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Abstract

Nanopore long-read sequencing is an emerging approach for studying genomes,
including long repetitive elements like telomeres. Here, we report extensive basecalling
induced errors at telomere repeats across nanopore datasets, sequencing platforms,
basecallers, and basecalling models. We find that telomeres in many organisms are
frequently miscalled. We demonstrate that tuning of nanopore basecalling models
leads to improved recovery and analysis of telomeric regions, with minimal negative
impact on other genomic regions. We highlight the importance of verifying nanopore
basecalls in long, repetitive, and poorly defined regions, and showcase how artefacts
can be resolved by improvements in nanopore basecalling models.
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Background
Telomeres are protective caps found on chromosomal ends and are known to play criti-
cal roles in a wide range of biological processes and human diseases [1, 2]. These highly
repetitive structures enable cells to deal with the “end-replication problem” through the
action of telomerase which adds telomeric repeats to the ends of chromosomes. In can-
cer, the reactivation of telomerase to drive telomere elongation is estimated to occur in
as many as 90% of human cancers and has been shown experimentally to be critical for
malignant transformation [3—8]. As one ages, telomeres are also known to progressively
shorten and are thus thought to also play a central role in the process of aging [9-11]. In
many organisms, telomeres are characterized by (TTAGGG),, repeats that vary in length
of between 2 and 20 kb long, which are not readily resolved by short-read sequencing
approaches. Given the importance of telomeres in a wide range of biological processes
and the technical challenges associated with their analysis using short-read sequencing,
there is significant interest in applying emerging techniques like long-read sequencing to
study these repetitive structures.

Long-read sequencing has emerged as a powerful technology for the study of long
repetitive elements in the genome. Two main platforms, Single Molecule Real Time
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(SMRT) sequencing and nanopore sequencing, have been developed to generate
sequence reads of over 10 kilobases from DNA molecules [12, 13]. In SMRT Sequenc-
ing, the incorporation of DNA nucleotides is captured real-time via one of four different
fluorescent dyes attached to each of the four DNA bases, thereby allowing the corre-
sponding DNA sequence to be inferred. Sequencing of the same DNA molecule multiple
times in a circular manner further allows a highly accurate consensus sequence of the
DNA molecule to be generated in a process termed Pacific Biosciences (PacBio) High-
Fidelity (HiFi) sequencing [12]. During nanopore sequencing, the ionic current, which
varies according to the DNA sequence, is measured while a single-stranded DNA mol-
ecule passes through a nanopore channel. The electrical current measurement is then
converted into the corresponding DNA sequence using a deep neural network trained
on a collection of ionic current profiles of known DNA sequences [13]. Notably, both
platforms enable long DNA molecules of more than 10 kilobase pairs to be routinely
sequenced and are thus highly suited for the study of long repetitive elements like
telomeres.

Results and discussion
In our analysis of telomeric regions with nanopore long-read sequencing in the recently
sequenced and assembled CHM13 sample [14, 15], we surprisingly observed that telom-
eric regions were frequently miscalled as other types of repeats in a strand-specific manner.
Specifically, although human telomeres are typically represented by (TTAGGG), repeats
(Additional file 1: Fig. Sla), these regions were frequently recorded as (TTAAAA), repeats
(Fig. 1a, b, Additional file 1: Fig. S1 and S2a). At the same time, when examining the reverse
complementary strand of the telomeres which are represented as (CCCTAA), repeats, we
instead observed frequent substitution of these regions by (CTTCTT), and (CCCTGG),
repeats (Fig. 1a, b, Additional file 1: Fig. S1 and S2b,c). Notably, these artefacts were not
observed on the CHM13 reference genome [14, 15], or PacBio HiFi reads from the same
site (Fig. 1a, b), suggesting that these observed repeats are artefacts of nanopore sequencing
or the base-calling process, rather than real biological variations of telomeres. The examina-
tion of each telomeric long read also indicates that these error repeats frequently co-occur
with telomeric repeats at the ends of each read (Fig. 1c, Additional file 1: Fig. S3), and are
observed on all chromosomal arms of CHM13 (Additional file 1: Fig. S1b,c, Additional
file 1: Fig. S4). Together, our results suggest that telomeric regions are frequently misrepre-
sented as other types of repeats in a strand-specific manner during nanopore sequencing.
As human sub-telomeres are known to have a high degree of similarity to each other
[16] which may lead to mis-mapping of reads between different chromosomal arms, we
explored the level of read mis-mapping between different arms to assess if this might
affect our analysis. We simulated long-reads (mean = 10kb) from the terminal 10 kb,
100 kb, and 1000 kb region of the CHM13 reference genome (Methods) and remapped
them to the CHM13 assembly to measure the rate of misalignment. Remarkably, under a
mapping quality threshold of >1, the mapping error rate was only ~0.03—0.3% for reads
ranging in base accuracy between 95 and 99.9% at each of these regions (Additional
file 1: Fig. S5). Even when a less stringent mapping quality cutoff value of O was applied, a
relatively low mapping error rate of 0.3—1.2% was observed (Additional file 1: Fig. S5). As
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Fig. 1 Strand-specific nanopore basecalling errors are pervasive at telomeres. a, b IGV screenshot illustrating
the three types of basecalling errors found on the forward and reverse strands of telomeres for nanopore
sequencing. (TTAGGG), on the forward strand of nanopore sequencing data was basecalled as (TTAAAA

)n While (CCCTAA),, on the reverse strand was basecalled as (CTTCTT), and (CCCTGG),.. PacBio HiFi data
generated from the same cell line (CHM13) is depicted as a control. Reference genome indicated in the

plot corresponds to the chm13 draft genome assembly (v1.0). ¢ Co-occurrence heatmap illustrating the
frequency of co-occurrence of repeats corresponding to natural telomeres, or to basecalling errors in PacBio
HiFi and nanopore long-reads found at chromosomal ends (within 10kb of annotated end of the reference
genome). Diagonal of co-occurrence matrix represents counts of long-reads with only a single type of
repeats observed. d Basecalling errors at telomeres are observed across different nanopore datasets and
sequencing platforms. e Basecalling errors at telomeres are observed for different nanopore basecallers and
basecalling models. Guppy5 and the Bonito basecallers, and different bascalling models for each basecaller,
were used to basecall telomeric reads in the CHM13 PromethION dataset (reads that mapped to flanking
10kb regions of the CHM13 reference genome). f Basecalling errors share similar nanopore current profiles as
telomeric repeats. Current profiles for telomeric and basecalling error repeats were plotted based on known
mean current profiles for each k-mer (“Methods"). g Summary of organisms assessed and the types of repeat
errors observed. Note that S. pombe and D. melanogaster could not be readily assessed for the presence of
error repeats by visualization in IGV as these sequences are more complex
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such, our results from reads simulation suggest that there is minimal level of read mis-
mapping between different chromosomal arms in the CHM13 sample. We next assessed
the sequencing coverage of each chromosomal arm in the CHM13 sample to establish if
there may be biases in read coverage caused by read mis-mapping. We did not see strong
biases in the coverage of nanopore reads on each chromosomal arm in the CHM13 sam-
ple (Additional file 1: Fig. S6), in line with the low mapping error rate in our simulation
study. To evaluate if these errors are broadly observed in other studies or are specific
to the CHM13 dataset from the Telomere-to-Telomere consortium, we examined the
previously published NA12878 and HG002 nanopore genome sequencing datasets [12,
13, 17, 18]. We observed the same basecalling errors, TTAGGG—=>TTAAAA, CCCTAA
—>CTTCTT, and CCCTAA—>CCCTGG at telomeres in these datasets (Fig. 1d, Addi-
tional file 1: Fig. S7a). Remarkably, between 40 and 60% of reads at telomeric regions
in these three datasets display at least one of these types of basecalling repeat artefacts
for the nanopore sequencing platform (Additional file 1: Fig. S7b), while these errors
were not observed in the PacBio HiFi datasets for the same samples (Additional file 1:
Fig. S7b). We also partitioned these datasets based on the sequencing platforms used
to generate them and noted that basecalling error repeats are observed across all three
nanopore sequencing platforms (MinION, GridION, PromethION) (Fig. 1d, Additional
file 1: Fig. S7a). These error repeats are a pervasive problem across nanopore sequencing
datasets and sequencing platforms.

We then questioned if these error repeats are unique to specific nanopore basecallers
or basecalling models. We extracted reads from chromosomal ends, and re-basecalled
ionic current data of these reads using different basecallers and basecalling mod-
els. Using the production-ready basecaller Guppy5 (Oxford Nanopore Technologies),
and the developmental-phase basecaller Bonito (Oxford Nanopore Technologies), we
noticed that these basecalling error repeats can be readily observed across both base-
callers (Fig. le, Additional file 1: Fig. S8 and S9). Further, these error repeats were also
observed when different basecalling models were applied (Fig. le). Significantly, we
also observed that the “fast” basecalling mode in Guppy led to almost complete loss of
the (CCCTAA), strand (Fig. le, Additional file 1: Fig. S8a), while the “HAC” basecall-
ing model enabled both strands to be recovered, highlighting that the basecalling model
applied can affect the strand-specific recovery of telomeric reads. Together, these results
suggest that error repeats are observable across nanopore basecallers and basecalling
models.

We asked if there might be a difference in current profiles between the error-prone
and less error-prone reads. To distinguish the error-prone reads from the less error-
prone reads, we calculated the number of telomeric repeats ((TTAGGG); and (CCC
TAA),), and artefact repeats ((TTAAAA);, (CCCTGG),, and (CTTCTT),) on each long-
read (Additional file 1: Fig. S10a-b). The proportion of repeat-calling errors on each read
can then be established by dividing the number of artefact repeats by the total number
of telomeric and artefact repeats (Additional file 1: Fig. S10c-d). While the majority of
long-reads (69.5%) on the “CCCTAA” strand had an error proportion of >90%, only 5.2%
of long-reads on the “TTAGGG” strand had an error proportion of <10%, suggesting
that the repeat calling errors occur more frequently on the “CCCTAA” strand than on
the “TTAGGG” strand. We then examined the current profiles of the more error-prone



Tan et al. Genome Biology ~ (2022) 23:180 Page 5 of 16

reads (i.e., reads with a higher proportion of repeat calling errors) and the less error-
prone reads. We were not able to observe an obvious visual difference in current profiles
between the reads with a higher proportion (>0.9) of repeat calling errors (Additional
file 1: Fig. S11a-c) versus the reads with a lower proportion (<0.4) of repeat calling errors
(Additional file 1: Fig. S11d-f).

To determine the cause for these repeat-calling errors, we examined the ionic cur-
rent profiles of true telomeric repeats and artifactual error repeats. We extracted known
mean current values of each 6-mer and its six circular permutations (e.g., TTAGGG,
TAGGGT, and AGGTT) and generated their ionic current profiles (Methods). Remark-
ably, we observed a high degree of similarity between current profiles between telom-
eric repeats and these basecalling errors (Fig. 1f). Specifically, we observed that (TTA
GGQG), telomeric repeats had a high degree of similarity with the (TTAAAA), error
repeats generated by the Bonito base-caller (Pearson correlation = 0.9928, Euclidean
distance=4.9934) (Additional file 1: Fig. S12a-c). Similarly, (CCCTAA), current profile
also showed high similarity with (CCCTGG), repeats (Pearson correlation = 0.9783,
Euclidean distance = 4.687), and reasonably good similarity with (CTTCTT), repeats
(Pearson correlation = 0.6411, Euclidean distance = 19.384) (Additional file 1: Fig. S12a-
). Together, these results suggest that similarities in current profiles between repeat
sequences are possible causes for repeat-calling errors at telomeric repeats.

We then examined if repeat-calling errors may extend to other repetitive sequences
beyond telomeric sequences. To address this, we search for other repeat pairs with sim-
ilar current profiles that may be susceptible to these repeat-calling errors. We simu-
lated and performed pairwise comparison of current profiles for all 6-mer repeats (n
=8,386,560 comparisons) (Methods). Using similar Pearson correlation (>0.99) and
Euclidean distance cutoffs (<5) as observed for telomeric repeat errors identified in this
study (Additional file 1: Fig. S12a-c), we identified a further 2577 pairs of repeats with
similar current profiles (Additional file 2: Table S1, Additional file 1: Fig. S12d). For
instance, we found that (TTAGGG), telomeric repeats also showed high similarities
in current profiles with repeats with single-nucleotide substitutions like (TTAAGG),,
(TTAGAG),, and (TTGGGG), (Additional file 1: Fig. S12d,e). Repeat sequences like
(GCTGCT), and (AACGGC), that differed drastically at the sequence level, but shared
similar current profiles were also observed (Additional file 1: Fig. S12d,f). Further, we

also examined the unmappable pool of CHM13 nanopore reads after mapping it to the
CHM13 reference assembly. Remarkably, a significant pool of reads with long (GT),
repeats was readily observed (Additional file 1: Fig. S13). Interestingly, (GTGTGT),
repeats were also found to have high similarities in current profiles with (CTCTCT),
repeats (Additional file 1: Fig. S12d, Additional file 2: Table S1), suggesting that the pool
of unmappable (GT), reads may include (CT), repeats. Collectively, our results suggest
that these basecalling error repeats may be observed at other repetitive regions, beyond
telomeres.

It is interesting to note that telomere-like sequences are also frequently found near tel-
omeric regions [19-22]. Specifically, there are three main types of telomere-like repeat
sequences that are frequently found near telomeres in the human genome, namely the
c-type repeats (TCAGGG),, g-type repeats (TGAGGG), and j-type repeats (TTGGGG),
[23]. We asked if these telomere-like repeat sequences might also be basecalled incorrectly,
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similar to what we have observed at telomeres with (TTAGGG),, repeat sequences. We
therefore identified these telomere-like repeat regions from the CHM13 reference genome
(Methods), and visually inspected them in IGV. These telomere-like repeat sequences could
also be miscalled into repeat sequences of other repeat monomer length. For instance, we
observed that the 6-mer (CCCTCA), repeats could get miscalled into the 5-mer (CCTCA),
repeat sequence (Additional file 1: Fig. S14a). (CCCTGA), and (TCAGGG), 6-mer
repeats could also get miscalled into (CCTGA),, 5-mer repeats and (TCAGGGG),, 7-mer
repeats respectively (Additional file 1: Fig. S14b). Further, the 6-mer (TTGGGQG),, repeat
was observed to be miscalled into the 7-mer (TTGGGGG), repeats (Additional file 1: Fig.
S14c). We explored the current profiles for these repeats (10 consecutive repeats) using
known current values for each 6-mer repeats (Additional file 1: Fig. S15). Remarkably, even
though these repeat sequences were of different length, we see that these sequences can
still share a highly similar current profile (Additional file 1: Fig. S15a,b,d,e,g). Of note, other
6-mer repeats were also predicted to have similar current profiles as these three types of
telomere-like repeat sequences (Additional file 1: Fig. S16). Together, these suggest that
the repeat miscalling errors can also be observed on these telomere-like repeat sequences.
More broadly, our results also show that repeat sequences of different lengths (i.e. 6-mer vs.
5-mers and 6-mers vs. 7-mers) can share similar current profiles, and be miscalled between
each other.

To see if these repeat calling errors might extend to the telomeres of other organisms,
we obtained nanopore genome sequencing dataset corresponding to eight model organ-
isms covering a wide spectrum of the tree of life from the NCBI SRA database (Fig. 1g,
Additional file 2: Table S2 and S3) [24]. These eight different organisms are Arabidopsis
thaliana (25, 26], Caenorhabditis elegans [27], Gallus gallus (chicken), Drosophila mel-
anogaster [28], Mus musculus (mouse) [29, 30], Saccharomyces cerevisiae [31], Schizo-
saccharomyces pombe, and Danio rerio (zebrafish) [32, 33] which are all widely studied
and have high-quality reference genomes. At the telomeres, these organisms are known
to have (TTAGGG), telomeric repeats as humans do (chicken, zebrafish, mouse)
[34-36], (TTTAGGG), repeats (A. thaliana) [37], (TG, _3), repeats (S. cerevisiae) [38],
TTAC(A)(C)G,_¢ (S. pombe) [39], (TTAGGC), repeats (C. elegans) [40], or retrotrans-
posons (D. melanogaster) [41] (Fig. 1g). As raw current data was not available for all
datasets, we directly utilized sequence data that was published by the authors of these
studies. As expected, we also observed repeat calling errors on telomeres in organ-
isms with (TTAGGG),-type repeats (Additional file 1: Fig. S17a, S18), akin to what we
observed in humans. Interestingly, we also observed similar telomeric repeat errors as
in humans in A. thaliana which are known to have 7-mer (TTTAGGG),, repeats (note
that humans have a slightly different repeat sequence of TTAGGG) (Additional file 1:
Fig. S17b, S19), which suggests that these repeats need not be 6-mer repeats (approxi-
mate number of nucleotides detected by the nanopore at each time) for errors to be
observed. In C. elegans, (CTTGGG), repeat errors instead of (TTAGGC), telomeric
repeats could also be detected in one of the two datasets assessed (Additional file 1:
Fig. S17b, S20). We did not observe repeat errors for S. cerevisiae which are known to
have (TG;_;), repeats at their telomeres (Additional file 1: Fig. S17¢, S21), suggesting
that these repeat errors do not occur on telomeres of all organisms. In organisms like
S. pombe with more complex telomeric repeat sequences, some strand bias could be
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observed though we were unable to observe specific error motifs (Additional file 1: Fig.
S17d). For D. melanogaster, which elongates telomeres via a retro-transposition-based
mechanism, it was not possible to assess the frequency of repeats. Nonetheless, there
was no observable difference in basecalling between the two strands at the ends of the
D. melanogaster reference genome (Additional file 1: Fig. S22). Together, our results
suggest that repeat calling errors in nanopore sequencing can be observed at telomeres
of some other organisms beyond human telomeres.

To resolve these basecalling errors at telomeres, we attempted to tune the nano-
pore basecaller by providing it with more training examples of telomeres (Fig. 2a).
Notably, model training was performed with a low learning rate to ensure that the
majority of the model does not get affected during training while ensuring that
minor adjustments in the model can be made to accurately basecall telomeres. Spe-
cifically, we tuned the deep neural network model underlying the Bonito basecaller
by training it at a low learning rate with ground truth telomeric sequences extracted
from the CHM13 reference genome, and current data of the corresponding reads
(Methods). As two nanopore PromethION runs were performed on the CHM13
dataset, we used the data from one run (run225) for training and tuning of the base-
caller and held out the data from the second run (run 226) for evaluation of our
tuned basecaller. With this approach, we see a significant improvement in the base-
calls of both the telomeres and sub-telomeric regions on the training data and held
out dataset with a clearly observable decrease in errors on the chromosomal ends
(Fig. 2b, Additional file 1: Fig. S23a-d).

As it is computationally more efficient to redo repeat-calling only for the small
fraction of problematic telomeric reads rather than all reads, we developed an
overall strategy to select these telomeric reads for re-basecalling with the tuned
Bonito+telomeres basecaller (Fig. 2c). To select telomeric reads for selective re-
basecalling, we relied on an observation from the CHM13 reference genome and
nanopore sequencing datasets. Specifically, we noticed that telomeric reads which
are mapped to the ends of the CHM13 reference genome tend to show a high fre-
quency of telomeric, or basecalling error repeats as compared to the rest of the
genome (Additional file 1: Fig. S24). We therefore utilized this observation to sepa-
rate the non-telomeric reads, from the candidate telomeric reads (Fig. 2c, “Meth-
ods”). These telomeric reads were then re-base-called with the tuned Bonito
basecaller before being recombined with the pool of non-telomeric reads. Remark-
ably, with this strategy, we observed a significant improvement in recovery of telo-
meric reads with (TTAGGG), and (CCCTAA), repeats (from 384 to 476 TTAGGG
and 373 to 686 CCCTAA reads) (Fig. 2d). At the same time, a sharp reduction of
these basecalling repeat errors was also observed (151 to 17 TTAAAA reads, 561 to
48 CTTCTT reads, and 337 to 20 CCCTGG reads) (Fig. 2d). Our “selective tuning”
approach for fixing basecalling errors at telomeres can improve recovery of telom-
eric reads while reducing telomeric basecalling repeat artefacts.

We further evaluated our approach for possible impact on overall basecalling accu-
racy. While a reduction in global basecalling accuracy was observed (~1-2%) when
our tuned basecaller was directly applied to the full dataset, caused likely by miscall-
ing of endogenous (CTTCTT), genomic repeats as (CCCTAA),, this loss of global
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Fig. 2 Selective re-basecalling of telomeric reads resolves basecalling errors at telomeres. a Approach for
tuning the bonito basecalling model for improving basecalls at telomeres. b Tuned bonito basecalling model
leads to improvement in basecalls at telomeric regions. IGV screenshots of the telomeric region (chr2g) in
the CHM13 dataset basecalled using the default bonito basecaller, and the tuned bonito basecalling model
is as depicted. c Overall approach for selecting and fixing telomeric reads in nanopore sequencing datasets.
Telomeric reads are selected (“Methods”) and rebasecalled using the tuned bonito basecalling model. d The
selective tuning approach leads to improved recovery of telomeric reads, and a decrease in the number
of reads with basecalling artefacts. Evaluation was performed on the held-out test dataset (run226). e
The “selective tuning” approach leads to little detected negative impact on basecalling of other genomic
regions. The sequence similarity of all reads to the reference genome for three approaches for basecalling of
nanopore reads was evaluated. They are applying the default bonito basecalling model to all reads (untuned
bonito model), applying the tuned bonito basecalling model to all reads (tuned bonito model), and applying
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assessed using minimap?2

basecalling accuracy could be avoided by applying our basecaller to telomeric reads
alone. Concordant with this, we did not observe changes in overall basecalling accu-

racy with our telomere-selective tuning approach (Fig. 2e). These results indicate that
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our telomere-selective tuning approach has a negligible impact on basecalling accu-
racy for the rest of the genome.

Conclusion

In this study, we showed that basecalling errors can be widely observed at telom-
eric regions across nanopore datasets, sequencing platforms, basecallers, and base-
calling models. These repeat errors further extend to telomeres of other organisms
with (TTAGGG), repeats, to organisms with non-(TTAGGG), repeats, and also to
repeats with different monomer length. We further showed that these strand-spe-
cific basecalling errors were likely induced by similarities in current profiles between
different repeat types. To resolve these basecalling errors at telomeres, we devised
an overall strategy to re-basecall telomeric reads using a tuned nanopore basecaller.
More broadly, our study highlights the importance of verifying nanopore basecalls
in long, repetitive, and poorly defined regions of the genome. For instance, this can
be done either with an orthogonal platform or at a minimum by ensuring nanop-
ore basecalls between opposite strands are concordant. An extensive evaluation of
genome-wide basecalling errors in repeat regions is also needed in the future given
our observations at telomeric regions. Nonetheless, we anticipate that subsequent
further improvements in the nanopore basecaller or basecalling model as demon-
strated in this study will potentially lead to the reduction or elimination of these

basecalling artefacts.

Methods

Nanopore and PacBio datasets

Nanopore and PacBio HiFi datasets for the CHM13 sample were downloaded directly
from the telomere-to-telomere consortium (https://github.com/marbl/CHM13) [14, 15].

Nanopore dataset for GM12878 was obtained from the Nanopore WGS consortium
(https://github.com/nanopore-wgs-consortium/NA12878/blob/master/Genome.md)
[13]. PacBio HiFi dataset for GM12878 was obtained from the repository at the SRA
database (SRP194450) [17, 18] and downloaded from the following link (https://www.
ebi.ac.uk/ena/browser/view/SRR9001768?show=reads).

The HGO002 PacBio HiFi and Nanopore datasets were downloaded from the Human
Pangenome Reference Consortium (https://github.com/human-pangenomics/HG002 _
Data_Freeze_v1.0) [12]. Specifically, the HG002 Data Freeze (v1.0) recommended down-
sampled data mix was downloaded. The PacBio HiFi dataset corresponds to ~34x cov-
erage of Sequel II System with Chemistry 2.0. The nanopore dataset corresponds to 60x
coverage of unsheared sequencing from 3 PromethION flow cells from Shafin et al [42].

Extraction of candidate telomeric reads

Telomeric reads were extracted by mapping all reads to the CHM13 draft genome
assembly (v1.0) obtained from the telomere-to-telomere consortium using Minimap2
(version 2.17-r941) [43]. Subsequent to that, reads that mapped to within 10 kilobase
pairs of the start and end of each autosome and X-chromosome were then extracted
using SAMtools (version 1.10) [44].


https://github.com/marbl/CHM13
https://github.com/nanopore-wgs-consortium/NA12878/blob/master/Genome.md
https://www.ebi.ac.uk/ena/browser/view/SRR9001768?show=reads
https://www.ebi.ac.uk/ena/browser/view/SRR9001768?show=reads
https://github.com/human-pangenomics/HG002_Data_Freeze_v1.0
https://github.com/human-pangenomics/HG002_Data_Freeze_v1.0
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Co-occurrence matrix

Candidate PacBio HiFi and Nanopore telomeric reads were first extracted as
described above and then converted into the FASTA format using SAMtools (version
1.10) [44]. Subsequent to that, custom Python scripts were used to assess if each of
the reads contain at least four consecutive counts of the repeat sequence of interest
(e.g. (TTAGGG),). This information is then used to generate a pair-wise correlation
matrix as depicted with R in the main text.

Basecalling of nanopore data with different basecallers and basecalling models
Basecalling of nanopore data was done using Guppy (Version 4.4.2), Guppy (Version
5.0.16) and Bonito v0.3.5 (commit d8ae5eeb834d4fa05b441dc8f034ee04cb704c69). For
Guppy4, four different basecalling models were applied (guppy_dna_r9.4.1_450bps_
fast, guppy_dna_r9.4.1_450bps_hac, guppy_dna_r9.4.1_450bps_prom_fast, guppy_
dna_r9.4.1_450bps_prom_hac). For Guppy 5, six different basecalling models were
applied (dna_r9.4.1_450bps_fast, dna_r9.4.1_450bps_hac, dna_r9.4.1_450bps_sup, dna_
r9.4.1_450bps_fast_prom, dna_r9.4.1_450bps_hac_prom, dna_r9.4.1_450bps_sup_prom)
For Bonito, the v1, v2, v3, v3.1, and default basecalling models were applied.

Current profiles for different repeat sequences

The mean current level for different k-mers sequenced by nanopore sequencing was
obtained from the k-mer models published by Oxford Nanopore (https://github.com/
nanoporetech/kmer_models/tree/master/r9.4_180mv_450bps_6émer). Circular permu-
tations of each 6-mer of interest were generated, and their corresponding mean current
level was extracted from the k-mer models. The current profiles for each of the indicated
repeat sequences were then plotted and depicted in the figure.

Pairwise comparison of all possible k-mers

Current profile for each 6-mer repeat sequence was generated using the published k-mer
models as described above. Pairwise comparisons of all possible 6-mer repeat current
profiles were then performed (8,386,560 pairs in total). A corresponding (i) Pearson cor-
relation value, (ii) mean-centered Euclidean distance, and (iii) mean current difference
for each pair of 6-mer repeat current profiles were then generated. Pairs of repeats with
a Pearson correlation value > 0.99 and Euclidean distance < 5 were selected as putative

repeat pairs that can be miscalled.

Tuning of bonito model
The default model from Bonito v0.3.5 (commit d8ae5eeb834d4fa05b441dc-
8f034ee04cb704c69) was used as the base model for model tuning. The training dataset
needed for the training process was generated from the telomeric reads from a Prome-
thION run in the CHM13 dataset (run225). More broadly, we then generate the train-
ing dataset by matching the current profiles from the nanopore run to ground truth
sequences that we extracted from the CHM13 draft reference genome assembly (v1.0)
using custom written code.

Specifically, these telomeric reads were first basecalled using the initial Bonito base-
calling model and then mapped back to the CHM13 draft reference genome assembly


https://github.com/nanoporetech/kmer_models/tree/master/r9.4_180mv_450bps_6mer
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(v1.0). This allowed each telomeric read to be properly assigned to its correspond-
ing chromosomal arm with its sub-telomeric sequence. Nonetheless, as the telom-
eric region of the same read could not be properly mapped to the telomeric repeats
due to the repeat errors, there was difficulty in assigning the nanopore current data
to the correct ground truth sequences in the reference genome. As such, the pre-
sumed length of sequences to extract was estimated using the basecalling repeat error
sequences, and the same length of sequences was then extracted from the CHM13
reference genome to serve as ground truth sequences. With this idea and with a cus-
tom Perl script, we were able to generate a set of ground truth sequences and sig-
nals for model tuning. These data were then formatted into the corresponding Python
objects required by the Bonito basecaller with custom Python scripts. Using the tune
function in Bonito and with our prepared training dataset, we were then able to train

the basecaller to convergence.

Selective application of tuned basecaller to telomeric reads

We applied our tuned basecaller by first extracting candidate telomeric reads for re-
basecalling. This was done by enumerating the total 3-mer telomeric (i.e., (TTAGGG
)3, (CCCTAA),) and repeat artefact count (i.e. (TTAAAA),;, (CTTCTT),, (CCCTGG),)
on each read. Reads with at least 10 total counts of these repeats were isolated and their
readnames noted. These reads were then excluded from the total pool of reads via their
readnames, and basecalled separately using our tuned basecaller using the fast5 data
of these reads. Following basecalling with the tuned basecaller, these reads were then

recombined with the main pool of reads.

Evaluation of repeat calling errors in model organisms

Nanopore genome sequencing (and where available PacBio HiFi) datasets corresponding
to eight model organisms were identified from the NCBI SRA database [24]. A full list
of the datasets used in this study is as indicated in Additional file 2: Table S2. Specifi-
cally, runs for each of the following organisms were analyzed: A. thaliana (SRR14474199,
SRR16149191) [25, 26], C. elegans (SRR15993157, SRR16936857) [27], Chicken
(SRR15420785, SRR15420786, SRR15420787, SRR15421342 to SRR15421346), D. mela-
nogaster (SRR15107931 to SRR15107934, SRR15107937) [28], Mouse (SRR11606870,
SRR14685232, SRR14685224 to SRR14685243) [29, 30], S. cerevisiae (ERR6318522,
ERR6318523) [31], S. pombe (SRR17382753, SRR18210325), and Zebrafish (SRR17257555,
SRR15037325) [32, 33].

The corresponding fastq files for each of these runs were then downloaded from
the SRA database and then mapped to their corresponding reference genomes
using minimap2 with the parameter -x map-ont. The reference genomes used for
read mapping of each of the organisms are as follows: A. thaliana (TAIR10), C. ele-
gans (cell), Chicken (galGal6), D. melanogaster (dm6), Mouse (mm39), S. cerevi-
siae (sacCer3), S. pombe (https://www.pombase.org/data/genome_sequence_and_
features/genome_sequence/Schizosaccharomyces_pombe_all_chromosomes.fa.
gz), and Zebrafish (danRer11). Alignments of these nanopore datasets for each of
these organisms were then visualized together with their corresponding reference
genomes in IGV at the annotated terminal ends. Note that as not all chromosomal


https://www.pombase.org/data/genome_sequence_and_features/genome_sequence/Schizosaccharomyces_pombe_all_chromosomes.fa.gz
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ends were well assembled in these organisms, only selected chromosomal arms
could be readily visualized and inspected in IGV for the presence of these repeat
calling errors. To generate plots summarizing the frequency of telomeric repeats and
repeat errors in each organism, reads on the terminal 10kb region of each chromo-
somal arms were extracted. The only exception was mouse in which the terminal
500kb region of the reference genome was extracted as the ends of the reference
genome were padded by very long stretches of NNNs.

Sequencing coverage of each chromosomal arms

The number of reads at 10kb, 100kb, and 1000kb of the annotated ends at each chro-
mosomal arm in the CHM13 reference was extracted using SAMtools [44] and then
counted. Boxplot corresponding to the distribution of reads observed on each arm was

then generated using R.

Simulation of long-reads to assess mismapping rates at sub-telomeres in CHM13

PBSIM2 [45] was used to simulate long-reads from the CHM13 reference genome with
the parameters --depth 100 --length-min 5000 --length-mean 10000 --accuracy-mean
0.95 --hmm_model R94.model. In some instances, we also modified the read accuracy
from 0.95 to 0.98 or to 0.999 to assess the impact of the read accuracy on the mismap-
ping rate. The pbsim2fq function in the paftools.js script (distributed as part of mini-
map2) [43] was then used to generate fastq files with readnames corresponding to the
true read positions from the .maf files from PBSIM2. Reads that originated from the
terminal 1000kb, 100kb, or 10kb region of the CHM13 reference genome (i.e., overlap
with these regions with least one base-pair) were then extracted and then mapped to the
CHM13 reference genome using minimap2 (version 2.17-r941) [43]. The mapeval func-
tion in the paftools.js script was then used to evaluate the accuracy of read mapping of
reads extracted from these regions.

Evaluation of errors at telomere-like repeat regions

To evaluate the presence of repeat calling errors at telomere-like regions, we first identi-
fied regions in the CHM13 reference genome with telomere-like repeat sequences. This
was done by mapping the CHM13 reference to an artificial reference containing 600
repeats of each of the three types of telomere-like repeats. In all, we identified 7 regions
with (TCAGGG),, 7 regions with (TGAGGG),, and 5 regions with (TTGGGG),, repeats
that are at least 100 bp in length. Each of these regions was then manually inspected in

IGV for the occurrence of these repeat errors.

Evaluation of more error-prone and less error-prone reads

To establish which reads are more error-prone or less error-prone, we calculated the
number of non-overlapping telomeric repeats ((TTAGGG); and (CCCTAA);) and
artefact repeats ((TTAAAA),, (CCCTGG); and (CTTCTT),) on each long-read using
custom Python scripts. The proportion of repeat errors on each long-read was then cal-
culated by dividing the number of artefact repeats on each long-read with the total num-

ber of telomeric and artefact repeats.
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Current profile plots

Raw current values were extracted from fast5 files using the h5py package in Python.
The raw current values were then converted to actual current values using the formula:
current_in_pA = scale * (raw_current_value + offset), where the offset was extracted
directly from the fast5 file, and the scale was calculated as scale = range/digitization. The
range and digitization values were extracted directly from the metadata of the fast5 files.
Current profiles were then visualized as depicted.
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