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Real space electron delocalization, resonance, and
aromaticity in chemistry
Leonard Reuter 1 & Arne Lüchow 1✉

Chemists explaining a molecule’s stability and reactivity often refer to the concepts of

delocalization, resonance, and aromaticity. Resonance is commonly discussed within valence

bond theory as the stabilizing effect of mixing different Lewis structures. Yet, most com-

putational chemists work with delocalized molecular orbitals, which are also usually

employed to explain the concept of aromaticity, a ring delocalization in cyclic planar systems

which abide certain number rules. However, all three concepts lack a real space definition,

that is not reliant on orbitals or specific wave function expansions. Here, we outline a

redefinition from first principles: delocalization means that likely electron arrangements are

connected via paths of high probability density in the many-electron real space. In this

picture, resonance is the consideration of additional electron arrangements, which offer

alternative paths. Most notably, the famous 4n+ 2 Hückel rule is generalized and derived

from nothing but the antisymmetry of fermionic wave functions.
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Why do neutral atoms bind? In the early twentieth
century, the covalent bond formulated by Lewis pro-
posed a conundrum, which even leads Lewis to

believe, that Coulomb’s law must fail at small distances.1 The first
molecular application of Schrödingers wave equation2 by Heitler
and London3 solved the puzzle mathematically but lacked a
physically understandable explanation. Hellmann4 and later
Ruedenberg5 related the covalent bond to the—essentially kinetic
—“electron sharing”, whereas others—starting with Slater6—saw
a predominately electrostatic origin. While the kinetic picture
prevailed for molecules with first-row atoms (e.g., H2

þ and H2), it
is disputed for larger systems7–11.

Pauling improved the Heitler–London picture of the chemical
bond by giving even homoatomic bonds a certain ionic con-
tribution, which gave rise to valence bond (VB) theory12. This
mixing of ionic terms into the covalent wave function does not
only lower the total energy—which is called resonance—, it also
offers a coherent generalized picture of bonding, where covalent
and ionic bonds are only the extreme forms of a continuously
defined bond.

The stability of conjugated or aromatic systems is commonly
attributed to the delocalization of π electrons, which is closely
related to Ruedenberg’s “electron sharing”. Hückel had an elegant
orbital-based explanation for the at first sight bizarre difference
between aromatic and antiaromatic systems, i.e., with 4n+ 2 and
4n π electrons respectively13. This apparent simplicity—among
other things—eventually lead to the rise of molecular orbital
(MO) theory. The Hückel rules’ seeming failure for some exten-
ded aromatic molecules like pyrene (Fig. 1)—which is not a
failure of the Hückel method—is elegantly resolved with the
concept of “conjugated circuits”14–17: the total aromaticity is
ascribed to the existence of cyclic electronic subsystems, which
abide the 4n+ 2 rule. Furthermore, Baird showed, that the
aforementioned Hückel rule is inverted for triplet systems, i.e.,
compounds with 4n π electrons are aromatic18.

Already before Hückel’s work, the diamagnetic properties of
aromatic systems were attributed to electronic “ring
currents”19–22. Theoretical studies used this notion of ring cur-
rents to explain aromaticity also in absence of a magnetic field
and discussed the role of the ionic structures23–26. Notably,
Shurki et al. stated that the flow of the electrons around the C4H4

ring is, therefore, interrupted, which is close to the line of argu-
ments we intend to develop in this article.

Bader and coworkers developed the “delocalization index” (DI)
as a real space measure of delocalization27,28 in the framework of
the quantum theory of atoms in molecules (QTAIM)29,30. It is
based on the one- and two-electron densities ρ(r) and ρ2ðr; r0Þ.
Poater et al.31 subsequently introduced the mean of all DIs of
para-related carbon atoms in a given six-membered ring (PDI) as
a measure of aromaticity. However, as Martín Pendás and
Francisco and the authors of this work showed recently, the DI is
better understood as a measure of ionicity32,33. A more recent
and very promising real-space approach to understand aromati-
city is the wave function tiling by Schmidt and coworkers34,35.

In the present work, an extension to probability density ana-
lysis (PDA)33,36,37 is described. PDA was introduced as the all-

electron equivalent of QTAIM and recovers Lewis structures by
analyzing the local maxima of ∣Ψ∣2, which we label structure
critical points (SCPs). Here, we add the saddle points, labeled
delocalization critical points (DCPs), to the analysis. A DCP is the
lowest point on the maximum probability path (MPP) between
two adjacent SCPs, much like the lowest point on a mountain
ridge. This mathematical framework allows for the probabilistic
quantification of Ruedenberg’s “electron sharing”, which is
increased freedom of movement (i.e., delocalization) lowering the
kinetic energy—cf. increasing the box length for a particle
in a box.

Results
Electron sharing in H2

þ and H2. For H2
þ, the two SCPs are

simply the two proton positions (PDA and QTAIM are identical
for one-electron systems). For infinitely separated protons, ∣Ψ∣2 at
the DCP approaches zero, while it is non-zero for the bound state
2Σþ

g at equilibrium distance (Fig. 2). For the first excited state 2Σþ
u ,

∣Ψ∣2 at the DCP equals zero (node) independent of the
proton–proton distance. For the infinitely dissociated system as
well as for the 2Σþ

u state, the electron is thus not shared, since—
while mathematically being at both protons—the electron could
never move from one nucleus to the other. This impossibility of
crossing a node of ∣Ψ∣2 is well established in the context of
potential barriers, where an infinitely large barrier prevents par-
ticles from tunneling. In order to discuss barriers instead of low
probability density, we define a probabilistic potential Φ, which is
monotonically decreasing with ∣Ψ∣2. It is the scalar potential of the
drift velocity u, which appears in the diffusion Monte Carlo
method38 as well as in stochastic quantum mechanics39.

Φ ¼ � _

2me
ln jΨj2; u ¼ �∇Φ ¼ _

me

∇Ψ
Ψ

ð1Þ

A probabilistic barrier between two SCPs can thus be defined as
the value of Φ at the highest DCP on the connecting path (this
barrier approaches infinity, if ∣Ψ∣2 at the DCP vanishes). This
probabilistic barrier always coincides with an ordinary potential
barrier—if there is one.

A VB wave function in the minimal basis of orbitals φK is
chosen to investigate the two-electron bond in H2 (Eq. (2)).

Ψ ¼ N ð1� ηÞψcov: þ ηψion:

� �
; φKðrÞ ¼

ffiffiffiffiffi
ζ3

π

s

e�ζjr�rKj ð2Þ

The coefficient η controls the ionic contribution and the exponent
ζ the contraction of the wave function at the protons. Both are
optimized in this ansatz, which is equivalent to CASSCF(2,2).
Four SCPs and five delocalization critical points are identified
with PDA. For all of these points, both electrons are positioned
on the bond axis (Fig. 2b). The four SCPs are the covalent and
ionic arrangements of the electrons. The central DCP is a second-
order saddle point connecting the two covalent SCPs as well as
the two ionic SCPs. It describes a concerted two-electron
exchange. With a correlated wave function, the electrons would
avoid each other, moving the central DCP away from the depicted
plane. The four covalent-ionic DCPs describe the one-electron
move from a covalent to an ionic arrangement or vice-versa.
There are apparently two paths from one covalent SCP to the
other: the concerted two-electron exchange via the central DCP
and the step-wise electron exchange via two covalent-ionic DCPs
and an ionic SCP. Since ∣Ψ∣2 is lower at the central DCP
compared to the ionic-covalent DCP, the probabilistic barrier
(i.e., the largest probabilistic potential Φ) is larger for the
concerted two-electron exchange (Fig. 3a). The ionic arrange-
ments thus serve a purpose which is analogous to a reactionFig. 1 Pyrene. A planar aromatic system with 4n π electrons.
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intermediate. The probabilistic barrier is minimal for η= 0.42,
which is close to the Hartree–Fock wave function (η= 1/2).
Without optimization of the orbital exponent (i.e., ζ= 1), it is
actually minimal exactly at η= 1/2. This is consistent with the
established view, that “…the electrons in the HF-MO description
of H2 are completely delocalized[”26.

In order to validate the proposed connection between resonance
and the probabilistic barrier, the kinetic (T) and potential (V)
contributions to the total stabilization have to be investigated. For
H2, the resonance energy is defined as the energetic difference
between the purely covalent (η= 0) Heitler–London wave function
and the optimized (η= 0.21) VB wave function. Since the orbital
coefficients ζ have been optimized, the virial ratio is close to one
(∣2T/V∣ < 1.007) for both functions. It is not exactly equal to one,
since the proton-proton distance has not been relaxed. Due to this
non-relaxation, the virial ratio of the resonance energy is quite large:
∣2ΔT/ΔV∣= 1.320. However, the energy difference is obviously still
dominated by a decreasing potential and increased kinetic energy,
qualitatively following the virial theorem. Yet, it can be shown—
analogously to the “step-wise morphing” by Ruedenberg and
coworkers5,40—that resonance in H2 is a kinetic stabilization.

Resonance can be divided into two “physical” steps: contrac-
tion of the wave function at the nuclei and the actual resonance
(i.e., mixing in of the ionic contribution) (Fig. 3b). There are two
ways of describing the step-wise morphing: mixing followed by
contraction or contraction followed by mixing. We will proceed
with the former since the contraction is destabilizing for the
latter. The total energy difference of −8.7 mEh can be attributed
to 89% to the mixing, which, for its part, can be attributed to a
kinetic stabilization (−39.3 mEh) outweighing an increase of the
potential energy (+31.6 mEh). The remaining 11% resulting from
orbital contraction lead—of course—to an overall increase of the
kinetic energy. Yet, the nature of resonance remains essentially
kinetic, justifying the discussion of the probabilistic barrier as the
fundamental principle of resonance.

Going beyond singlet two-electron systems, the antisymmetry
of fermionic wave functions has to be considered: the exchange of
two same-spin electrons changes the sign of the wave function Ψ,
while the probability density ∣Ψ∣2 remains the same, preserving
the electrons indistinguishability. For a hypothetical triplet two-
electron bond, having an antisymmetric spatial function, the
picture thus changes drastically. There are only two SCPs (the

Fig. 2 ∣Ψ∣2 with the electrons on the bond axis z. a Hþ
2 at the equilibrium distance (dHH= 2.00 a040). b H2 at the equilibrium distance (dHH= 1.40 a0).

Fig. 3 H2 at the equilibrium distance. a Probabilistic barriers for the concerted two-electron exchange and for the step-wise exchange with an ionic
intermediate SCP. b Step-wise morphing of the covalent Heitler-London wave function Ψ(η= 0, ζ= 1.169) into the full VB wave function Ψ(η= 0.209, ζ=
1.200). All energies in mEh.
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covalent ones) and upon exchange of the two electrons, the sign
of Ψ changes. Therefore, according to the intermediate value
theorem, it is necessarily zero somewhere on any path connecting
the two covalent SCPs, yielding an infinitely high probabilistic
barrier. This is an easy explanation for why triplet H2 is not
binding: the electrons are not shared. This is related to well-
known energetic arguments: the introduction of a node raises the
kinetic energy and therefore the total energy of a system.

The two times 2n+ 1 rule. Going beyond two electrons, the same
arguments can still be used to predict and explain delocalization.
For n same-spin electrons equally spaced on a ring, the rotation of
the ring by 2π/n is described by the cyclic permutation σn= (12…
n)∈ Sn. This permutation is positive for odd n and negative for
even n: sgnðσnÞ ¼ ð�1Þn�1. If the sign of a permutation is nega-
tive, the sign of Ψ changes upon its application. If it is positive, Ψ
is unchanged. Thus, again arguing with the intermediate value
theorem, the rotation of an even-numbered ring of same-spin
electrons is impossible, since it has to pass ∣Ψ∣2= 0 (i.e., an infi-
nitely large probabilistic barrier). This discussion of parity is
related to the “electron-switch symmetry index” by Shurki et al.26

If the electrons were not confined to a ring, smaller cyclic per-
mutations would still be possible (e.g., the permutation (123) for a
system with 4 electrons). With the restriction to a ring, all of these
smaller cycles also cross a node, since at least one electron has to
pass another electron (e.g., the fourth in the above example).

If two rings (spin-up and spin-down) are combined (cf. the
alternating spin structure of benzene), the intermediate value
theorem apparently does not help anymore: rotating two rings of
the same size at once always preserves the sign of Ψ independent
of the parity. However, the rings can only rotate independently if
both are odd-numbered. For these systems—which will be called
aromatic—, the sign of the wave function depends only on the
individual cyclic orders of the spin-up and spin-down rings. This
means, that the sign is always constant as long as an electron does
not ‘overtake’ a same-spin electron on the ring. If both rings are
even-numbered—these systems will be called antiaromatic—,
their rotation is restricted: they cannot rotate independently, since
the rotation of only one ring would flip the sign. Furthermore,
the combined rotation of two even-numbered rings is for any
wave function restricted to be either a counter-rotation (the rings
rotate in opposite direction) or a co-rotation (the rings rotate in
the same direction): in between, these two combined rotations
result in permutations of opposite signs, thus only one can be
possible. This is demonstrated for an antiaromatic eight-electron
system (Fig. 4a), where the two central intermediate arrange-
ments have opposite signs due to an odd cyclic permutation of
the spin-down electrons, while the two arrangements on the
right-hand side are related to the left-hand arrangement by two
cyclic permutations. The same demonstration can be done for an
antiaromatic four-electron system (Fig. 4b, c).

Ultimately, the restricted rotation in antiaromatic systems
always leads to the introduction of an additional node compared
to aromatic systems, which is not related to same-spin electrons
overtaking one another on the ring. This node, which splits all
regions with identical individual cyclic orders of the spin rings in
half, is comparable to the node in triplet H2.

The numbers of both, spin-up and spin-down electrons,
therefore, have to be odd in order to have unrestricted circular
delocalization: N";N# 2 f2nþ 1 : n 2 Ng. This can be called the
‘two times 2n+ 1’ rule. If the model of electrons on a ring is
applied to the π system of singlet planar ring molecules (i.e., N↑=
N↓), the Hückel rule follows directly as 2(2n+ 1)= 4n+ 2. For
MS= ±1, which determines the symmetry of the triplet state, the

Baird rule is retrieved: N↑=N↓ ± 2 leads to the two equivalent
rules 4n+ 4 and 4n.

This real-space view of delocalization can also describe the
aromaticity of polycyclic aromatic compounds like pyrene (Fig. 1),
for which the Hückel rule is not valid. While the total number of
π electrons is 16, there is still a plethora of possible rotations: e.g.,
on each six-membered ring (6 electrons), along with two six-
membered rings (10 electrons), or including all electrons on the
edges of the system (14 electrons). All these possible rotations
lead to a stabilizing delocalization of the π electrons. This picture
of polycyclic aromatic compounds is the real space analog of
“conjugated circuits”14–16.

In addition, the concept of “paired electrons” is to some degree
justified by and connected to the real space picture presented in
this work: the electron pair is the smallest multi-electron system
abiding the “two times 2n+ 1” rule.

MPPs in benzene and cyclobutadiene. While singlet cyclobuta-
diene (CBD) is considered to be antiaromatic, the D6h symmetric
benzene is aromatic according to the Hückel rule. With multi-
reference π-only wave functions, the two alternating covalent spin
structures are the most important (both by PDA weight33 and by
the value of Φ) for the two systems in planar Dnh geometry
(Supplementary Figs. 1 and 2). In order to explore delocalization,
the MPPs connecting these major structures thus have to be
investigated. The depicted paths, therefore, show the first halves
of the rotations discussed in the previous paragraphs, while the
non-depicted second halves are equivalent by symmetry. The
most likely one-electron movements are identified by systematic
screening of potential low-barrier paths.

This search for major paths is somewhat analogous to work by
Shurki et al.26 and seemingly related to the concept of diamagnetic
ring currents21,22. However, like Maynau and Malrieu25 we do not
restrict our search to paths, where all electrons move in the same
circular direction (Fig. 5a). Instead, the spin-up and spin-down
electrons can also rotate in opposite directions (Fig. 5b), which will
eventually turn out to be more likely. Enforcing the picture of a
ring current, the electrons most likely move between the covalent
spin structures 1 and 7, passing step-wise through the ionic SCPs
2–6a without any concerted movement. A restriction of this same-
direction path to covalent SCPs enforces a concerted movement of
six electrons. Allowing the spin-up and spin-down electrons to
rotate in opposite directions, the step-wise movement passes the
two non-alternating covalent SCPs 3b and 5b in addition to the
ionic SCPs 2, 4b, and 6b. Here, a restriction to covalent spin
structures only leads to concerted two-electron movements. All
four investigated MPPs (same/opposite direction, restricted to
covalent SCPs/no restriction) are compared regarding the
probabilistic barrier (Fig. 5c).

In agreement with the previously discussed qualitative picture
(two-times 2n+ 1 rule), none of these paths crosses a node, i.e.,
there is no infinitely large barrier. In contrast to the prevalent
picture of ring currents, the opposite direction paths are more
likely, having a lower probabilistic barrier. Yet, it is easily
imaginable, that an external magnetic field inverts this relation.
These results contradict an earlier comparison25, which however
only took concerted six-electron movements into account. The
importance of ionic structures is in good agreement with the
results by Shurki et al.26 for the same direction movement.

For singlet CBD—again in agreement with the qualitative
picture—the movement between the two major alternating spin
structures is only found with the spin-up and spin-down electrons
rotating in opposite directions, which is in perfect agreement with
its paramagnetic properties. MPPs can be calculated like for
benzene (Fig. 6).
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For the D4h symmetric triplet CBD (which is aromatic according
to the Baird rule) the opposite direction movement is again
preferred over the same direction movement with both being
possible. For this system, all screened paths can be depicted (Fig. 7).

Discussion
To conclude, the freedom of movement for electrons is restricted
by borders of low or even zero all-electron probability density
∣Ψ∣2. For planar circular systems, due to antisymmetry, the spin-

up and spin-down electrons can only move independently if both
are odd-numbered as additional nodes appear for even numbers.
This leads directly to the Hückel and Baird rules of aromaticity
(4n+ 2 and 4n respectively) as well as to the electron pair. For H2

and the π systems in benzene and cyclobutadiene, the ionic
structures act as an intermediate analog and play an important
role in the broad phenomenon of delocalization. A Ruedenberg
analysis (i.e., step-wise morphing) has shown, that the connection
between the saddle points of ∣Ψ∣2 and bonding can explain the

Fig. 4 Antiaromatic systems. Comparison of counter-rotation and co-rotation of the spin-up (orange) and spin-down (blue) electrons for a an eight-
electron system and b a four-electron system. The two potential nodes are depicted as dashed lines for both systems: purple (only counter-rotation is
possible) and green (only co-rotation is possible). c Assuming a counter-rotation, a node separates two groups of spin-alternating covalent structures with
identical individual cyclic orders of the spin rings (shown for the four-electron system).

Fig. 5 Maximum probability paths for the π system of benzene. Without restrictions (green) and restricted to covalent DCPs (purple). Spin-up and spin-
down electrons rotate in a the same direction, b opposite directions. c Probabilistic barriers.
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nature of resonance: the mixing of ionic contributions is essen-
tially a kinetic stabilization. The in-depth analysis of aromaticity
in benzene and triplet cyclobutadiene revealed that the counter-
rotation of spin-up and spin-down electrons is more important
than the same direction movement in absence of a magnetic field.

Methods
Hydrogen molecules. The equilibrium distances for H2

þ and H2 are taken from
Ruedenberg and Schmidt40 and Huber and Herzberg41, respectively. The wave
functions for the two states (2Σþ

g and 2Σ�
g ) of H2

þ is built from the 1s orbitals of
Eq. (2)

Ψ2Σ±
g
ðrÞ ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffi
2 ± 2S

p φAðrÞ±φBðrÞ
� �

; S ¼ hφAjφBi ð3Þ

The covalent and ionic VB structures of H2 are defined as

ψcov:ðr1; r2Þ ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 2S2

p φAðr1ÞφBðr2Þ þ φBðr1ÞφAðr2Þ
� �

;

ψion:ðr1; r2Þ ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 2S2

p φAðr1ÞφAðr2Þ þ φBðr1ÞφBðr2Þ
� �

:

ð4Þ

The VB calculations were performed with XMVB42,43, all integrals were computed
with Gaussian1644.

Benzene and cyclobutadiene. Complete active space self-consistent field
(CASSCF) geometry optimizations with an active space of all π orbitals have been
performed with Molpro45 for benzene and triplet CBD. Each function of the Slater-
type TZPae46 basis has been expanded into 14 primitive Gaussian-type
functions47,48.

The investigated multi-reference, π-only wave functions have been obtained
from the CASSCF expansion: the determinants are reduced to the π orbitals, while
spin coupling and configuration interaction coefficients are left untouched. This
way, the π system is optimized in the full presence of the σ and core electrons,
which is more accurate than any effective π Hamiltonian. Note, that there is no
need to calculate energies from these π-only wave functions while
performing PDA.

With these wave functions, the reflection of any electron position through the
molecule’s plane flips the sign but does not change ∣Ψ∣2 or Φ. The signs of the
electrons’ z coordinates (if the molecule lies in the xy plane) is thus irrelevant for
the presented results.

Probability density analysis. The PDA was performed with the quantum Monte
Carlo code Amolqc49. The spin is treated without approximation by arbitrary

Fig. 6 Maximum probability paths for the π system of singlet CBD. Without restrictions (green) and restricted to covalent DCPs (purple). a Spin-up and
spin-down electrons rotate in opposite directions. b Probabilistic barriers.

Fig. 7 Maximum probability paths for the π system of triplet CBD. Comparison of all possible paths with probabilistic potentials for SCPs and DCPs.
Resulting in MPPs without restrictions (green) and restricted to covalent DCPs (purple). Spin-up and spin-down electrons rotate in a the same direction,
b opposite directions.
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assignment of spin quantum numbers ms=±1/2 to electron indices, constrained bythe
total quantum numberMS. Evaluation of the spin functions (with α(ms)= 1/2+ms and
β (ms)= 1/2−ms) and sorting of the indices then leads to block diagonal Slater
matrices. The determinants of these matrices are products of spin-up and spin-down
determinants. This is well established in the quantum Monte Carlo community38.

The saddle points of ∣Ψ∣2 (DCPs) were identified by applying the Newton
method to Φ. The maxima of ∣Ψ∣2 (SCPs) were identified with the steepest descent
and L-BFGS50 methods. The PDA weights of equivalent structures have been
summed with inPsights51.

In order to identify the MPPs for benzene and CBD, some paths are excluded
heuristically due to their expected high barrier (e.g., paths with several electrons
crossing the ring). All other paths are calculated and the one with the lowest
maximal potential is identified as MPP (Fig. 7). If there are multiple paths with the
same maximal potential, the path always follows the lowest saddle points (Fig. 7b).
Analogously, all viable paths have been compared for benzene and singlet CBD
(Supplementary Tables 5–7, Supplementary Fig. 3).

Data availability
The authors declare that all data supporting the findings of this study are available within
the paper and its Supplementary Information files.

Code availability
The algorithms used for the findings are described in the Methods section. The codes
Amolqc and inPsights are available as open-source programs49,51. Any script used for
evaluating data, starting other programs, or making figures is available upon request.
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