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Abstract

Osteocytes are terminally differentiated osteoblasts which reside in a mineralized extracellular matrix (ECM). The factors that
regulate this differentiation process are unknown. We have investigated whether ECM mineralization could promote
osteocyte formation. To do this we have utilised MLO-A5 pre-osteocyte-like cells and western blotting and comparative RT-
PCR to examine whether the expression of osteocyte-selective markers is elevated concurrently with the onset of ECM
mineralization. Secondly, if mineralization of the ECM is indeed a driver of osteocyte formation, we reasoned that
impairment of ECM mineralization would result in a reversible inhibition of osteocyte formation. Supplementation of MLO-
A5 cell cultures with ascorbic acid and phosphate promoted progressive ECM mineralization as well as temporally
associated increases in expression of the osteocyte-selective markers, E11/gp38 glycoprotein and sclerostin. Consistent with
a primary role for ECM mineralization in osteocyte formation, we also found that inhibition of ECM mineralization, by
omitting phosphate or adding sodium pyrophosphate, a recognized inhibitor of hydroxyapatite formation, resulted in a 15-
fold decrease in mineral deposition that was closely accompanied by lower expression of E11 and other osteocyte markers
such as Dmp1, Cd44 and Sost whilst expression of osteoblast markers Ocn and Col1a increased. To rule out the possibility
that such restriction of ECM mineralization may produce an irreversible modification in osteoblast behaviour to limit E11
expression and osteocytogenesis, we also measured the capacity of MLO-A5 cells to re-enter the osteocyte differentiation
programme. We found that the mineralisation process was re-initiated and closely allied to increased expression of E11
protein after re-administration of phosphate or omission of sodium pyrophosphate, indicating an ECM mineralization-
induced restoration in osteocyte formation. These results emphasise the importance of cell-ECM interactions in regulating
osteoblast behaviour and, more importantly, suggest that ECM mineralization exerts pivotal control during terminal
osteoblast differentiation and acquisition of the osteocyte phenotype.
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Introduction

Osteocytes are the most numerous cell type in bone. One of

their defining characteristics is the formation of multicellular

networks permeating the mineralized extracellular matrix (ECM),

through which they are believed to play pivotal mechanomodu-

latory roles in directing bone formation and bone resorption in

response to load-bearing [1]. Despite this crucial contribution to

bone remodelling, the mechanisms controlling osteocyte formation

from their osteoblast precursors remain largely undefined.

The process during which an osteoblast differentiates into an

osteocyte, termed osteocytogenesis, involves transition from the

cuboidal-like osteoblastic morphology to a dendritic shape

characteristic of an osteocyte, as it becomes embedded within

the bone ECM [2]. This is accompanied by a loss of cell volume,

reduced organelle content and the formation and elongation of

thin cytoplasmic projections. These projections pervade the bone

and, via the canaliculi, connect each osteocyte to its neighbours

within the bone ECM and to osteoblasts on the bone surface [2,3].

This transition from osteoblast to osteocyte is commonly

described to be a passive process, during which an osteoblast

destined for osteocytogenesis slows ECM production and becomes

surrounded by the osteoid synthesised by its neighbours [3–5].

Studies by Holmbeck et al. [6], however, show that cleavage of

collagen by MT1-MMP (membrane type 1 matrix metalloprotei-

nase), a membrane associated member of the MMP family, is

required for the development of osteocyte projections. Thus,

osteocytogenesis may be an active process involving activation of
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key pathways in specific osteoblasts to induce osteocytic differenti-

ation.

Many factors show altered expression during osteocytogenesis

[7]. Some factors such as SOST/sclerostin, which is specific to

osteocytes [8,9], regulate bone formation and inhibit osteoblast

differentiation by antagonising the Wnt-signalling pathway

[10,11]. Others, such as Phex (phosphate-regulating gene with

homologies to endopeptidases on the X chromosome) and Dmp1

(dentin matrix protein 1) have been shown to be involved in

phosphate homeostasis [12] and ECM mineralization [13,14],

another key feature of the osteoblast-osteocyte transition.

The E11/gp38 transmembrane glycoprotein is the earliest

osteocyte specific protein shown to be expressed during osteoblast-

to-osteocyte transition and therefore may be considered as an ideal

driver of this osteocytogenic process [15]. E11 is present in

osteocytes in the newly formed matrix (osteoid) as well as those in

the mineralized bone where its expression is increased in response to

fluid-flow shear stress [15,16]. Furthermore, siRNA E11 knockdown

abrogates the elongation of osteocyte processes in response to fluid-

flow sheer stress [15]. E11 is also expressed in kidney and lung where

it is alternatively known as podoplanin and T1alpha/RT140,

respectively [17–19]. By binding to members of the ERM (ezrin,

radixin, and moesin) family of proteins [18–20], E11 is implicated in

cytoskeletal re-arrangement and cell migration. The cell surface

glycoprotein CD44 is also expressed by osteocytes, but not

osteoblasts, in vivo [21]. Physical association of CD44 and E11 has

been observed in tumour vascular endothelial cells [22] and

squamous stratified epithelial cells [23] and similar interactions

may occur in osteocytes to influence cell morphology.

The extracellular environment, and in particular the ECM within

which cells become entombed, is also considered to exert a vital

influence during osteocytogenesis. Previous observations suggest

that the local ECM becomes mineralized concomitantly with

osteoblast-osteocyte differentiation [3,24] and studies by Irie et al.

[25] have shown that ECM mineralization is important for

maturation of immature rat osteocytes. These in vivo studies

demonstrated restricted formation of osteocyte dendritic projections

and reduced sclerostin expression in newly formed, non-mineralized

ECM of bisphosphonate-treated rats [25]. ECM mineralization

occurs when inorganic phosphate and calcium crystals (which

together form calcium-phosphate complexes and finally bone

hydroxyapatite: the inorganic component of bone) are deposited

along the type-I collagen fibrils, which comprise the ECM [26].

Thus, whilst it is well established that osteocytes within this

mineralized bone differ greatly in both morphology and gene and

protein expression compared to osteoblasts on the bone surface from

which they originated, the influence of ECM mineralization on

osteocyte differentiation remains to be fully elucidated.

In this study we have used the murine MLO-A5 cell line, which

both synthesizes a mineralized matrix and expresses osteocyte

markers [17,27] to examine the role of matrix mineralization

during osteocytogenic transition. Our studies indicate the

importance of ECM-cell interactions and the crucial role of

ECM mineralization as an essential regulator of osteocytogenesis.

Methods

MLO-A5 cell culture
The MLO-A5 murine pre-osteocyte cell line was obtained from

Lynda Bonewald (University of Missouri-Kansas City, USA). Cells

were plated at 356103 cells/cm2 in multi-well plates and cultured in

a-MEM medium supplemented with 5% (v/v) FBS, 5% (v/v) calf

serum (CS) (Invitrogen, Paisley UK) and 50 mg/ml gentamicin

(Invitrogen) (‘culture medium’) at 37uC with 5% CO2. At confluency

(day 0), the medium was changed to a-MEM supplemented with

10% FBS, 50 mg/ml gentamicin, 5 mM b-glycerol 2-phosphate

disodium salt hydrate (bGP, Sigma UK) and 100 mg/ml ascorbic

acid (AA, Sigma) in order to promote differentiation and matrix

mineralization (‘differentiation medium’). The MLO-A5 cells were

incubated at 37uC in a humidified atmosphere containing 5% CO2

and the medium was changed every 3 days for a further 15 days.

Individual cultures were collected at 3-day intervals for Alizarin red

staining for the assessment of matrix mineralization and for RNA

and protein extraction.

Primary calvarial osteoblast culture
Primary calvarial cells were isolated from 3 day-old C57Bl/6

mice as described in [28]. Briefly, excised calvaria were digested

with 1 mg/ml collagenase type II for 10 minutes to remove

fibroblasts and marrow cells. Calvaria were then digested with

1 mg/ml collagenase (30 minutes), 4 mM EDTA (10 minutes) and

1 mg/ml collagenase (30 minutes). The cells were collected from

each digest, resuspended in a-MEM supplemented with 10% FBS

and 50 mg/ml gentamicin and cultured at 37uC with 5% CO2

until confluent. For experiments, cells were seeded at a density of

1.56104 cells/cm2. At confluency (day 0), growth medium was

supplemented with 2.5 mM ßGP and 50 mg/ml AA for up to 28

days to induce ECM mineralization. The medium was changed

every second/third day.

Inhibition of MLO-A5 matrix mineralization
MLO-A5 cells were cultured as described and upon reaching

confluency the medium was changed to differentiation medium

lacking bGP (AA alone) or complete differentiation medium

supplemented with 500 mM sodium pyrophosphate (PPi) (Sigma);

found previously to be required in order to achieve full inhibition

of mineralization in MLO-A5 cell cultures (data not shown).

Medium was changed every 3 days and individual cultures were

collected at defined time points (see results). As a restriction of

Table 1. Primer sequences used for qRT-PCR.

Gene Source Sequence (59-39)

Phex (forward) PrimerDesign CTAACCACCACTCCCACTT

Phex (reverse) PrimerDesign CCAATAGACTCCAACCTGAAGA

E11 (forward) PrimerDesign AACAAGTCACCCCAATAGAGATAAT

E11 (reverse) PrimerDesign CTAACAAGACGCCAACTATGATTC

Cd44 (forward) PrimerDesign ATTGGATATGGTCTTGGTTTGGTA

Cd44 (reverse) PrimerDesign TGCCTCTTGGGTGGTGTTT

Akp2 (forward) PrimerDesign GGGACGAATCTCAGGGTACA

Akp2 (reverse) PrimerDesign AGTAACTGGGGTCTCTCTCTTT

Ocn (forward) PrimerDesign CCGGGAGCAGTGTGAGCTTA

Ocn (reverse) PrimerDesign TAGATGGGTTTGTAGGCGGTC

Col1a (forward) PrimerDesign ACCTCACAGATGCCAAGCC

Col1a (reverse) PrimerDesign ATCTGGGCTGGGGACTGAG

Gapdh (forward) PrimerDesign Not disclosed

Gapdh (reverse) PrimerDesign Not disclosed

Dmp1 (forward) Ambion Not disclosed

Dmp1 (reverse) Ambion Not disclosed

Sost (forward) Ambion Not disclosed

Sost (reverse) Ambion Not disclosed

doi:10.1371/journal.pone.0036786.t001
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matrix mineralization may irreversibly modify osteoblast behav-

iour to limit osteocytogenesis, the capacity of MLO-A5 cells to re-

enter the osteocyte differentiation programme was also measured,

by first restricting and then later promoting ECM mineralization

by modifying the medium. PPi was omitted from the fresh medium

which was added on day 6, or the cultures that had been treated

with medium lacking bGP were later replenished with medium

supplemented with bGP. The cells were then grown as previously

described for a further 9 days before analysis.

Assessment and quantification of matrix mineralization
Briefly, cells were washed with phosphate-buffered saline (PBS),

and then fixed with 4% paraformaldehyde (PFA) for 5 min at 4uC.

After several washes in PBS, cell layers were stained with aqueous

2% (w/v) Alizarin red solution (Sigma) at pH 4.2, for 5 minutes at

room temperature, before washing with water, to remove any

unbound stain. A photomicrographic image of each culture well was

captured to record the distribution of mineral staining, the bound

stain subsequently solubilized in 10% cetylpyridinium chloride

(Sigma) and the optical density of the resultant solution determined

at 570 nm by spectrophotometry (Thermo Multiskan Ascent).

RNA Extraction and Comparative Real-time PCR
Total RNA was extracted from MLO-A5 cells using Tri-Reagent

(Ambion, Huntingdon UK) according to the manufacturer’s

instructions. After extraction, RNA was precipitated with isopro-

panol, washed in ethanol and then resuspended in nuclease-free

water. Purified RNA was treated with DNase (Ambion) and stored at

280uC. RNA samples (and controls consisting of RNase-free water)

were reverse-transcribed into cDNA using Superscipt II reverse

Figure 1. Mineralization and E11 expression by the MLO-A5 cell line. (A) Alizarin red staining of MLO-A5 cultures over a 15-day time-course.
(B) Quantification of Alizarin red staining by spectrophotometry. (C) E11 mRNA expression in the MLO-A5 cultures as determined by qRT-PCR. (D)
Akp2 mRNA expression in MLO-A5 cultures. (E) E11 protein (,38 kDa) expression by MLO-A5 cells. b-actin was used as a loading control. (F)
Densitometric analysis of 3 independent E11 western blots. Results are mean6SEM (n= 3). * P,0.05, ** P,0.01, *** P,0.001 compared with previous
time-point (B) or day 0 (C and F).
doi:10.1371/journal.pone.0036786.g001
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transcriptase (Invitrogen) according to the manufacturer’s instruc-

tions. Real-time PCR (RT-qPCR) was carried out in a Stratagene

Mx3000P cycler and each reaction contained 50 ng template DNA,

250 nM forward and reverse primers (Table 1) and 1xFastStart

Universal SYBR Green Master Mix (Roche, East Sussex UK).

Samples were amplified using the following program; an initial step

of 50uC for 2 minutes and 95uC for 2 minutes (1 cycle) followed by

95uC for 15 seconds and 60uC for 30 seconds (40 cycles) and a final

step of 95uC for 1 minute, 60uC for 30 seconds, 95uC for 15 seconds

and 25uC for 30 seconds (1 cycle). The Ct values for the samples

were normalised to that of Gapdh, which was determined to be the

most stable housekeeping gene for these experiments (data not

shown), and the relative expression was calculated using the DDCt

method [29]. The amplification efficiencies of all the primers were

between 90–100%.

Western Blotting
Protein lysates were extracted from MLO-A5 cells in RIPA

buffer (150 mM NaCl, 1.0% IGEPALH CA-630, 0.5% sodium

deoxycholate, 0.1% SDS, 50 mM Tris, pH 8.0) (Sigma) contain-

ing protease inhibitors (Roche). Protein concentrations were

determined using the DC assay (Bio-Rad, Hemel Hempsted,

UK) and 15 mg of protein was separated using a 10% bis-tris gel

and then transferred to a nitrocellulose membrane and probed

with goat anti-mouse E11 (1:1000, R&D Systems) and HRP-linked

rabbit anti-goat secondary antibody (1:5000, Dako, Cambridge,

UK), diluted in 5% non-fat milk (Marvel, Lincs UK). Membranes

were washed in TBST and the immune complexes visualised by

chemiluminescence using the ECL detection kit and an ECL film-

based technique (GE Healthcare, Amersham, UK). Equal loading

of protein was confirmed by stripping the blot in Restore Western

stripping buffer (Pierce, Rockford, USA) for 30 minutes at 37uC
and subsequent re-probing with HRP-conjugated anti b-actin

antibody (1:25000, Sigma) for 60 minutes. Densitometric analysis

was performed using Quantity One software (Bio-rad, UK).

Measurement of Collagen Production
After fixation in 4% PFA, cell layers were stained with ‘Sircol’

dye reagent (Sirius red and picric acid, Biocolor Ltd, County

Antrim, UK) for 1 hour at room temperature. Unbound dye was

removed with 0.001 M HCl, the matrix-bound stain solubilised in

0.1 M NaOH and absorbance measured at 570 nm.

Statistical Analysis
Data are expressed as the mean 6 SEM of at least 3

experiments. Statistical analysis was performed by one way

analysis of variance (ANOVA) – general linear model. P,0.05

was considered to be significant and noted ‘*’; P values of ,0.01

and ,0.001 were noted as ‘**’ and ‘***’ respectively.

Results

Matrix mineralization and E11 Expression in MLO-A5 cell
cultures

Alizarin red staining was initially evident on day 3 of culture

(Figures 1A and B), increased on days 6 and 9, but showed no

further increases thereafter. These studies are in agreement with

previously published data [27] and confirm that mineralization of

Figure 2. Osteocytic differentiation of the MLO-A5 cell line. The temporal expression patterns of the osteocyte-marker genes Dmp1 (A), Phex
(B), Cd44 (C) and Sost (D) as assessed by qRT-PCR. Results are mean6SEM (n= 3). * P,0.05, ** P,0.01, *** P,0.001 compared to day 0.
doi:10.1371/journal.pone.0036786.g002
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the MLO-A5 cell cultures was initiated by day 3 and almost

complete by day 9.

E11 mRNA levels were detectable at day 0 of MLO-A5 cell

culture, increasing concomitantly with matrix mineralization at

days 3, 6 and 9, at which time E11 mRNA expression levels

reached an apparent plateau (Figure 1C). A similar temporal

pattern of expression was also observed for E11 protein levels

(Figure 1E and F), although E11 protein expression was not

observed at day 0 of culture. In contrast, although the MLO-A5

cells were found to express mRNA for tissue non-specific alkaline

phosphatase (Akp2), as previously observed by Kato et al. [27], no

obvious change in the temporal expression pattern ofAkp2 mRNA

was observed during the entire 15-day culture period (Figure 1D).

Increases in MLO-A5 cell expression of Dmp1, Phex, Sost and Cd44

mRNA was also noted during acquisition of an osteocyte-like

phenotype by MLO-A5 cells at more advanced stages of

mineralization (Figure 2). This temporal profile in gene expression

was also observed in mineralizing primary calvarial osteoblasts

(Figure 3) confirming the suitability of the MLO-A5 cell line as

a model to study osteocytogenesis. Together these results indicate

that under mineralizing conditions MLO-A5 cells differentiate into

an E11-expressing osteocyte-like phenotype.

ECM mineralization is required for E11 expression
To further explore the link between E11 expression and ECM

mineralization first proposed by Irie et al. [25], we constrained in

vitro mineralization by two different approaches; by either adding

PPi, the natural mineralization inhibitor, or by omitting bGP, the

phosphate donor from the culture medium. Predictably, both

approaches resulted in marked ablation of mineralization in the

MLO-A5 cell cultures, with a greater than 15-fold (P,0.001)

suppression in mineral deposition (Figures 4A and B). Under these

PPi-supplemented conditions or in the absence of bGP, we found

that E11 protein expression levels in MLO-A5 cells were

Figure 3. Osteocytic differentiation of primary calvarial osteoblasts in vitro. The temporal expression patterns of the osteocyte marker
genes, E11 (A), Dmp1 (B), Phex (C), Sost (D) and Cd44 (E) as assessed by qRT-PCR over 28 days of culture. (F) Mineralization of the primary osteoblast
cultures as assessed by Alizarin red staining. Results are mean6SEM (n= 4). * P,0.05, ** P,0.01, *** P,0.001 compared to day 0.
doi:10.1371/journal.pone.0036786.g003
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significantly reduced compared to control cultures. This reduction

in E11 protein expression was more marked in the PPi

supplemented cultures (Figures 4E and F). E11 mRNA expression

levels were also significantly reduced in the absence of mineral-

ization achieved by either of these two approaches (Figure 4D).

Intriguingly, however, E11 mRNA expression was observed in

MLO-A5 cells even in cultures where mineralization was

completely absent; thus, qRT-PCR Ct values of 26–27 were

evident despite negligible E11 protein and mineralization. These

findings suggest that E11 mRNA is still expressed in the

Figure 4. Inhibition of matrix mineralization in the MLO-A5 cell-line. (A) Alizarin red staining of MLO-A5 cultures in which mineralization was
inhibited by the addition of PPi or the omission of bGP and quantified by spectrometry (B). (C) Quantification of the collagenous matrix produced by
the MLO-A5 cell after 9 days of culture as demonstrated by Sirius red staining (D) E11 mRNA expression in the mineralization-inhibited MLO-A5 cell
cultures. (E) E11 protein expression in mineralization-inhibited and control MLO-A5 cultures as demonstrated by western blotting (F) Densitometric
analysis of the protein expression at day 9 in 3 independent E11 western blots. Results are mean6SEM (n= 3). ** P,0.01, *** P,0.001 compared to
day 0 (B) or AA & bGP (D and F) cultures.
doi:10.1371/journal.pone.0036786.g004
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mineralization-inhibited cultures, even though the protein is not

(Figures 4E and F), and is consistent with the time course of E11

mRNA and protein expression shown in Figures 1C and E.

Measurement of matrix-bound deposition of collagen showed that

the inhibition of matrix mineralization induced by either omission

of bGP or supplementation with PPi was not associated with any

marked impairment of collagen synthesis, which was unaffected

under either of these conditions (Figure 4C).

To investigate whether the presence of Pi alone is sufficient to

drive E11 expression, MLO-A5 cells were cultured in the presence

of AA and bGP (control) or with bGP alone. As expected, the

cultures supplemented with bGP alone demonstrated reduced

mineral deposition compared to control cultures, although some

evidence of dystrophic mineralization was present, even in the

absence of ascorbic acid-induced collagen secretion (Figure 5A).

Limited E11 protein expression was also observed in the cultures

supplemented with only bGP (Figure 5B and 5C) but this was

significantly less than the amount of E11 expressed by the cultures

supplemented with AA and bGP. This suggests that the deposition

of mineral within the ECM is required to fully drive E11

expression and osteocyte differentiation.

ECM mineralization is required for osteoblast-to-
osteocyte transition

We have shown that the expression levels of several osteocyte

marker genes are increased during osteocytic differentiation and

matrix mineralization by MLO-A5 cells in vitro (Figure 2). To

confirm whether inhibition of mineralization (by adding PPi or

omitting bGP) also negatively regulates expression of these genes, as

had been shown for E11 mRNA levels, we measured the expression

of a panel of osteocyte marker genes (Sost, Phex, Dmp1 and Cd44) by

RT-qPCR after 9 days of culture. We found that the levels of all of

these genes was decreased in cultures either lacking bGP, or

supplemented with PPi, compared to control cultures supplemented

with both AA andbGP (Figures 6 A–D). Decreased level of osteocyte

marker genes in these MLO-A5 cells suggests that matrix

mineralization is required for the transition from a mature osteoblast

to an osteocyte-like phenotype. The likelihood that the lack of

mineralization is sufficient to block this osteocytogenesis in vitro was

confirmed by analyzing osteoblast-marker gene expression, which

showed that the levels of osteocalcin (Ocn) and collagen type I alpha

(Col1a) mRNA were both elevated in these cultures where

mineralization had been inhibited by either exogenous PPi or by

omission of bGP (Figures 6E and F).

Recovery of in vitro mineralization by MLO-A5 cells
It is possible that MLO-A5 cells undergo some irreversible

change in cell behaviour in response to inhibition of mineraliza-

tion. If this were indeed the case, then it would be possible that the

suppression of E11 expression may not be directly linked to

mineralization status. We therefore determined whether MLO-A5

cells were capable of recovering both their mineralization potential

and E11 expression after periods of inhibited matrix mineraliza-

tion. As expected, Alizarin red staining was completely lacking

after treatment for 6 days with PPi or culture in the absence of

bGP (Figure 7A). In contrast, some albeit limited mineralization

was seen by day 9, 3 days after the cessation of inhibition upon

return to culture conditions that promote differentiation. Evidence

for such recovery in mineralization increased with more prolonged

culture, but yet failed to reach control levels even at days 12 or 15

(Figure 7B). Furthermore, the link between modified mineraliza-

tion status and E11 expression was strengthened by the

observations that such re-initiation of mineralization was in-

timately associated with increased E11 expression (Figures 7C and

D). These data further strengthen the connection between the

mineralization of MLO-A5 cell cultures and the expression of E11.

Discussion

The density, integrity and three-dimensional organisation of the

osteocyte canalicular network are important in the etiology of

various skeletal disorders such as osteoporosis and osteomalacia

[30]. Such changes suggest a cellular basis for many bone diseases

and it is therefore essential that we understand more fully the

processes and genetic circuitry responsible for the terminal

differentiation of osteoblasts to osteocytes. Although, the mechan-

isms which govern these osteocytogenic processes are unknown,

several models of osteocyte differentiation have been proposed [3–

5,31]. Such models, applicable to both intramembranous and

endochondral ossification, have proposed that the osteocyte has

a predominantly passive role [31,32]. Other evidence, however,

has suggested that the embedding of an osteocyte is an active,

invasive process [6]. Indeed, it is possible to speculate that the

Figure 5. Effect of inorganic phosphate supplementation on
MLO-A5 cultures. Matrix mineralization (A) and E11 protein
expression (B) after 9 days in control (AA and bGP) MLO-A5 cultures
and cultures in which AA was omitted (bGP only). (C) Densitometric
analysis of 3 independent E11 western blots. Results are mean6SEM
(n = 3). ** P,0.01 compared to AA & bGP cultures.
doi:10.1371/journal.pone.0036786.g005
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dramatic morphological and genetic transformations observed

during osteocytogenesis, reflect a tightly regulated, active process

that does not merely involve the osteoblast simply becoming

trapped, without an inherent contribution, within the ECM.

The role of the mineralized ECM in the regulation of osteocyte

development is now becoming more fully recognised. Mineraliza-

tion of lamellar bone occurs at the late osteoblast/pre-osteocyte

stage and it has been suggested that ECM mineralization is part of

the process that transforms pre-osteocytes into mature osteocytes

[17]. This is supported by data showing a positive correlation

between ECM mineralization and osteocyte number [8,33–35].

These in vivo-based observational studies cannot, however, entirely

rule out the possibility that defective osteocyte maturation/

morphology may lead to changes in bone mineralization. For this

reason, the present study has exploited a carefully defined,

controlled in vitro model system in which the MLO-A5 cell-line

effectively models late-stage osteoblastic differentiation to in-

vestigate whether mineralization of the surrounding ECM acts as

a trigger for osteocyte maturation.

Inhibition of ECM mineralization using two distinct strategies

resulted in a striking impairment of E11 protein expression. These

impaired E11 levels were apparent even at late stages of the 15-day

long culture period, when strong E11 protein expression would

normally have been be expected. It was apparent that inhibition of

mineralization using PPi also resulted in a marked suppression of

E11 expression, greater than achieved by the omission of bGP

alone, therefore suggesting that presence of PPi inhibits E11

protein expression. It has previously been shown that E11

expression is required for the elongation of osteocyte cellular

processes [15] and that mineralization occurs along the processes

produced by differentiating MLO-A5 cells [17] and primary

osteoblasts [33,36]. Our studies strengthen this link between E11-

Figure 6. Effect of ECM mineralization inhibition on the expression of osteocyte and osteoblast marker genes in MLO-A5 cells. Sost
(A), Phex (B), Dmp1 (C), Cd44 (D), Ocn (E) and Col1a (F) mRNA expression in the mineralization-inhibited cultures as quantified by RT-PCR. Results are
mean6SEM (n= 3). * P,0.05, ** P,0.01, *** P,0.001 compared to AA & bGP cultures.
doi:10.1371/journal.pone.0036786.g006
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mediated process formation and ECM mineralization. The

relative lack of E11 protein in cultures in which mineralization

has been inhibited is suggestive of a block in MLO-A5

differentiation toward the osteocyte phenotype. This was con-

firmed by the decreased expression of the osteocyte-marker genes

Dmp1, Phex, Sost and Cd44 by MLO-A5 under mineralization-

inhibited conditions; conversely, the expression of the osteoblast-

marker genes Col1a and Ocn was increased. Taken together, these

data strongly suggest that inhibition of mineralization promotes

retention of a late-osteoblast stage of differentiation and prevents

osteocytic differentiation. An unexpected observation was the

decreased expression of Sost, while E11, DMP1 and Phex

increase, during mineralisation in both primary and MLO-A5

cell cultures. This is currently unexplained but its examination

may give clues to the mechanism by which Sost expression is

regulated. Future studies may also broaden this strategy to include

bone markers known to regulate ECM mineralization, such as

other SIBLINGs (BSP, OPN) and OCN.

The mechanism by which ECM mineralization promotes

osteocytic differentiation is presently unknown. The osteocyte

has been shown, however, to be highly responsive to changes in its

mechanical environment [1,37–39]. Indeed, primary cilia de-

scribed on both osteoblasts and osteocytes [40] are known to play

important roles in transducing external mechanical cues, derived

either directly or indirectly from the ECM, into intracellular

responses essential for processes such as differentiation [40–42]. It

has also been reported that subjecting pre-osteoblasts and

osteoblasts to hypoxic conditions in vitro leads to increased

expression of osteocyte-markers [43]. It seems reasonable to

assume therefore that mineralized matrices, which are more

hypoxic than non-mineralized osteoid, may positively influence

osteocytogenesis in vivo. Maintenance of MLO-A5 cells in hypoxia

resulted in decreased mineralization compared to cells cultured

under normoxic conditions, however, indicating that this effect

may also depend on the stage of differentiation [44].

Interestingly, increased E11 protein was observed in osteocytes

from the DMP1-null mouse, which is characterized by diffuse

osteomalacia and reduced mineral density [13]. It is important to

note, however, that although the bone from these mice is

hypomineralized, mineral is still present within the matrix and

could potentially drive E11 expression. Indeed, in wild-type mice,

E11 protein expression in cortical bone is localized to the

immature osteocytes within newly-mineralizing osteoid [15]. Such

newly-synthesized bone would be expected to have a lower

mineral density than the more mature bone, similar to the

hypomineralized bone of the DMP1-null mouse. Therefore, the

gradient of mineral density and matrix maturation may regulate

E11 expression. Also, in the DMP1-null mouse, other factors such

as increased alkaline phosphatase and FGF23 levels may affect

E11 expression independent of ECM mineralization.

Figure 7. Effect of reversal of ECM mineralization inhibition on MLO-A5 cells. (A) Alizarin red staining of MLO-A5 cultures in which
mineralization was inhibited for 6 days before being promoted for a further 9 days. (B) Quantification of the results from (A) by spectrometry. Results
are mean6SEM (n= 3). (C) E11 protein expression under the same conditions as (A) and (B). (D) Densitometric analysis of 3 independent E11 western
blots. Results are mean6SEM (n= 3). *P,0.05, **P,0.01, ***P,0.001 compared to previous time-point.
doi:10.1371/journal.pone.0036786.g007
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A recent study by Zhang et al. [45] found that restoration of

serum Pi levels in DMP1-null mice, partially rescued the negative

effect on osteocyte differentiation observed in this mouse model.

This was also accompanied by a decrease in osteoid volume,

suggesting partial restoration of mineralization. However, discrim-

inating if the presence of Pi alone is sufficient to drive

osteocytogenesis, or whether its incorporation into the ECM as

hydroxyapatite is required for osteocyte maturation, has not been

fully explored. Our results using bGP as a source of phosphate

suggest that its presence alone, without a collagenous matrix, can

induce limited expression of the osteocyte marker E11. However,

this level of expression is significantly less that that observed when

the cells are also cultured with AA, enabling the synthesis and

secretion of a collagenous ECM. Therefore, both the bio-

availability of Pi and its deposition within the ECM appear to

be essential for osteocyte differentiation.

E11 has previously been described as the earliest osteocyte

marker during osteoblast-osteocyte transition [15,17]. Our studies

indicate that E11 is also intimately regulated by the ECM

mineralization status. It is important to note, however, that these

studies have taken place in a 2D model system which may not be

fully representative of the in vivo bone environment, and that our

attempts to test this through shRNA-mediated knockdown in

MLO-A5 cells have not been successful in blocking E11

expression. Although further studies are required to better define

the mechanisms that control transcription, translation and post-

translational stability of the E11 protein, these results emphasise

the influence of physiological ECM-cell interactions on osteoblast

differentiation and importantly suggest that ECM mineralization is

essential for terminal osteoblast differentiation to the osteocyte

phenotype.
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