite catalysts that were obtained by
encapsulating transition metal nanoparticles in nitrogen-doped carbon (M@N-C) [21–23] are considered
as a kind of promising candidate for ORR and OER due to the following advantages: (1) metal
nanoparticles can not only facilitate the graphitization degree of external carbon shell [24], but also
enhance electrons transfer to the external carbon shell [25]; (2) the nitrogen atoms that are doped
in the carbon lattices can induce charge redistribution of the neighbouring carbon atoms, resulting
in altering the chemisorption mode of O2 in form of the parallel diatomic adsorption to improve
electrocatalytic activity [26,27]; and, (3) the synergetic effect that is raised from nitrogen doping and
encapsulated metal nanoparticles in carbon shell heightens the inherent electrocatalytic ability on the
M@N-C materials [25,28]. Although some nanocomposites of transition metal nanoparticles that are
encapsulated in carbon have been successfully synthesized, it is still in the early stage of development
and some shortcomings need to be overcome. For example, the low contents of transition metal
and nitrogen doped in carbon matrix [29], the large size of encapsulated transition metal particles,
and the too thick carbon shell result in low active site density and inefficient catalytic activity [24,30,31].
Consequently, the great challenge of M@N-C is the design and synthesis of small size transition metal
nanoparticles encapsulated in thin N-doped carbon shells/layers with high loading and dispersion.

Recent studies prove that various solid phase precursor can be used to synthesize M@N-C
materials by the facile pyrolysis process. This synthesis strategy has many advantages, such as
simple equipment and process, high yield, and convenience of N doping in carbon matrix, making it
a prospective method to the large scale commercialization. Herein, we demonstrate that cobalt
nanoparticles encapsulated in N-doped carbon nanoshells (named as Co@N-C) as efficient and
durable bifunctional electrocatalysts have been prepared by a convenient pyrolysis route of the
solid-phase cyclen-Co-dicyandiamide complex precursor. The structure and morphology of prepared
samples exhibited strong dependence on pyrolysis temperature. With an increased temperature
from 700 to 900 ◦C, the morphology of carbon changed from carbon nanoshells to carbon nanotubes.
Due to the synergistic effect of nitrogen-doping and Co encapsulating, the optimized Co@N-C-800
catalyst displayed outstanding bifunctional activities for ORR and OER in alkaline solution, which
is comparable to commercial Pt/C and IrO2 catalyst. Moreover, the rechargeable zinc-air battery
employing the optimal Co@N-C-800 catalyst as the air electrode exhibited high performance and
cycling stability when compared to other counterparts.

2. Materials and Methods

2.1. Materials

Cobaltous nitrate hexahydrate (Co(NO3)2·6H2O), 1,4,7,10-tetraazacyclododecane (cyclen, C8H20N4),
dicyandiamide (C2H4N4), perchloric acid (HClO4), potassium hydroxide, isopropanol, and ethanol are
analytical grade without further purification. Distilled water was used throughout.

2.2. Synthesis

Typically, 1,4,7,10-tetraazacyclododecane (172 mg) was diffused in 10 mL distilled water.
Subsequently, Co(NO3)2·6H2O (145 mg) was completely dissolved in 10 mL distilled water by
ultrasonic and then slowly dropped into above 1,4,7,10-tetraazacyclododecane solution with constant
stirring for 12 h. After that, dicyandiamide (3 g) was first dispersed in hot distilled water (60 ◦C) and
also dropped into the above mixture solution with constantly stirring for another 6 h. After being
thoroughly dried, the obtained powder was calcinated at 800 ◦C for 1 h (N2 atmosphere, ramp rate:
5 ◦C min−1, flowing rate: 50 cc min−1). To remove unstable cobalt species, the powder was then
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immersed in 80 ◦C HClO4 solution (0.5 M, 100 mL) for 8 h. Finally, the black powder was thoroughly
cleaned with distilled water and ethanol, dried at 60 ◦C in vacuum, and marked as Co@N-C-800,
in which “800” represents the pyrolysis temperature. To study the influence of different pyrolysis
temperature on the morphology and electrochemical performance of Co@N-C hybrid catalysts,
the Co@N-C-700 and Co@N-C-900 samples were also synthesized by the same process.

2.3. Characterizations

The products were characterized by a Rigaku/Max-3A diffractometer with Co Ka radiation
(XRD, Malvern Panalytical, Almelo, The Netherlands), a scanning electron microscope (SEM, Supra
55 Sapphire, HITACHI, Tokyo, Japan) equipped with an energy dispersive X-ray spectrometer
(EDX, Hitachi Limited, Tokyo, Japan), a transmission electron microscope (TEM; JEOL-2100, JEOL,
Tokyo, Japan), and an X-ray photoelectron spectrometer (XPS, Thermo ESCALAB 250XI, Thermo
Fisher Scientific Inc., Waltham, MA, USA). The thermo gravimetric (TG) was operated on a Thermo
Gravimetric Analyzer (TA Instruments Q500, TA Instruments, New Castle, PA, USA) from 25 ◦C to
800 ◦C in air (heating rate: 10 ◦C min−1).

2.4. Electrochemical Measurements

All electrochemical measurements were recorded by an electrochemical workstation (CHI
660E, CH Instruments Inc., Shanghai, China) connected with a rotating disk electrode (RDE) in
a three-electrode system with O2- or N2-saturated 0.1 M KOH solution, where Pt wire, glassy carbon
electrode (GCE, 3 mm in diameter), and silver-silver chloride electrode (Ag/AgCl) were served as
the counter electrode, working electrode, and reference electrode, respectively. The potentials were
normalized to the reversible hydrogen electrode (RHE) by using the following equation [32]:

ERHE = EAg/AgCl + 0.059 pH + 0.197 (1)

The fabrication of working electrode: 2.4 mg of obtained catalyst was added in a mixture solution,
including distilled water (735 µL), isopropanol (205 µL), and 5 wt % Nafion (60 µL, Alfa, Shanghai,
China) by ultrasound to form a homogeneous ink. After that, 3 µL of the above catalyst ink was
dropped onto the GC electrode and naturally dried at room temperature. The loading was 100 µg cm−2.
The commercial Pt/C (20 wt %, Johnson Matthey, Shanghai, China) and IrO2 (Alfa, Shanghai, China)
catalysts with the same loading were used as the benchmark for ORR and OER, respectively.

For the ORR test, the static cyclic voltammogram (CV) was operated between 0.1 and 1.0 V (vs.
RHE) at the scan rate of 50 mV s−1. The linear sweep voltammograms (LSV) was executed from 1.0 V
to 0.1 V (vs. RHE) at 10 mV s−1 with a series of rotation speed from 600 to 2000 rpm. Koutecky-Levich
(K-L) plots were estimated at diverse potentials (0.1–0.4 V vs. RHE). The transfer electron number (n)
was calculated by the following K-L formula:

j−1 = jL−1 + jK−1 = (Bω1/2)−1 + jK−1 (2)

B = 0.2nFCoDo
2/3ν−1/6 (3)

jK = nFkCo (4)

where j, jL, jK, and ω are the measured current density, diffusion-limiting current density,
kinetic-limiting current density, and angular velocity, respectively. n, F, Co, Do, ν, and k are
the transferred electron number of the ORR, the Faraday constant, the bulk concentration of O2,
the diffusion coefficient of O2, the kinematic viscosity of the electrolyte, and the electron-transfer rate
constant, respectively.

For the OER test, the LSVs were tested from 1.0 V to 1.86 V (vs. RHE) in O2-saturated electrolyte
(10 mV s−1, rotating speed: 1600 rpm). All polarization curves were corrected with 95% iR-compensation.



Materials 2019, 12, 243 4 of 13

2.5. Air Electrodes Preparation

The Vulcan XC-72R (CABOT) and Polyvinylidene Fluoride (PVDF) with a mass ratio of 8:1 was
mixed and coated onto the carbon paper (Toray TGP-H-060, TORAY, Tokyo, Japan) to obtain the air
diffusion layer with the loading of ~2 mg cm−2. 9 mg of catalyst was dispersed in the solution of
isopropanol (900 µL) and 5 wt % nafion solution (100 µL) by ultrasonic to form a homogeneous ink.
Subsequently, the catalyst ink (100 µL) was dropped on the above air diffusion layer and slowly dried
in vacuum at an ambient temperature. The commercial Pt/C based air electrode was also prepared
under the same method. The loading of the catalyst was all about 1 mg cm−2.

2.6. Zn-Air Battery Test

The performances of zinc-air battery were investigated on a home-made cell. Zinc plate, prepared
air electrode, and 6 M KOH with 0.2 M zinc acetate solution were used as the anode, cathode,
and electrolyte, respectively. Polarization and galvanostatic charge/discharge measurements were
performed on the CHI 660E electrochemical station and LAND testing system, respectively. All of the
tests were provided continuous oxygen from ambient air.

3. Results and Discussion

3.1. Structural Characterization

The Co@N-C-800 sample was first studied by the scanning electron microscope and X-ray
diffraction. SEM image (Figure 1A) clearly shows that cobalt nanoparticles (~20 nm) are well
distributed in carbon materials. The element mapping images (Figure 1B) indicate the homogeneous
dispersion of cobalt and nitrogen elements in the carbon matrix. The two obvious diffraction peaks
that were located at 51.8◦ and 60.6◦ in the XRD pattern (Figure 1C) can be well matched with (111)
and (200) lattice planes of cubic phase of Co (JCPDS:15-0806). Furthermore, the diffraction peak at
about 26◦ belong to C (002), also shown in the XRD pattern, indicating the successful formation of
carbonaceous materials by the carbonization of cyclen [33]. No impurity peaks attributed to cobalt
oxides are detected, implying that the precursor was well reduced to Co nanoparticles and then
protected by the exterior carbon nanoshells and N2 atmosphere. For comparison, Co@N-C-700 and
Co@N-C-900 show similar XRD patterns but different morphologies, indicating that the temperature is
the key factor to tune the morphology of catalysts (Figure 2).
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Figure 2. (A) SEM image and (B) XRD pattern of Co@N-C-700, (C) SEM image, and (D) XRD pattern
of Co@N-C-900.

TEM images are also displayed to discuss the structural characterization, as presented in Figure 3A,
which shows that the Co nanoparticles are tightly encapsulated with very thin graphene-like carbon
nanoshells (less than five layers). The lattice fringe spaces of 0.203 nm and 0.34 nm revealed in HRTEM
image (Figure 3B) are assigned to the (111) plane of Co nanoparticles and the (002) plane of graphitic
carbon, respectively, which are well consistent with the XRD. It needs to be emphasized that this
novel nanostructure of monodispersed Co nanoparticles tightly wrapped with very thin graphene-like
carbon nanoshells can not only effectively protect and avoid the oxidation of Co nanoparticles, but also
enhance the catalytic activity, owing to the high loading and dispersion of cobalt nanoparticles.
Refs. [24,31,34] The high density of Co nanoparticles in Co@N-C-800 was examined by TG analysis
(Figure 4). According to the TG result, the obtained Co@N-C-800 powder was very dry and only 0.5%
weight lost was detected, owing to the residual H2O. After the temperature was raised to 300 ◦C, a fast
weight drop was recorded, which can be attributed to the decomposition of carbon materials and 35%
of weight was finally remained when the temperature reached 800 ◦C. The Co have been oxidized and
changed to Co3O4 during the heating process under the air condition, so the exact Co content of the
Co@N-C-800 is calculated to be about 25.8%.
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Figure 4. Thermogravimetric Analysis (TGA) curve of Co@N-C-800.

The chemical states and surface composition of the Co@N-C-800 were investigated by XPS.
As provided in Figure 5A, a series of peaks attribute to C 1s, Co 2p, O 1s, and N 1s were detected
in the survey spectrum, which further confirm the existence of C, Co, and N elements in the
Co@N-C-800 catalyst and N-doping reaction do occur in the carbon shell during the preparation
process. The high-resolution C 1s displays four types of C species, including C=C (284.6 eV),
C=N (285.9 eV), C–N&C–O (287.6 eV), and O=C–O– (290.6 eV), [35,36] indicating the doping of
heteroatoms (N and O) in the carbon framework (Figure 5B). The high-resolution N 1s spectrum that
is presented in Figure 5C is fitted to four peaks corresponding to pyridinic-N (398.5 eV), metal-N
(399.3 eV), pyrrolic-N (400.2 eV), and quaternary-N (401.5 eV), respectively. Refs. [37,38] Moreover,
the pyridinic-N, metal-N, and quaternary-N take the dominant position of N species, which is beneficial
for oxygen electrocatalysis by providing more active sites and improving the electron transfer of the
carbon matrix [36–39]. The Co 2p1/2 and Co 2p3/2 high-resolution spectrum (Figure 5D) can be fitted
with three components corresponding to Co (0) (778.6 and 794.3 eV), Co (II) (780.4 and 796.7 eV),
and the satellite peaks (782.6, 785.2, and 802.5 eV). Refs. [36,40] Moreover, the peak at 781.6 eV in
Co 2p3/2 spectra indicates the possible presence of Co-Nx, which are also active sites for oxygen
electrocatalysis and match well with the metal-N peak (399.3 eV) in N 1s spectrum [38].
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3.2. The Formation Mechanism of Co-N/C-800

As a common macrocyclic ligand, 1,4,7,10-tetraazacyclododecane (also called as cyclen) was
chosen to be the complexing agent in our experiment due to its strong and selective binding ability to
metal cations and high nitrogen content in molecule. The synthetic procedure and possible formation
mechanism of Co@N-C catalysts could be described by Scheme 1. Firstly, when be dissolved into
water together with Co2+ ion under constantly stirring, the unique cavity of the cyclen molecule
can bind and anchor the Co2+ ion by the four-NH groups occupying the partial coordination sites
of Co2+ ion to form Co-cyclen complex. After the dicyandiamide solution was introduced to the
above reaction system, the –CN group derived from dicyandiamide can coordinate with Co-cyclen
complex by occupying the residual sites of Co2+ ion to form the cyclen-Co-dicyandiamide complex
subsequently. Furthermore, the dicyandiamide molecules can link with each other by hydrogen bonds
between –NH2 (or =NH) groups and –NH– groups to form a network on which the Co-cyclen
complex molecules were uniformly distributed and anchored. Finally, after pyrolyzed at high
temperature in N2, the cyclen molecule was transformed to nitrogen-doped thin carbon nanoshells to
encapsulate Co nanoparticles, resulting in the formation of Co@N-C hybrid catalyst. More importantly,
the dicyandiamide molecule units also transformed into N-doped graphene-like carbon layers during
the pyrolysis process [35,41] and surrounded the Co@N-C to provide a continuous and complete
conductive network. The unique nanostructure of Co nanoparticles encapsulated in thin N-doped
carbon nanoshells and uniformly distributed in graphene-like carbon layers can provide high-density
catalytic active sites and continuous and complete electron transfer path at the same time, resulting
in excellent bifunctional activity to ORR and OER and high performance when used as a catalytic
electrode for rechargeable Zn-air battery.Materials 2019, 12, x FOR PEER REVIEW 8 of 15 
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Scheme 1. Illustration of synthetic procedure and the formation mechanism for Co@N-C-800.

3.3. Electrochemical Study

The electrochemical properties were studied by a three-electrode system using 0.1 M KOH as
electrolyte. The loading of electrocatalyst on the working electrode was same for all. The ORR catalytic
activity of different catalysts was firstly evaluated by static CV tests in O2-saturated and N2-saturated
electrolyte, respectively. As given in Figure 6A, the catalytic activity of Co@N-C-800 catalyst is
higher than all of the other prepared electrocatalysts. The onset potential (0.937 V) and cathodic peak
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potential (0.818 V) of Co@N-C-800 were just 19 mV and 3 mV more negative than the benchmark Pt/C,
respectively. Moreover, the Co@N-C-800 catalyst reached an astonishing cathodic peak current of
3.80 mA cm−2, which was almost three times than that of commercial Pt/C (1.37 mA cm−2) (Table 1).
The ORR activity of the various catalysts is further studied by RDE. According to the linear sweep
voltammetry (LSV) curves that were obtained at a scan rate of 10 mV s−1 and rotating rate of 1600 rpm,
the Co@N-C-800 catalyst also presents the highest ORR activity among all the prepared Co@N-C
catalysts and it is comparable to commercial Pt/C. Although the onset potential of Co@N-C-800
is slightly lower than that of Pt/C, the half-wave potential (E1/2), which indicates how well the
system performs under a specific current, is even 29 mV more positive than Pt/C catalyst (0.842 V vs.
0.813 V), and the limiting current density of Co-N/C-800 (6.49 mA cm−2) is also higher than the Pt/C
catalyst (6.14 mA cm−2) (Figure 6B). In order to explore the ORR kinetics of Co@N-C-800, the ORR
polarization curves at different rotating rates from 600 to 2000 rmp were also collected. As shown in
Figure 6C, the polarization curves at different rotating speeds all clearly show three areas, including (1)
kinetic controllable area, (2) mixed kinetic-diffused controllable area, and (3) diffused controllable area.
According to the above K-L formula, the K-L curves of Co@N-C-800 catalyst are obtained by the linear
fit of reciprocal of current density (j−1) and the reciprocal of square root of angular velocity (ω−1/2) at
various potentials. The electron transferred number (n) is calculated to be 3.85 (Figure 6D), implying
a predominant four electron ORR pathway, corresponding to the reaction of O2 + 2H2O + 4e− →
4OH−. The Co@N-C-800 also possesses the highest OER activity among all of the prepared Co@N-C
catalysts and it is only outperformed by the state-of-the-art IrO2 catalyst (Figure 6E). The bifunctional
catalytic activity of oxygen catalyst can be evaluated by the difference in potential (∆E) between ORR
process at the current density of 3 mA cm−2 and OER process at the current density of 10 mA cm−2.
Refs. [22,36] Usually, a catalyst with a lower ∆E value will exhibit good bifunctionality for ORR and
OER. The low ∆E value of 0.80 V for Co@N-C-800 (Figure 6F) is smaller than many previous reported
catalysts (Table S1), indicating the better bifunctional catalytic activity for both ORR and OER.
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Figure 6. ORR and oxygen evolution reaction (OER) performances of Co@N-C and Pt/C with the
loading of 100 µg cm−2 using O2-saturated 0.1 M KOH as electrolyte. (A) Static cyclic voltammogram
(CV) curves of different catalysts (solid line: in O2-saturated electrolyte; dotted line: in N2-saturated
electrolyte), (B) linear sweep voltammograms (LSV) plots of catalysts for ORR at 1600 rmp, (C) ORR
polarization curves of Co@N-C-800 at different rotating speeds (600 to 2000 rpm), (D) the K-L plots
of Co@N-C-800 derived from rotating disk electrode (RDE) data and electron transfer number (n) per
oxygen molecule (O2) at potentials from 0.1 to 0.4 V, (E) LSV plots of catalysts for OER at 1600 rmp and
(F) the bifunctional catalytic activities of Co@N-C-800 within the ORR and OER potential window.

Table 1. Catalytic activity data of various catalysts for oxygen reduction reaction (ORR).

Electrocatalyst Onset Potential
(V vs. RHE)

Cathodic Peak Potential
(V vs. RHE)

Cathodic Peak Current
Density (mA cm−2)

Pt/C 0.956 0.821 1.37
C@Co-700 0.919 0.818 1.18
C@Co-800 0.937 0.818 3.80
C@Co-900 0.881 0.783 1.33

3.4. Rechargeable Zn-Air Batteries

Apart from the above traditional electrochemical studies, a home-made rechargeable Zn-air battery
was used to further evaluate the performance of Co@N-C-800 catalyst as the air cathode material
under real battery operation conditions (Figure 7A). The Pt/C based electrode was also prepared and
tested with the same manner. The charge and discharge polarization and power density curves of
batteries based on Co@N-C-800 and Pt/C catalyst are shown in Figure 7B. It can be clearly found that
the battery performance of Co@N-C-800 cathode is superior to the Pt/C cathode. The zinc–air battery
based on Co@N-C-800 cathode achieves a high open circuit voltage of 1.45 V and the charge–discharge
voltage gap of Co-N/C-800 is much smaller than that of Pt/C. During the discharge procedure, the
Co@N-C-800 based battery can reach a high current density of 157 mA cm−2 at 1.0 V, while the Pt/C
based battery only reach a current density of 120 mA cm−2 at the same voltage. During the charge
process, Co@N-C-800 based Zn-air battery also demonstrates a better performance than Pt/C based
battery. Moreover, the maximum peak power density of the Zn-air battery based on Co@N-C-800
cathode achieves 255 mW cm−2, which is far greater than Pt/C catalyst (156 mW cm−2). The cycle
stability of the rechargeable Zn-air battery based on Co@N-C-800 catalyst was investigated and
characterized by the fluctuation of the charge potential (ECP) and discharge potential (EDP) [42]. A fast
charge-discharge cycling test was firstly performed at the current density of 3 mA cm−2 and is shown
in Figure 7C (one cycle includes 5 min discharge and 5 min charge). It is obviously shown that the
Co@N-C-800 based battery exhibited great stability with the ECP increased only 0.9% and EDP decayed
0.8% in total 300 cycles. After that, long-term charge-discharge cycling durability (a cycle includes
30 min discharge followed by 30 min charge) was further investigated at a higher current density of
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10 mA cm−2 (Figure 7D). Obviously, the excellent long-term stability of Co-N/C-800 based battery is
proved by almost no rise for ECP and limited voltage drop for EDP (7.4% decay) in total 100 h cycle
period. All of the above results demonstrate the outstanding performances of Co@N-C-800 catalyst in
rechargeable Zn-air battery are comparable or even superior to the state-of-the-art Pt/C catalyst and
many previously reported air cathodes (Table S2). The superior bifunctional electrocatalytic activitiy
and outstanding performance in rechargeable Zn-air battery for Co@N-C-800 catalyst are probably
contribute to the synergetic effect of nanocomposite catalyst: (1) Co nanoparticles encapsulated with
thin nitrogen-doped carbon nanoshells and uniformly distributed in graphene-like carbon layers can
not only avoid agglomeration to provide high-density catalytic active sites, but also improve the
stability and electrical conductivity; and, (2) the N doping can induce the change of charge distribution
and form high density of defects, which also can be employed as active sites for OER and ORR.
Although the in-depth mechanism needs to be further studied, the excellent electrocatalytic properties
together with ambient air rather than pure O2 and very small loading of 1 mg make Co@N-C-800
catalyst to be a promising candidate for practical application in rechargeable Zn-air battery.
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Figure 7. The performances of Zn-air battery with Co@N-C-800 or Pt/C as air cathode. (A) The illustration
of the home-made Zn-air battery device, (B) charge/discharge polarization profiles and power density
curves of the batteries, (C) a fast charge-discharge cycling test of the battery using Co@N-C-800 catalyst
at current density of 3 mA cm−2 in a total of 300 cycles, and (D) a long-term change-discharge test of the
batteries with Co@N-C-800 catalyst in 100 h cycle period at 10 mA cm−2 (1 h per cycle).
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4. Conclusions

In summary, a novel nanocomposite of high-density cobalt nanoparticles encapsulated in very
thin N-doped carbon nanoshells was successfully synthesized by simple thermal decomposition of
cyclen-Co-dicyandiamide solid-phase precursor. The morphologies and properties of products can be
easily tuned by changing the pyrolysis temperature. Due to the synergetic effect of nanocomposite,
the optimized Co@N-C-800 catalyst showed outstanding bifunctional catalytic activities for both
ORR and OER in alkaline electrolyte. Furthermore, the rechargeable Zn-air battery that is based on
Co@N-C-800 air cathode presented excellent electrochemical performance and strong cycle stability.
The work demonstrated here provides a new strategy and approach to design and prepare advanced
nanocomposites of transition metal nanoparticles and N-doped carbon materials for highly efficient
bifunctional electrocatalysts in the high-performance rechargeable Zn-air battery and the other
catalytic field.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/12/2/243/s1,
Table S1: Comparison of bifunctional oxygen electrode activity data for different catalysts; Table S2: Comparison
of the performances of rechargeable Zn–air battery for different catalysts.
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