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1   Introduction
Biosignals are electrical, mechanical, ther-
mal, or other signals measured over the time 
from the human body or from other organic 
tissue. They became applicable for medical 
diagnoses in 1895 when Willem Einthoven 
invented electrocardiography (ECG) as a 
clinical usable, non-invasive device. An 
ECG device measures the electrical activity 
of the heart muscle and depicts the complete 
cardiac cycle on an individual heartbeat using 
electrical polarization-depolarization patterns 
of the heart [1]. Since then, a huge variety 
of signals have been discovered that can be 
derived from the surface (skin) or from inside 
the human body. Prominent examples include 
electroencephalography (EEG), that depicts 
the activity of the brain recording voltage 
fluctuations from the scalp that result from 
ionic current within the neurons of the brain 
[2]; electromyography (EMG), that records 
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Summary
Objectives: Deep learning models such as convolutional neural 
networks (CNNs) have been applied successfully to medical 
imaging, but biomedical signal analysis has yet to fully benefit 
from this novel approach. Our survey aims at (i) reviewing 
deep learning techniques for biosignal analysis in comput-
er-aided diagnosis; and (ii) deriving a taxonomy for organizing 
the growing number of applications in the field.
Methods: A comprehensive literature research was performed 
using PubMed, Scopus, and ACM. Deep learning models were 
classified with respect to the (i) origin, (ii) dimension, and (iii) 
type of the biosignal as input to the deep learning model; (iv) 
the goal of the application; (v) the size and (vi) type of ground 
truth data; (vii) the type and (viii) schedule of learning the 
network; and (ix) the topology of the model. 

Results: Between January 2010 and December 2017, a 
total 71 papers were published on the topic. The majority (n 
= 36) of papers are on electrocariography (ECG) signals. 
Most applications (n = 25) aim at detection of patterns, 
while only a few (n = 6) at predection of events. Out of 36 
ECG-based works, many (n = 17) relate to multi-lead ECG. 
Other biosignals that have been identified in the survey are 
electromyography, phonocardiography, photoplethysmography, 
electrooculography, continuous glucose monitoring, acoustic 
respiratory signal, blood pressure, and electrodermal activity 
signal, while ballistocardiography or seismocardiography 
have yet to be analyzed using deep learning techniques. In 
supervised and unsupervised applications, CNNs and restricted 
Boltzmann machines are the most and least frequently used, (n 
= 34) and (n = 15), respectively. 

Conclusion: Our key-code classification of relevant papers was used 
to cluster the approaches that have been published to date and 
demonstrated a large variability of research with respect to data, 
application, and network topology. Future research is expected to 
focus on the standardization of deep learning architectures and on 
the optimization of the network parameters to increase performance 
and robustness. Furthermore, application-driven approaches and 
updated training data from mobile recordings are needed.
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the electric potential generated by muscle 
cells when these cells are electrically or 
neurologically activated [3]; photoplethys-
mography (PPG), that depicts the volumetric 
changes of an organ (e.g., the microvascular 
bed under the skin) over the time by re-
cording changes in light absorption [4]; or 
ballistocardiography (BCG), that monitors 
the heart activity recording ballistic forces 
(acceleration) on the chest [5]. 

Initially, analysis of biosignals was 
done purely manually. In the early 1980s, 
low-level signal processing was applied 
for noise reduction and filtering. Then, 
feature extraction and classification were 
implemented. However, these early systems 
were time-consuming and suffered from an 
unreliable accuracy [6]. 

Later from the 1990s, time-series models 
and supervised expert systems were used for 
feature extraction, and statistical classifiers 
were applied to support diagnosis. Over 

the last few decades, automated analysis of 
biosignals has turned into a core component 
for computer-aided diagnosis (CAD) and 
clinical decision-making. However, existing 
approaches are not effective for high-di-
mensional, more complex, and real-world 
noisy data that is continuously monitored 
using portable devices [7]. Therefore, the 
major goal of current research is to increase 
accuracy and speed of diagnostic systems 
towards event prediction from real-time 
signal analysis [7, 8].

Artificial intelligence and machine learn-
ing help in automated and effective analysis 
of medical data [9]. Neural networks are one 
of the well-known techniques used to de-
velop high-level expert systems for solving 
a wide range of medical tasks such as clus-
tering, detection, and recognition of diseases 
[10]. Traditionally, most expert systems 
rely on hand-crafted features. As in many 
papers [10–12], we refer to “hand-crafted 
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features” when the raw data is transformed 
before it is entered to the input layer of the 
neural network, and this transformation is 
performed or decided by a human. However, 
biosignals are generally non-linear, non-sta-
tionary, dynamic, and complex in nature 
[13]. Handcrafted or manually selected 
features are time-consuming, not optimal, 
domain-specific, and they require specific 
expert knowledge [6]. 

Neurons are the basic processing units in 
a neural network and they perform a non-lin-
ear transformation of the data input from 
neurons connected in the previous layer. 
Such a structure is incapable of processing 
raw biosignals [14]. Therefore, automated 
extraction and selection of task-specific as 
well as robust features are necessary to solve 
the complex real-world problems [15].

Deep learning is a machine learning ap-
proach that is based on a deep network archi-
tecture composed of multiple hidden layers. 
We have considered machine learning, disre-
garding whether it is performed supervised 
or unsupervised, as “traditional” if it is com-
posed of five or less hidden layers. Contrarily 
with deep learning, feature extraction and 
selection are performed within the network 
that is fed with raw (or low level-processed) 
data but not with handcrafted features. Each 
hidden layer transforms the data into represen-
tations that are learned automatically using a 
general learning procedure [16]. Outstanding 
performance has been obtained on a various 
number of benchmark datasets. In particular, 
convolutional neural networks (CNNs) have 
been designed for solving complex image 
analysis tasks [15, 17]. Such networks may 
be composed of several millions of neurons, 
which are interconnected in a two-dimen-
sional (2-D) matrix-like structure of neurons 
and hence, can perform spatial convolutions 
within their internal structure. However, in su-
pervised learning, a huge number of training 
data is required for the millions of parame-
ters, which are usually not available in the 
medical domain. Medical applications solve 
that problem using pre-trained networks from 
other domains, and they have demonstrated 
outstanding results [18]. Inherent to this 
concept, the filter coefficients of convolution 
operation that have been used previously for 
the handcrafting of features are determined 
intrinsically by the network.

However, most biosignals do not provide 
any 2-D structure, and as a result, deep 
learning models have not been used much 
in biosignal analytics. Some preliminary 
research has achieved positive outcomes 
for the analysis of biomedical signals using 
deep learning approaches. Recently, Kira-
nyanz et al., [19] have proposed 1-D CNN 
for ECG signal analysis. Similarly, recurrent 
neural networks (RNNs) are used to describe 
time-dependency in time-series data, namely 
phonocardiography (PCG) signals. 

This survey offers a comprehensive 
overview of deep learning models applied to 
1-D biosignals in both a methodology-driv-
en and an application-focused perspective. 
In many papers, EEG is considered as a 
2-D signal. The same holds for biosignals 
such as functional magnetic resonance 
imaging (fMRI) and magnetoencephalog-
raphy (MEG) signals. To focus the review 
on 1-D biosignals, we have excluded such 
matrix-based spatial measures.

2   Characteristics of Biosignals
All biosignals are recorded as sampled data 
points over a period of time. Due to the in-
trinsic properties of the biological systems, 
physiological biosignals are highly irreg-
ular, high-dimensional, composed from 
multi-components, non-stationary, and 
heterogeneous [13, 20]. In this section, we 
discuss the technical and clinical properties 
of biosignals and focus on the complexity 
to explain the necessity of deep learning 
algorithms. 

2.1   Technical Properties
The human body is a complex electro-me-
chanical system composed of affective, 
perceptual, and cognitive physiological pro-
cesses. Dynamic changes can be recorded as 
biosignals. These signals vary continuously 
over time and reflect the clinical state of the 
human body [21]. Most biosignals include 
electrical activities and conductance as well 
as measurements of flow, volume, tem-
perature, pressure, sound, and acceleration 
[22–24]. The signal’s cut-off frequency, 

sampling rate, number of channels (in ECG 
also referred to as leads) and other technical 
characteristics are spanning large ranges 
of dimensions (Table. 1). For instance, the 
signal frequencies range from 0.05 Hz up 
to 5,000 Hz (order of 106) and the recording 
duration spans (milli-)seconds up to the 
human lifetime (100 years = 3,1536×109 s).

2.2   Clinical Properties
The physiological and clinical characteristics 
of biosignals are more diverse: 
•	 ECG is recorded non-invasively and is 

quasi-periodic and often multi-component 
in nature. Any change in the rhythm, heart 
rate, and the pattern is used for the diagno-
sis of heart-related diseases [25, 26]. To-
day, smart clothes supporting continuous 
ECG recording are available and require 
real-time analysis and event prediction [7].

•	 EMG is recorded invasively (needle 
EMG) or non-invasively (surface EMG) 
and is non-linear, non-stationary, and 
multi-component in nature. EMG sup-
ports the diagnosis of neuromuscular 
disorders such as muscle fatigue myelitis 
and McArdle disease [27]. 

•	 PCG is recorded non-invasively and is peri-
odic and multi-component in nature. It is a 
method to record the sounds and murmurs 
produced by the heart. PCG is considered 
as one of the simplest biomarkers for the 
detection of various heart diseases [26].

•	 PPG is recorded non-invasively using 
low-cost oximeters. The PPG waveform 
is complex due to its dependence on the 
thickness of skin, the portion of muscle 
fibers in the tissue, and the amount of fat. 
PPG is sensitive to any heart irregularity 
[28] and considered as reliable biomarker 
for detection of cardiac arrhythmias. 

•	 BCG is recorded non-invasively yielding 
noisy, quasi-periodical data. It is a method 
to record the micro-vibrations of the body 
due to the pumping of blood from the heart 
during the systole and the movement of 
blood through the veins [5, 29].

•	 Other biosignals include electrooculogra-
phy (EOG), continuous glucose monitoring 
(CGM), acoustic respiratory signals (ARS), 
blood pressure (BP), electrodermal activity 
(EDA), and skin temperature. They are used 
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for detection, clustering, and diagnostics 
of various diseases. For example, EDA 
indicates emotional states [10]. 

2.3   Complexity 
The complexities of physiological biosignals 
are remarkable and several obstacles are 
hindering their automatic analysis. 
•	 Big data: most of physiological signals 

are individual continuous time-dependent 
information that may change dramatically 
in pathological situations (variety). Today, 
ECG is recorded continuously (velocity) 
over 24/7 intervals delivering up to 4 GB 
of uncompressed data (volume) [7]. Al-
though for the application phase, signals 
are typically decomposed into epochs, and 
hence, volume and velocity do not matter, 
the sampling rate has a high impact on the 
volume of the data during the training phase. 

•	 Device specificity: most approaches 
described in the literature have abruptly 
failed when applied to a different dataset 
within the same class of physiological 
signals [30]. Generalized frameworks for 
similar physiological signals are required 
that are irrespective of the device, its 
sampling rate, the acquisition protocol, 
subjects, and regional varieties.  

•	 Domain specificity: the analysis of data in 
one specific domain is often not enough 
to describe the clinical signif icance 
[31]. The multi-modal signal analysis is 

another challenge that has not yet been 
addressed accordingly. CAD systems 
often are domain-specific, i.e., they do not 
generalize to other application domains.

•	 Noise: there are several sources of noise, 
artifacts, and dropout periods in biosig-
nals. This issue is recognized as one of the 
serious challenges for automated clinical 
diagnosis [32]. The wavelet transforms or 
adaptive filters reduce noise but also lower 
the dimensionality and originality of the 
data. For instance, most R-wave detection 
algorithms fail when applied to noisy re-
cordings [33], although R-wave forms are 
the most recognizable pattern in ECG.

•	 Real-time requirements: physiological sig-
nals have high levels of morphological and 
temporal variation. Previous approaches in 
the literature are not efficient enough to 
detect the variation instantaneously. Also, 
automated event prediction from long-
term recordings is very critical [7]. Fur-
thermore, mobile data recording requires 
processing on mobile devices, which still 
are less performant than workstations or 
laptop computers. 

•	 Missing ground truth: real-time monitor-
ing of physiological signals can detect 
and alert early occurrence of diseases 
like seizure and arrhythmias. However, 
learning of real-time unlabeled data is 
difficult and computationally expensive 
[8]. Robust approaches are required to 
extract reliable features and patterns from 
a large amount of unlabeled data [33].

2.4   Necessity of Deep Learning 
In summary, biosignals are highly complex 
and form multi-dimensional data, usually 
without a reliable ground truth. Linear and 
non-linear methods have failed to robustly 
perform their clinical analysis [34]. Similar-
ly, machine learning with shallow architec-
tures is incapable to handle the complexity 
in an ad-hoc manner. Many of the existing 
approaches are not effective at discovering 
the unique properties and patterns of phys-
iological signals for clinical diagnosis [11] 
or event prediction [7]. This is mainly due 
to the dynamic and multivariate charac-
teristics of biosignals. The same holds for 
extreme learning machines (ELMs), which 
are feedforward networks composed of a 
small number of hidden layers with a large 
number of nodes and where the hidden layer 
parameters are not tuned.

Deep learning attempts to automatically 
detect the unobservable patterns needed for 
the analysis from raw data. Multiple (up to 
several hundred) layers are interconnected 
to transform the raw level into a higher 
level of abstract data representation [34, 
35]. Deep learning has gained performance 
in various fields such as computer vision, 
image understanding, natural language 
processing, and acoustic speech analysis. 
Some of the benefits of deep learning 
approaches include automated feature 
learning from raw data, noise robustness, 
multi-task learning, and better optimization 
with a minimized recognition error [11, 
34]. Deep learning is adaptive and capable 
to handle multi-modal and complex data. 
Thus, deep learning models may provide 
tools and interfaces to complex biosignals 
for better information understanding and 
clinical decision support.

3   Deep Learning Technology
The technical classification of deep learn-
ing architectures follows generative versus 
discriminative models (Fig. 1). Generative 
models predict and synthesize new partial 
input data t+1 based on the previous data t 
by learning a general representation of the 
data. It is mainly used for the enhancement 

Table 1   Characteristics and technical parameters of biosignals.

Signal

ECG

EMG

PCG

PPG

BCG

Skin tem-
perature

Skin con-
ductance

Number of 
channels

1 – 12

1 – 32

1

1

3

1

1

Signal 
frequency 
[Hz]

0.05 – 150

25 – 5,000

10 – 400

0.25 – 40

1 – 20

1 – 200

0.1 – 16

Recording 
frequency [Hz]

250 – 1,000

512 – 10,000

1 – 2,000

5 – 500

1 – 20

2 – 50,000

16 – 128

Amplitude 
level [mV]

0.1 – 5

0.1 – 100

- 2 – 2

-10 – 10 

- 0.05 – 0.05

- 50 – 50

0 – 100 µS

Quantiza-
tion [bits]

16

24

16

16

12

12

12

Recording 
duration

10s – 24h

30s – 24h

0.05s – 24h

120s – 24h

2s – 24h

60s – 24h

120s – 24h
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and prediction of the physiological signals. A 
discriminative model is capable to represent 
data even if the input is noisy. Discriminative 
models are effective for the classification, 
detection, and recognition of physiological sig-
nals [6]. The four major network architectures 
can be characterized as follows:
•	 The restricted Boltzmann machine (RBM) 

is a neural network that consists of bina-
ry-valued neurons in the visible layer and 
Boolean hidden units as other layers. A 
greedy layer-by-layer feature learning is 
implemented to compute constant and 
connection weights in different levels of 
abstraction (layers) [37]. An unsupervised 
layer-based pre-training is used for the 
initialization of all parameters. A simple 
backpropagation is used to fine-tune and 
slightly adjust the parameters throughout 
the network [36]. 

•	 Auto-encoders are unsupervised learning 
models with an equal number of input 
and output nodes. It is a generative model 
with a non-linear approach for feature 
extraction [11]. Each auto-encoder is 
composed of individual encoders, which 
transfer the input into lower dimension 
space, and corresponding decoders, 
which reconstruct the input using most 
discriminative features. To obtain more 
robust results in representation learning, a 
variation of auto-encoders is applied such 
as sparse auto-encoders (SAEs), de-nois-
ing auto-encoders (DAEs), contractive 
auto-encoders (CAEs), and zero-bias 
auto-encoders (ZAEs) [38].

•	 The CNN is one of the most popular 
deep learning architecture. Inspired by 
the neurobiological architecture of the 
visual cortex, a CNN is a hierarchical 
model that consists of convolutional and 
subsampling layers. In the convolutional 
layer, the weights of neuron are coupled, 
and hence, the network computes a spatial 
convolution determining the mask coef-
ficients itself during the training. Hence, 
CNNs have become very popular in image 
analysis. For instance, AlexNet is a special 
deep CNN model used to classify 1.2 
million images into 1,000 classes [40]. 

•	 The recurrent neural network (RNN) is a 
model that has been adapted from simple 
feed-forward modeling towards processing 
of sequential data [6]. The RNN is a deep 

architecture with a high-dimensional hidden 
state, which receives the input, updates its 
hidden state information, and makes a pre-
diction at each time step. RNNs are mainly 
used for the analysis of streamed data 
[41, 42]. Here, long short-term memory 
(LSTM) and gated recurrent units (GRU) 
are frequently used to overcome the van-
ishing gradient in gradient-based learning 
methods and back propagation [43]. 

4   Deep Learning on 
Biosignals
In this section, we describe the method im-
plemented to select relevant papers, the cate-
gories used to classify the papers, biosignals 
and their applications, and the clustering of 
papers according to the dimension and types 
of biosignals. Three clinical applications are 
particularly highlighted.

4.1   Selection of Papers 
In this survey, 437 research papers were re-
viewed (Fig. 2). Existing databases (PubMed, 
Scopus and ACM) were queried with search 
terms for title, keywords, and abstract (see 
Appendix 1). Only papers published from 
January 2010 to Dec 2017 were considered. 
After duplicates were removed, a total of 382 
records were obtained. Based on the title and 
the abstract of each paper, contributions that 
did not relate to deep learning (defined as 
having more than five hidden layers) or 1-D 
biosignals were excluded. Based on a full 

text assessment, work related to EEG, fMRI, 
MEG as source signal and review papers 
were excluded. After careful inspection on 
the architecture of the deep learning mod-
els, 35 papers were excluded because the 
number of hidden layers was less than five. 
This process yielded a final collection of 71 
research papers. 

4.2   Categories to Classify Papers 
Our analysis of the literature identified several 
criteria to categorize papers and approaches. 
The most important is the biosignals to which 
deep learning is applied. Besides ECG and 
EMG, some papers use a combination of mul-
tiple signals as input for the neural network. 
Moreover, biosignals can be 1-D (single lead) 
or composed of multi leads. In case of EEG, 
for instance, the multiple leads are arranged in 
a spatial matrix, which makes CNNs directly 
applicable. A 2-D spatial structure can also 
be generated using 2-D frequency transforms. 
Therefore, the origin, dimension, and type of 
biosignals are coded as B for “biosignal”, and 
denoted B(origin, dimension, type). We use 
simple numbers to indicate the instances in 
each of the criteria (Fig. 3). 

The second category used to distinguish 
the various approaches is the application 
domain. When deep learning is applied to 
a biosignal, it can be used for simple signal 
enhancement, detection of uncertain patterns 
(computer-aided detection, CADe), cluster-
ing of the signal or parts of the signal, rec-
ognition of given patterns (computer-aided 
diagnostics, CADx), or prediction of future 
signal alterations or events. We call this the 

Fig. 1   Deep learning methods (RBM = restricted Boltzmann machine, CNN = convolutional neural network, RNN = recurrent neural network).
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Fig. 2   Paper selection process.

Fig. 3   Classification of the parameters used for the selection of deep learning models. The dependencies are color coded. Note that A(..x) = N(x..) for all x in {1,2}.
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goal of the application. To train the network, 
data is needed. Such datasets are sometimes 
quite small (less than 100 records or less than 
5 hours of total recording time), medium (up 
to 1,000 records or 50 hours of recording 
time), but sometimes relatively large (up to 
10,000 records or 500 hours of recording 
time). They may have a label to indicate 
the ground truth (GT) or not. Therefore, the 
application is coded A for “application”, and 
denoted A(goal, GT-size, GT-type), and again 
simple numbers are used within the criteria to 
code the instances (Fig. 3).

Finally, the networks that are used for bio-
signal analysis differ. For instance, the learning 
type of the network may be supervised or unsu-
pervised. Note that this criterion is strictly cor-
related with the type of GT data, which can be 
labeled or unlabeled, respectively. The training 
of the network can be scheduled offline, online, 
or in real time. Of course, the topology of the 
network is another important criterion, and the 
instances we have chosen here correspond to 
Section 2.2. Consequently, network categories 
are denoted N for “network”, and coded N(L-
type, L-schedule, topology) (Fig. 3). 

In summary, three categories of deep 
learning on biosignals have been identified, 
each comprised of three criteria. Since the 
type of GT data is directly linked to the type of 
network learning, only eight effective criteria 
remain. In total, 37 different instances are 
suggested. These instances have been used to 
code the papers retrieved from the literature 
review. For example, the paper of Rahhal et 
al., [44] on active classification of ECG sig-
nals is coded as B(121)A(322)N(212). 

4.3   Biosignals and their Application 
Supervised learning is used in most appli-
cations: N(2..). Supervised learning is the 
ability of deep learning models to learn data 
with annotation. However, annotation (la-
beling) of the physiological signals requires 
expert knowledge and is often expensive and 
time-consuming. Unsupervised learning, 
coded as N(1..), is sometimes ineffective for 
multivariate inputs and ambulatory monitoring 
due to long-term time dependencies [6]. Based 
on the analysis of physiological signals, selec-
tion of generative and discriminative network 
topology is considered. Discriminative models 

are coded as A(2..) – A(4..). They are effective 
for the detection, clustering, and diagnostics 
of physiological signals. A discriminative 
model is capable of modeling the noisy data 
for training. Generative models are mainly 
used for the enhancement and prediction of the 
physiological signals. Models coded as N(..4) 
can predict and synthesize new partial input 
data at time t+1 based on the previous data at 
time t by learning the data. Generative models 
are also more robust to analyze noisy data. 
The characteristics of physiological signals 
play a vital role in the selection of deep learn-
ing models. If the physiological signal has a 
spatiotemporal structure, the model selected 
must incorporate both spatial and temporal 
coherence of the physiological signals using 

regularization. A CNN is considered as a good 
choice to handle both temporal and spatial 
data. However, selection criterions for the 
deep learning model should be more applica-
tion-oriented and robust for input data types. 

Table 2 shows the codes for all the 71 
papers that have been considered in this 
survey. There are only a few duplicates 
showing the diversity of research as well 
as demonstrating that our code is suitable 
for different approaches. Counting the total 
number of topology yields 15, 12, 34, and 
3 for RBMs, auto-encoders, CNNs, and 
RNNs, respectively. In addition, there are 
7 “Other” types of network topology, where 
the authors have combined several deep 
learning networks to improve performance. 

Table 2   Coding schemes for the 71 papers selected

Code

B(111)A(212)N(213)

B(111)A(312)N(213)

B(111)A(312)N(214)

B(112)A(212)N(211)

B(112)A(212)N(214)

B(112)A(212)N(213)

B(112)A(312)N(215)

B(112)A(312)N(211)

B(112)A(122)N(214)

B(112)A(222)N(213)

B(113)A(211)N(113)

Reference

[19, 45-49] 

[58-60]

[62]

[72]

[74]

[77]

[80]

[68]

[63]

[94]

[93]

Code

B(121)A(112)N(212)

B(121)A(212)N(213) 

B(121)A(222)N(213)

B(121)A(222)N(215)

B(121)A(322)N(212)

B(121)A(332)N(213)

B(122)A(212)N(211)

B(122)A(311)N(111)

B(122)A(312)N(211)

B(122)A(312)N(215)

B(122)A(412)N(212)

B(122)A(422)N(213)

B(122)A(522)N(213)

B(122)A(532)N(215)

B(123)A(312)N(212)

B(211)A(221)N(111)

B(211)A(322)N(213)

B(212)A(312)N(211)

B(213)A(222)N(215)

B(213)A(312)N(213)

B(213)A(412)N(213)

B(213)A(422)N(213)

Reference

[50-53]

[61]

[56]

[12]

[44]

[64]

[66]

[70]

[71]

[69]

[83]

[30]

[87]

[90]

[75]

[78]

[81]

[84, 85]

[88]

[91]

[97]

[95]

Code

B(311)A(312)N(214)

B(311)A(332)N(213)

B(311)A(512)N(214)

B(312)A(312)N(212)

B(312)A(412)N(213)

B(312)A(422)N(213)

B(312)A(422)N(215)

B(313)A(332)N(213)

B(412)A(112)N(211)

B(412)A(212)N(211)

B(413)A(211)N(123)

B(413)A(212)N(213)

B(512)A(212)N(213)

B(612)A(212)N(213)

B(711)A(412)N(212)

B(812)A(512)N(215)

B(d11)A(112)N(215)

B(d11)A(312)N(211)

B(d11)A(312)N(213)

B(d11)A(412)N(223)

B(d11)A(512)N(215)

B(d12)A(412)N(212)

Reference

[67]

[65]

[73]

[82]

[92]

[89]

[86]

[98-100]

[106]

[54]

[57]

[107]

[76]

[79]

[23]

[96, 108, 109]

[101]

[102]

[55]

[103]

[10]

[104,105]
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4.4   Clustering by Application and 
Biosignals
Table 3 visualizes six clusters of current 
research with respect to the goal of appli-
cation and the biosignal considered in the 
paper. A more comprehensive table with 
respect to the network architecture and the 
optimizers and regularizers used is given 
in Appendix 2.

4.4.1   Multi-lead ECG: B(12.)
Generally, multi-lead ECG signals are 
highly complex and have a large volume 
in size. Also, the multi-lead structure may 
support CNN and RNN architectures to 
apply directly.

Deep Learning Applied to Multi-lead ECG 
RawData: B(121)
We have identified nine papers that apply 
deep learning methods to enhancement 
[50–53], detection [12, 56, 61], and clus-
tering [44, 64]. This is due to the capability 
of deep learning methods to extract strong 
features and better data representation. 
All approaches used raw data as input, 

but different deep learning methods for 
processing. For instance, Pourbbabee et al., 
[61] and Zhou et al., [12] suggested apply-
ing CNN and LSTM on biosignals, while 
others used different types of auto-encoders 
for the analysis. Pourbbabee et al., divided 
30 min signals into six segments of 5 min, 
which were used as input to the CNN. In 
the case of Zhou et al., individual heartbeats 
were extracted from the ECG and fed to the 
LSTM model. 

All papers, except one [61], used the 
publicly available standard ECG databas-
es to evaluate the performance of their 
proposed methods. For example, Zhou et 
al., applied lead CNN and LSTM on the 
Massachusetts Institute of Technology, 
Beth Israel Hospital (MIT-BIH) database 
[110] and they used the trained model for 
the validation of the Chinese cardiovascular 
disease database (CCDD) [111]. Similarly, 
Rahhal et al., [44] validated their method 
on two other databases, namely the St. Pe-
tersburg Institute of Cardiological Technics 
(INCART) database [112] and the supra-
ventricular arrhythmia database (SVDB) 
[113]. Liu et al., [56] used a multi-lead 
CNN to detect myocardial infarction on 

ECG signals obtained from the German 
Physikalisch Technische Bundesanstalt 
(PTB) database [114]. Appendix 2 provides 
a more comprehensive list of the databases 
used in the papers for the evaluation of their 
methods as well as the results and perfor-
mances obtained, as reported by the authors.

It is observed that CNN and LSTM are 
used for the clustering task while auto-en-
coders are used for the application of signal 
enhancement and reconstruction. Besides, 
Gogna et al., [50] used the Split-Bregman 
optimization technique to overcome the 
issues of error backpropagation for un-
ambiguous auto-encoders learning, while 
the other authors have applied the normal 
auto-encoder model. Jin and Dong [64] 
developed and implemented a multi-lead 
CNN model for the classification of nor-
mal/abnormal signals. Further, the rule 
inference approach is applied to improve 
the performance of the training model. In 
general, the results obtained by the nine 
papers were above 90% accuracy. Zhou et 
al., obtained an average accuracy of 99.41% 
and 98.03% on MIT-BIH and CCDD, re-
spectively, by combining CNN and LSTM 
as base classifier in the proposed network. 

Table 3   Deep learning on biosignals with respect to the goal of the application and the origin of the biosignal (colors indicate the six clusters).

Application n-ECG 1-ECG EMG PCG PPG Others Multiple Sources
B(121) B(122) B(123) B(111) B(112) B(113) B(211) B(212) B(213) B(311) B(312) B(313) B(411) B(412) B(413) B(c11) B(c12) B(c13) B(d11) B(d12) B(d13)

Enhancement

A(1..)

[50]

[51]

[52]

[53]

[63] [106] [101]

Detection

A(2..)

[61]

[12]

[56]

[45]

[46]

[19]

[47]

[48]

[49]

[62]

[72]

[74]

[66]

[68]

[77]

[94]

[93] [78] [88] [82] [54]
[57]

[107]

[76]1

[79]2

Clustering

A(3..) [44]

[64]

[70]

[69]

[71]

[75]

[58]

[60]

[59]
[80] [81]

[84]

[85]
[91]

[67]

[65]

[98]

[99]

[100]

[102]

[55]

Diagnostics

A(4..)
[30]

[83]

[95]

[97]

[86]

[92]

[89]

[23]3 [103]
[104]

[105]

Prediction

A(5..)
[87]

[90]
[73]

[96] 4

[108] 4

[109] 4

[10]

1B(512); 2B(612); 3B(711); 4B(812)
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Deep Learning Applied to Features from 
Multi-lead ECG: B(122)
A cluster of seven papers applied features 
derived from multi-lead ECG to deep learning 
networks. Such features may be RR interval 
[70], the QRS complex [69], or morphological 
and temporal features [83]. In contrast to 
raw data-based approaches, enhancement 
is not a target application but it improved 
detection, clustering, and diagnostics. Fea-
tures extracted from biosignals are used 
as a key element for the identification of 
boundary conditions to separate classes in 
the multi-dimensional feature space. Five 
applications were evaluated on publicly 
available databases [30, 69–71, 83], while 
the others recorded private data [87, 90]. 
All papers applied to clustering used deep 
belief networks for processing [66, 75, 76]. 
The results reported by the papers were all 
above 85%. In particular, Majumdar and 
Ward [69] showed an average accuracy of 
97.0% for classification. Zhang et al., [30] 
considered eight diverse ECG databases to 
evaluate the performance of their system 
and obtained 93.5%, 96.5%, and 90.5% for 
overall human identification task, normal 
subject identification, and abnormal subject 
identification, respectively. 

4.4.2   Single-lead Biosignals: B(x1.) 
This type of signal is formed from a single 
sampled measurement, usually derived as 
an electrical potential, and usually of pseu-
do-periodic nature, disregarding whether the 
biosignal is cardiac, respiration, or blood 
pressure. Therefore, our analysis is pooled 
with x = {1, 2, 3, 4, 5, 6, 7, 8, 9} where x 
represents different physiological signals as 
shown in Table 3.

Deep Learning Applied to Single-lead Bio-
signal Raw Data: B(x11) 
In this group of 16 papers [19, 23, 45–49, 
58 – 60, 62, 65, 67, 73, 78, 81], single-lead 
raw data is fed as input to the deep learning 
methods for applications that focus on de-
tection; for instance, the paper of Acharya 
et al., [46] aimed at automated detection of 
abnormalities in ECG signals. The approach 
of Kiranyaz et al., [19] focused on a person-
alized monitoring system for arrhythmias. 
The high number of research papers may 

come from the fact that single-channel 
biosignals are simple, easy to acquire, and 
effective in decision making system. Out 
of the 16 papers, 12 used 1-D CNN models 
[19, 45–49, 58–60, 62, 65, 81]; two were 
based on auto-encoders [23, 73]; one used 
an RNN model [67]; and one used an RBM 
model [78]. 

Out of 10 papers using single lead ECG 
inputs, seven [19, 47, 49, 58–60, 62], two 
[45, 46] , and one [114] were evaluated on the 
MIT-BIH, the German Physikalisch Tech-
nische Bundesanstalt (PTB), and the Fantasia 
database, respectively (see Appendix 2).

In general, the overall results were above 
94% accuracy. In particular, Kiranyaz et al., 
[60] obtained an average accuracy of 99.00% 
on the MIT-BIH database and Lei et al., [45] 
reported 99.33% accuracy on the PTB data-
base [114]. In an interesting study, Schozel 
and Dominik [73] used an RNN model to 
study PCG signals and they generated an 
artificial ECG signals from PCG. Papers 
describing works from biosignals other than 
ECG obtained an overall accuracy above 
79%. For instance, Zhang et al., [23] reported 
an average accuracy of 80.22% for emotion 
recognition using respiration signal. Similarly, 
Ryu et al., [65] obtained an overall accuracy of 
79.55% for the classification of heart sounds 
using PCG signals, which may be due to the 
unbalanced datasets used to validate the pro-
posed model. In another study, Atzori et al., 
[81] proposed to classify the movements of 
a prosthetic hand using a CNN model. EMG 
signals from amputee subjects were recorded 
and validated using the proposed models. 
They obtained the lowest accuracy of 38.09% 
for the amputee’s datasets. 

Deep Learning Applied to Features from 
Single-lead Biosignals: B(x12) 
The number of scientific papers with fea-
tures as input to the deep learning method is 
high. In this cluster, features were extracted 
from the single-lead biosignals: 21 papers 
have been retrieved on this topic covering 
applications such as enhancement [63, 106], 
detection [54, 66, 68, 72, 74, 76, 77, 79, 
82, 94], clustering [80, 84, 85], diagnostics 
[86, 89, 92], and prediction [96, 108, 109]. 
Examples of features were RR interval [72, 
74], mean absolute value of signal [85], or 
frequency spectral coefficients [92]. Nine 

out of 21 papers used unsupervised learn-
ing and deep belief networks to perform 
detection [54, 66, 68, 72, 82, 94], clustering 
[84, 85], diagnostics [86], or prediction [96, 
108, 109], while the others used supervised 
learning [63, 74, 76, 79, 80, 89, 92]. 

In 10 papers, the authors conducted ex-
periments on public databases [66, 68, 76, 
77, 80, 84–86, 94, 96]. In two papers, signals 
were simulated [63, 79]. In four papers, sig-
nals were acquired from the 2016 Physionet 
Challenge database [116]. Only four papers 
presented an evaluation using the authors’ 
own data [54, 74, 89, 92].

The results were diverse. In particular, 
Mohebi et al., [79] generated continuous glu-
cose monitoring (CGM) signals to identify 
type 2 diabetes patients using a CNN model. 
Lee and Chang [96] combined a deep belief 
network with bootstrapping to estimate 
blood pressure; bootstrapping enhanced the 
performance by about 10%. In general, the 
results were above 83% in accuracy for the 
various applications. Specifically, Jindal et 
al., [54] obtained an accuracy of 96.1% for 
biometric identification using PPG signals. 
Some papers with inputs other than ECG 
signals obtained an accuracy of 71.39%, e.g., 
for congestive heart failure detection [72].

In an interesting study, Lee and Chang 
[108, 109] developed an ensemble of 
deep belief network-deep neural network 
(DBN-DNN) approach for the estimation 
of oscillometric blood pressure with low 
data samples. Further, artificial features 
were synthesized to overcome the issue of 
low data samples for training deep learning 
models. To improve the prediction rate of 
cardiovascular events, Kim et al., [106] used 
a DBN model on blood pressure signals to 
reduce artifacts. Similarly, Zhenjie et al., 
[77] proposed a multiscale CNN model for 
the detection of atrial fibrillation from ECG 
signals and achieved 98.18% accuracy on 
the MIT-BIH database [110].

Deep Learning Applied to 2D-transformed 
Biosignals: B(x13) 
Ten papers describe utilizing a 2-D spectrum 
as input to the deep learning system [57, 88, 
91, 93, 95, 97–100, 107]. It is reported that 
2-D spectra of transformed biosignals de-
scribe the spatial and temporal information 
of the signals. Also, it allows the direct use 

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.



106

IMIA Yearbook of Medical Informatics 2018

Ganapathy et al

of CNNs. All the papers used supervised 
learning to train a CNN and the applications 
are detection [57, 88, 93, 107], classification 
[91, 98–100], and diagnostics [95, 97]. 

Out of the 10 papers, five used publicly 
available databases to evaluate the perfor-
mance of their systems [91, 97–100] and 
the other five used experimental protocols 
for signal acquisition [57, 88, 93, 95, 107] 
(see Appendix 2). In general, the results 
obtained were above 90% of accuracy. In 
particular, Dominguez-Morales et al., [98] 
obtained 97% of accuracy using a modified 
version of the AlexNet model [40]. Interest-
ingly, the authors converted the PCG signal 
obtained from a neuromorphic auditory 
sensor into address-event representations, 
which were later plotted as 2-D sonogram 
for deep learning. In order to improve the 
prediction ability of their deep learning 
model, Xia et al., [88] used a hybrid model 
combining CNN with RNN. 

Most of the papers in this cluster utilized 
supervised learning. Out of eight papers, six 
papers used publicly available databases to 
validate the model proposed. Cote-Allard et 
al., [95] developed and tested a transfer-learn-
ing-based hand gesture learning system. A 
trained model, obtained from other datasets, 
was used to detect and improve different 
hand gestures. Xia et al., [93] used 2-D-trans-
formed ECG signals as input for the detection 
of pathological conditions with an average 
accuracy of 98.63%.

4.4.3   Multiple Source Biosignals
Seven papers proposed approaches to man-
age multiple source biosignals. Except two 
papers [104, 105], all used the raw data to 
feed the deep learning system for signal 
enhancement [101], clustering [55, 102], 
diagnostics [103–105], and prediction [10]. 
For instance, Bengio et al., [10] presented 
a major breakthrough applying a CNN for 
affect classification from raw physiological 
signals. The accuracy obtained by all papers 
was above 85%. The performance of the sys-
tems was dependent on the combination of 
the biosignals used for the analysis. For ex-
ample, Zhang et al., [102] obtained 98.49% 
of accuracy for the automated classification 
of sleep stages using sparse DBNs. The 
authors used EMG, EEG, and ECG collec-

tively to investigate the impact of different 
biosignals on the algorithm performance. In 
[10], the authors used a CNN model on spe-
cific signals from the database for emotion 
analysis using physiological signals (DEAP) 
[13], namely skin conductance and blood 
volume pulse. Out of the seven papers, three 
used a CNN model [10, 55, 103], two were 
based on an ensemble approach [104, 105], 
one used a DBN model [102], and another 
used a DNN model [101]. Belo et al., [101] 
proposed an interesting approach for gen-
eralized biosignals learning and synthesis 
using DNN models. Chow [103] proposed 
an online biometric recognition system using 
ECG and EDA signals. In this approach, 
physiological signals are acquired and 
trained in an online mode using pre-trained 
networks. Three papers [10, 104, 105] have 
used the publicly available DEAP database 
for the validation (see Appendix 2).

4.5   Clinical Application
Although most of the papers are focused on 
the methodology of biosignal analysis using 
deep learning, there are some examples that 
present a real-world application of such 
methods. We have selected three of them 
as examples. 

HeartID [30] used a multiresolution CNN 
for ECG-based biometric identif ication 
of humans in smart health applications. 
First, the ECG stream was blindly split into 
segments of two seconds disregarding the 
R-wave positions. Then, the segments were 
transformed to the Wavelet domain to reveal 
more detailed time and frequency character-
istics in multiple resolutions. An auto-cor-
relation was performed to each wavelet to 
remove the blind-segmentation-based phase 
shift. Despite using wavelet-transformed 
output (image) as input to the CNN ap-
proach, a 1-D-CNN was applied to each in-
dividual wavelet component to clearly learn 
the local patterns. Furthermore, each wavelet 
component was considered as a 1-D-image 
(feature vector) and was fed as input into 
the 1-D-CNN to learn the intrinsic pattern 
of the individuals. To evaluate the system, 
several publicly available databases were 
re-sampled to 360 Hz yielding 100 normal 
and 120 abnormal datasets (arrhythmia, ma-

lignant ventricular ectopy, ST depression). 
The correct identification rate yielded 96.5% 
and 93.5%, respectively. The system could 
be generalized to other quasi-periodic bio-
signals such as PPG, BCG, or a multi-modal 
combination of them.

Another remarkable system focused on 
personalized event prediction to detect the 
occurrences of arrhythmias or abnormal 
beats in the ECG signal [19]. Facing the 
challenge that an ECG of a healthy person 
without any history of cardiac arrhythmias 
should exhibit no abnormal beats, the au-
thors developed a set of 464 filters perform-
ing regularized least-squares optimization to 
synthesize individual pathologic patterns out 
of healthy ECG cycles. For the early detec-
tion of cardiac arrhythmias, a personalized 
training dataset was created synthetically 
over the subject’s average normal beat. A 
one-dimensional (1-D) CNN dedicated to 
that specific subject was trained and used to 
monitor streamed real-time recordings. The 
system’s evaluation was based on the MIT-
BIH database [110], where the first 5 minutes 
of recordings were used to form the average 
normal beats. Overall, 34 patient records 
with a total of 63,341 beats were selected for 
the evaluation. The probability of detecting 
at least one among the first three abnormal 
beats was 99.4%, supporting a meaningful 
clinical application of the system.

Generally, deep learning is considered to 
be computationally expensive. Pourbabaee et 
al., [61] developed a computationally effi-
cient screening system for patients with par-
oxysmal atrial fibrillation (PAF). The authors 
used a large volume of ECG time-series data 
and a deep CNN to identify unique features 
patterns for screening patients. The 30-min-
ute raw ECG signals were first divided into 
six equal segments. Later, these short ECG 
segments were used as input to the CNN to 
obtain robust deep features which were then 
passed through standard classifiers namely 
end-to-end CNN, k-nearest neighbors 
(kNN), support vector machine (SVM), 
and multilayer perceptron. To evaluate the 
performance of the system, signals were 
taken from the PAF prediction challenge 
database [117]. The authors showed that 
the CNN-learned features can be classified 
conventionally, which is computationally 
inexpensive and efficient. The CNN net-
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work did not require any prior domain 
knowledge for learning the features and, 
therefore, the approach could potentially be 
utilized for other biosignals. The network 
yielded an accuracy of 93.60% and 92.96% 
using an end-to-end CNN and a Gaussian 
kernel SVM, respectively. 

5   Discussion and Conclusion
A comprehensive literature research was 
performed to identify works combining 
biosignals of any nature (except EEG due 
to its 2-D spatial structure) with deep learn-
ing networks. The examined bibliographic 
databases (PubMed, Scopus, and ACM) 
provided relevant papers including works 
publisehd in IEEE or SPIE conference 
proceedings. We have developed a scheme 
to differentiate existing research by bio-
signals, applications, and networks that 
yields 30 instances from seven independent 
categories. Such a graph may yield more 
than 25,000 different codes, but due to 
internal dependencies (network topology 
and application goal), that figure reduces to 
6,480. As it is shown in Table 2, research is 
diverse, but there are two codes occurring 
multiple (more than three) times, B(111)
A(212)N(213) and B(121)A(112)N(212). 
The code B(111)A(212)N(213) is found to 
be used six times on single lead ECG sig-
nals to perform pattern detection. Similarly, 
B(121)A(112)N(212) is used four times for 
multi-lead ECG targeting signal enhance-
ment for better clinical decision supports.

The overall accuracy obtained by meth-
ods using raw ECG signals is higher than 
those with features as input. This may be 
due to the ability of deep learning to capture 
features which optimally represent the bio-
signal specific to the problem. The overall 
performance of the papers that utilized the 
authors’ own signal acquisition protocol 
was lower than those experimenting with 
publicly available databases. This may be 
due to the presence of noise and artifacts in 
the recordings. To date, most work has been 
performed on relatively small datasets. Five 
papers used 3,126 recordings from the 2016 
Physionet Challenge database for heart 
sound analysis, and one paper mentioned 

utilizing 1,075 records [92]. This finding 
is in line with Deserno and Marx [7], who 
reported the need for more realistic refer-
ence databases.

Most of the papers (n = 30) use features 
which are pre-extracted from the biosignals 
as input to the deep learning models. This 
may result from the assumption that the 
performance of machine learning is im-
proved when using pre-computed features as 
compared to noisy raw data since a feature 
vector is much smaller than the signal itself 
and hence this reduces the required volume 
of training data. However, the basic idea of 
deep learning is to automatically identify 
patterns from large volumes of biosignals 
without human involvement. On the other 
hand, only 11 papers (less than 15%) ap-
plied a 2-D transform to take advantage 
of the CNN matrix-like architecture. This 
figure was much lower than anticipated, but 
may be the result of the fact that 1-D CNN 
performs well.

In conclusion, after having shown their 
impact on image and video analysis, deep 
learning approaches have become suc-
cessfully applied to the analysis of 1-D 
biosignals. The number of published work 
increases continuously, and the results are 
promising. However, there is a large variety 
of signals, applications, and reference data, 
which makes an objective comparison of the 
published approaches difficult. 

In future, standardization of network 
topology and parameters is expected. Ref-
erence data recorded with novel devices 
is required, which represents not only pa-
thology but also normal recordings from 
healthy subjects, as well as outliers, drop out 
sequences, and noise.
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