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The aim of this study was to identify the brain networks from early-phase 11C-PIB (perfusion PIB, pPIB) data and to compare
the brain networks of patients with differentiating Alzheimer’s disease (AD) with cognitively normal subjects (CN) and of mild
cognitively impaired patients (MCI) with CN. Forty participants (14 CN, 12 MCI, and 14 AD) underwent 11C-PIB and 18F-FDG
PET/CT scans. Parallel independent component analysis (pICA) was used to identify correlated brain networks from the 11C-pPIB
and 18F-FDG data, and a two-sample t-test was used to evaluate group differences in the corrected brain networks between AD
and CN, and betweenMCI and CN. Our study identified a brain network of perfusion (early-phase 11C-PIB) that highly correlated
with a glucose metabolism (18F-FDG) brain network and colocalized with the default mode network (DMN) in an AD-specific
neurodegenerative cohort. Particularly, decreased 18F-FDG uptake correlated with a decreased regional cerebral blood flow in the
frontal, parietal, and temporal regions of the DMN.The group comparisons revealed similar spatial patterns of the brain networks
derived from the 11C-pPIB and 18F-FDG data. Our findings indicate that 11C-pPIB derived from the early-phase 11C-PIB could
provide complementary information for 18F-FDG examination in AD.

1. Introduction

The current diagnostic criteria for Alzheimer’s disease (AD)
include amyloid-𝛽 (A𝛽) and fludeoxyglucose F 18 (18F-FDG)
positron emission tomography (PET) imaging biomarkers
that provide amyloid burden and neuronal injury informa-
tion [1]. Under both physiological and pathological condi-
tions, the cerebral blood flow is coupled to cerebral metabolic
rates of glucose measured by FDG-PET [2, 3]. Several studies
have reported that perfusion data estimated from early-phase
(11C)-labeled Pittsburgh Compound B (11C-PIB), referred
to as perfusion PIB (11C-pPIB), correlated with glucose
metabolism as estimated by 18F-FDG [4–6].Moreover, recent
PET studies using amyloid and Tau tracers indicated that
early-phase images of PET tracers provided information on
brain perfusion, closely related to glucose metabolism, and
could be used as a neurofunctional biomarker [7–9]. Previous

studies mostly focused on regions of interest or on whole
brain voxel wise measurements [5, 6, 10], which are not
equipped to capture distributed variations in cross-brain
networks. It remains unclear how early-phase PIB-PET and
glucose metabolism correlate with each other and how such
a relationship varies with disease progression at the brain
network level.

Nowadays, multivariate statistical paradigms (e.g., prin-
cipal component analysis [PCA] or independent component
analysis [ICA]), which assess distributed variations and their
interrelationships in multiple neuroimaging data, provide a
better framework for the integrative analysis of multimodal
imaging data. As a data-driven analytic method, ICA is
a powerful tool to investigate brain networks based on
neuroimaging data.This data can be collected with, including
functional magnetic resonance imaging (fMRI) [11], magne-
toencephalography [12], electroencephalography [13, 14], and
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Table 1: Demographic, clinical, and neuropsychological characteristics of the patients.

AD (𝑛 = 14) MCI (𝑛 = 12) CN (𝑛 = 14) 𝑝 value
Sex (male/female) 4/10 8/4 5/9 0.13
Age (years) 68.1 ± 9.9 75.8 ± 8.6 67.4 ± 5.0 0.02∗

Education (years) 11.6 ± 3.9 13.3 ± 3.8 11.9 ± 4.1 0.52
Amyloid status (PIB +/−) 12/2 9/3 1/13 <0.001∗

MMSE 19.4 ± 3.3 27.3 ± 1.6 28.4 ± 1.2 <0.001∗

CDR 0.96 ± 0.13 0.5 0 <0.001∗

With the cerebellar cortex as the reference region, voxel wise semiquantitative calculations of global standardized uptake value ratios (SUVR) for all subjects
were performed. The amyloid status was reflected by the Pittsburgh Compound B (PIB) burden and the cutoff value of SUVR was set to 1.15 to determine PIB
positive or negative. Chi-square was used for the gender comparison; one-wayANOVAwith a Bonferroni post hoc test was used for age and neuropsychological
test comparisons. ∗𝑝 < 0.05. AD: Alzheimer’s disease; MCI: mild cognitively impaired; CN: cognitively normal; MMSE:Mini-Mental State Examination; CDR:
Clinical Dementia Rating.

Table 2: Two sample t-test results of the highest correlated component pair of 11C-pPIB and 18F-18F-FDG between AD and CN and between
MCI and CN groups.

AD versus CN MCI versus CN
11C-pPIB 18F-FDG 11C-pPIB 18F-FDG

𝑝value T value 𝑝value T value 𝑝value T value 𝑝 value T value
0.0010 −3.6907 0.0002 −4.3774 0.0009 −3.7993 0.0010 −3.7279
AD:Alzheimer’s disease;MCI:mild cognitively impaired; CN: cognitively normal; 11C-pPIB: (11C)-labeledPittsburghCompoundB; 18F-FDG: fludeoxyglucose
F 18.

structural MRI [15] and PET imaging [16]. Parallel indepen-
dent component analysis (pICA) [17] is a variation of ICA that
allows one to estimate independent components as well as
multimodal patterns or mixed coefficients. pICA has recently
been used to study the mechanisms by which A𝛽 deposition
leads to neurodegeneration and cognitive decline [18]. It was
also used to study the spatial patterns of A𝛽 deposition and
glucose metabolism across an AD population [19]. Moreover,
pICA has been used successfully to reveal the complex rela-
tionship between different PET elements of AD pathophysi-
ology [19]. pICA, therefore, promises to be a suitablemeans of
exploring the spatial patterns of regional cerebral blood flow
(rCBF), evaluated by pPIB, and glucose metabolism at the
level of the whole brain network.

In the present study, we adopted pICA to derive brain net-
works from early-phase of 11C-PIB and 18F-FDG to explore
their relationships across AD, mild cognitive impairment
(MCI), and cognitively normal (CN) patient groups. This
study was designed to (1) identify whether distinctive func-
tional connectivity networks, such as the default mode net-
work (DMN), can be detected from early-phase 11C-PIB data
and (2) to explore the discriminability of the network derived
from 11C-pPIB for distinguishing AD/MCI from CN.

2. Results

2.1. Patient Characteristics. As described in our previous
study [10], patients in the MCI groups (𝐹 = 4.23, 𝑝 = 0.02)
were older than in the CN and AD groups, and there was no
significant difference in gender or the level of education for
the two groups (𝑝 = 0.13 and 0.52, resp.). Cognitive perfor-
mance, estimated from Clinical Dementia Rating (CDR) and

Mini-Mental State Examination (MMSE) tests, was signifi-
cantly worse in AD patients than MCI and CN participants
(𝐹 = 65.93, 𝑝 < 0.001). However, no significant difference
in MMSE test results was observed between the MCI and
CN groups (Table 1). Furthermore, the amyloid status of all
participants is shown inTable 1; the cerebellar graymatterwas
used as the reference region and the standard uptake value
ratio (SUVR) cutoff value was set to 1.15 [20, 21].

2.2. Correlated 11
𝐶-pPIB and 18

𝐹-FDG Networks. One pair
of components (networks) was identified. It had the highest
correlation (𝑅 = 0.92) between the 18F-FDG and 11C-pPIB
data and was largely colocalized with the DMN [22, 23].
As listed in Table 2, the highest correlated component pair
also differed significantly between AD/MCI and CN in their
loading coefficients. This pair of components showed that a
decrease in 18F-FDGuptake correlatedwith a decrease in per-
fusion in the frontal, parietal, and temporal regions, including
the medial frontal gyrus (MFG), anterior cingulate cortex
(ACC), posterior cingulate cortex (PCC)/precuneus, superior
temporal gyrus (STG), temporal pole, and orbitofrontal gyrus
(Figure 1).

2.3. Group Comparisons of 18𝐹-FDG and 11
𝐶-pPIB within the

Correlated Network. Tables 3 and 4 summarize the group
differences within the correlated networks in 18F-FDG and
11C-pPIB measurements between AD and CN groups (Fig-
ure 2). Despite fewer regions detected by 11C-pPIB than 18F-
FDG in the intergroup comparisons, similar patterns were
observed. The hypometabolic regions largely colocalized
with the hypoperfusion areas, including the STG, Limbic
lobe/ParaHippo, superior parietal lobe (SPL), PCC, andACC.
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Figure 1: Correlated components of 11C-pPIB and 18F-FDG. (a) Loading parameters with a significant correlation in all participants with
18F-FDG (red) and 11C-pPIB (green). (b) Common regions of the correlated 18F-FDG and 11C-pPIB components, including bilateral medial
frontal gyrus, temporal lobe, and right insular lobe. (c) Correlated components of 11C-pPIB (left) and 18F-FDG (right), including the medial
frontal gyrus, anterior cingulate cortex, posterior cingulate cortex/precuneus, superior temporal gyrus, temporal pole, and orbitofrontal gyrus.
11C-pPIB, (11C)-labeled Pittsburgh Compound B; 18F-FDG, fludeoxyglucose F 18.

The comparison betweenMCI andCNpatientswithin the
correlated network revealed that the 18F-FDGuptake was less
in the rectal gyrus/Brodmann area 11 (BA11), BA40, left PCC,
BA20, and inferior parietal lobule (IPL)/STG (Figure 3). In
contrast, hypoperfusion was only detected in the IPL.

No statistically significant differences were observed in
18F-FDG or pPIB data for AD and MCI patients.

3. Discussion

In contrast to earlier studies looking into the dual-features of
dynamic PIB-PET and the similarities between 11C-pPIB and
18F-FDG images [4–6, 10, 24, 25], the present study identified
functional brain networks from early-phase 11C-PIB data.We
first used pICA to identify the brain networks from the 11C-
pPIB-PET imaging data and then explored the discriminabil-
ity of the brain networks in diagnostic group differences.
Concomitantly we were able to evaluate the use of 11C-pPIB
as a neurofunctional biomarker for AD.

3.1. Highly Correlated Networks of 11𝐶-pPIB and 18
𝐹-FDG. It

is well-documented that there are changes in the brain struc-
ture, function, and cognition in AD patients associated with
changes in brain networks [26–29]. Using resting state func-
tional connectivity MRI (rs-fMRI), both intra- and internet-
work correlations have already been detected in AD patients.
These mainly involved DMN, dorsal attention, salience,
control, and sensory-motor networks [29, 30]. Although AD
is associated with widespread disruption of functional con-
nectivity, theDMN is generally affected themost. Specifically,
a declined functional connectivity and hypometabolismwere
observed consistently using various methodologies [27–29].
In the present study, highly correlated brain networks of
11C-pPIB and 18F-FDG data were identified using pICA.
The correlated networks of 18F-FDG and 11C-pPIB covered
the MFG, ACC, PCC/precuneus, STG, temporal pole, and
orbitofrontal gyrus and largely colocalized with the DMN
[22, 23]. The DMN regions are active at rest (hence the
term “default”) [22] but are less active during demanding
cognitive tasks. Under physiological conditions, up to 80% of
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Table 3: 18F-FDG–revealed hypometabolic brain areas differentiating AD and CN groups.

Brain region Voxel-level
𝑋 𝑌 𝑍

T Z 𝑝uncorrected

Limbic lobe/R ParaHippo 6.75 5.05 0.000 22 −4 −38
4.78 3.99 0.000 22 6 −24

R STG/BA39 6.40 4.88 0.000 58 −58 26
5.18 4.23 0.000 54 −54 44

R MTG/ ITG 5.99 4.68 0.000 54 −64 18
5.85 4.60 0.000 66 −40 −14

Rectal gyrus 5.89 4.62 0.000 8 32 −26
Limbic lobe/L ParaHippo 5.79 4.57 0.000 −22 4 −22

PCC/BA29 5.64 4.49 0.000 −2 −42 20
5.51 4.41 0.000 0 −26 32

R MFG/ACC 5.09 4.18 0.000 2 50 −12
4.88 4.05 0.000 4 38 24

R SPL/BA7 5.01 4.13 0.000 36 −58 54
4.70 3.94 0.000 40 −48 50

L STG/BA13 4.95 4.10 0.000 −50 −4 0
4.42 3.76 0.000 −46 6 −2

L STG/BA42/Insula 4.79 4.00 0.000 −64 −36 18
3.82 3.36 0.000 −54 −32 18

L STG/BA38 4.73 3.96 0.000 26 6 −48

L IFG/BA47 4.70 3.94 0.000 −40 24 −16
4.09 3.55 0.000 −38 14 −12

Threshold: 𝑇 = 3.45, 𝑝 = 0.001; Extent threshold: 𝑘 = 50 voxel, voxel size: [2.0, 2.0, 2.0]mm. 18F-FDG: fludeoxyglucose F 18; AD: Alzheimer’s disease; CN:
cognitively normal; STG: superior temporal gyrus; BA: Brodmann area; MTG: middle temporal gyrus; ITG: inferior temporal cortex; PCC: posterior cingulate
cortex; MFG: medial frontal gyrus; ACC: anterior cingulate cortex; SPL: superior parietal lobe; IFG: inferior frontal gyrus.

Table 4: 11C-pPIB–revealed hypoperfusion brain areas differentiating AD and CN groups.

Brain region Voxel-level X Y Z
T Z 𝑝uncorrected

R ITG/BA19 5.66 4.50 0.000 54 −64 −6
5.32 4.31 0.000 54 −66 14

L STG/BA22 5.00 4.13 0.000 66 −46 6
Limbic lobe/L ParaHippo 4.74 3.97 0.000 −22 4 −22

BA23/PCC 4.41 3.76 0.000 2 −38 24
4.15 3.59 0.000 −2 −26 30

Insula/BA13 4.39 3.74 0.000 42 −20 12
R STG/BA39 4.37 3.73 0.000 58 −56 26
L STG/BA22 4.18 3.60 0.000 −52 0 0
R ITG/BA20 3.89 3.41 0.000 58 −8 −34
ACC/BA24 3.86 3.38 0.000 2 32 16
Limbic lobe/R ParaHippo 3.84 3.38 0.000 14 −38 −2
R SPL/BA7 3.82 3.35 0.000 36 −58 54
R IPL/BA40 3.81 3.32 0.000 40 −48 44
Threshold:𝑇 = 3.45,𝑝= 0.001; Extent threshold: 𝑘 = 50 voxel, Voxel size: [2.0, 2.0, 2.0]mm. 11C-pPIB: (11C)-labeled PittsburghCompoundB; AD:Alzheimer’s
disease; CN: cognitively normal; ITG: inferior temporal cortex; STG: superior temporal gyrus; BA: Brodmann area; ACC: anterior cingulate cortex; SPL:
superior parietal lobe; IPL: inferior parietal lobule.
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Figure 2: Comparison of 18F-FDG (a) and 11C-pPIB (b) between Alzheimer’s disease (AD) and cognitively normal (CN) groups. Images
show a similar decrease in the radioactive pattern, such as for the right superior temporal gyrus (red arrow, 𝑥 = −50, 𝑦 = −4, 𝑧 = 5) and
posterior cingulate cortex (blue arrow, 𝑥 = 2, 𝑦 = −41, 𝑧 = 23). 11C-pPIB, (11C)-labeled Pittsburgh Compound B; 18F-FDG, fludeoxyglucose
F 18.

the entire energy consumption by the brain at rest is spent on
glutamate cycling, a biochemical process that can be observed
by FDG-PET [31, 32]. In fact, the DMN is roughly divided
into three major subdivisions, each with its own functional
property: the ventral medial prefrontal cortex (supports
emotional processing); the dorsal medial prefrontal cortex
(self-referential mental activity); and the posterior cingulate
cortex and adjacent precuneus plus the lateral parietal cortex
(the recollection of prior experiences). These functional
properties of DMN can be affected during task perfor-
mance and also by various diseases [33]. For example, the
episodic memory, requiring functional connectivity within
the DMN [34, 35], is impaired in the early stages of AD.
The abnormalities of DMN functional connectivity worsen
with disease progression and are believed to explain the

hypometabolism found in PET studies [36–39]. Moreover,
FDG-PET measures both the CBF and the neuronal and
synaptic activity [40]. A decrease in CBF is, furthermore, an
indirect indicator of impairment caused by a decrease in the
demand for blood. Nevertheless, the highly colocalized brain
networks between glucose metabolism/rCBF and functional
connectivity at rest indicated that glucose consumption and
changes in rCBF are coupled and underpinning the neural
activity. It is therefore argued that 11C-pPIB can be used in
the future as a neurofunctional biomarker for neuroscience
research.

3.2. Group Comparison of 11
𝐶-pPIB and 18

𝐹-FDG Measure-
ments in Correlated Brain Networks. The second goal of this
study was to evaluate whether the brain networks derived
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Figure 3: Comparison of 18F-FDG (a) and 11C-pPIB (b) between mild cognitive impairment (MCI) and cognitively normal (CN) groups.
(a) 18F-FDG images showing hypometabolic regions in the rectal gyrus (blue arrow, 𝑥 = 8, 𝑦 = 42, 𝑧 = −26) and inferior parietal lobule (red
arrow, 𝑥 = 54, 𝑦 = −52, 𝑧 = 50) and (b) 11C-pPIB, showing only hypoperfusion in the inferior parietal lobule (red arrow, 𝑥 = 58, 𝑦 = −56,
𝑧 = 46). 11C-pPIB, (11C)-labeled Pittsburgh Compound B; 18F-FDG, fludeoxyglucose F 18.

from 11C-pPIB data could differentiate AD/MCI patient
groups from CN groups. Consistent with previous reports,
AD patients were characteristically hypometabolic in the
medial temporal lobe, STG, ACC, PCC/precuneus, SPL,
and lateral temporoparietal cortex [36, 39]. 11C-pPIB also
revealed significant intergroup differences, with regions of
hypoperfusion in the STG, inferior temporal gyrus, SPL,
and PCC, which is consistent with previous studies using
99mTechnetium-single photon emission computed tomogra-
phy showing specific patterns of hypoperfusion in parietal-
temporal cortical areas [41, 42]. The comparison between
MCI and CN patients revealed hypometabolism in the
rectal gyrus/BA11, IPL, left PCC, BA20, and IPL/STG, but
only the IPL was detected by 11C-pPIB. The most reliable,
early changes in metabolism are believed to be seen in the
PCC [24, 36]. In fact, the IPL is an important region of
the DMN and has a close functional connection with the

PCC/precuneus [43, 44]. Esposito et al. reported that MCI
patients who convert to AD showed increased connectivity
in the right IPL, suggesting that this region plays an active
role in the AD process [45]. Arguably, the hypometabolism
and hyperperfusion that was detected in the IPL in this
study was indicative of early neurodegeneration in AD. No
significant difference was detected by either 18F-FDG or 11C-
pPIB when comparing AD and MCI groups in the current
study.We support our observations as follows. Firstly, the AD
patients enrolled in the study who received the dual-tracer
PET scan had slight to mild dementia. In addition, despite
the amnestic type of the recruitedMCI patients, MCI is still a
heterogeneous syndrome and subject to various pathological
substrates and clinical progress [46]. Therefore, the 18F-FDG
and 11C-pPIB data may not detect a difference between AD
and MCI due to the differences in clinical symptom severity
and the heterogeneity in MCI. Secondly, the MCI patients
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were significantly older than the AD patients. Although age
was regressed in the data analysis and no obvious vascular
diseases were found on MR images of all subjects, the CBF
will be affected by atherosclerosis, which usually progresses
with aging.Thus, both patient’s age and its possibly associated
reduced CBF may have obscured our results. As discussed,
the brain network of 11C-pPIB was found highly colocalized
with DMN in AD pathology in this study. It is argued that
disease-specific alternations of the brain networks can be
detected by 11C-pPIB corresponding to distinctive patho-
physiological processes, which merits further studies.

One limitation of the present study is the relatively
small sample size. More recruits would give a larger dataset,
which might help to identify the fine-grained brain networks
underpinning 11C-pPIB and 18F-FDG. Furthermore, only the
typical AD and amnestic MCI patients were enrolled in the
current study and their disrupted brain networks mainly
involved the DMN [27, 28, 47]. However, AD patients with
atypical symptoms, such as Logopenic primary progressive
aphasia and posterior cortical atrophy, had language and
visual brain network dysfunctions matching their clinical
symptoms [19, 47]. 11C-pPIBmight, therefore, be used to val-
idate the syndrome-specific alterations of the brain network
in these clinical variants of AD. In addition, the present study
did not investigate the functional networks derived from rs-
fMRI data of the same cohort. Therefore, it is impossible
to directly correlate the networks of 11C-pPIB and 18F-FDG
with the functional networks in rs-fMRI data.

4. Conclusions

Here, we explored the 11C-pPIB spatial distribution pattern
in AD, MCI, and CN patients. The pICA results revealed
that the hypoperfusion pattern detected by 11C-pPIB was in
agreement with the hypometabolism reflected by 18F-FDG,
both of which were colocalized with the DMN. These results
validated that 11C-pPIB could be a reliable biomarker of
neural function and provide complementary information for
18F-FDG examination in AD.

5. Materials and Methods

5.1. Eligibility and Study Design. The study cohort was the
same as in our previous studies [10, 25] and included 14 AD,
12 MCI, and 14 CN patients. The study was approved by
the institutional review board of the Chinese PLA General
Hospital. The study was compliant with the principles of the
Declaration of Helsinki. All participants, or their appropriate
representatives, signed informed consent forms after receiv-
ing a comprehensive written and verbal description of the
study.

5.2. PET/CT Imaging. All patients underwent 11C-PIB and
18F-FDG scanning in a random order within two weeks.
PET/CT scanningwas performedusing a BiographTruepoint
64 (Siemens Healthcare, Germany) consisting of a PET
scanner and a multislice CT. A vacuum cushion was used to
restrict the participant’s head to minimize movement during
the scanning.

11C-PIB was synthesized from its corresponding pre-
cursors as described elsewhere [48]. In brief, 11C-PIB was
synthesized by bubbling the 11CH3-Triflate through an
acetone solution of 6-OH-BTA-0. It was then purified by
semipreparative HPLC and reformulated with a radiochem-
ical purity of >95% and a specific activity of 50GBq𝜇mol−1
(1.48 Ci𝜇mol−1).The protocol for 11C-PIB scanning included
an initial CT acquisition with intravenous tracer injection,
followed by an immediate dynamic PET scan. A spiral CT
for the brain was acquired with CT parameters of 120 kV,
100mA, and slice thickness 3.75mm, equal to that of PET.
Then, a dynamic PET emission scan in 3D acquisition mode
was started simultaneously with a single intravenous bolus
of 11C-PIB at 4.81–5.55MBq (0.13–0.15mCi) kg−1. Dynamic
brain PET images were collected continuously for 60min,
and the data were binned into 26 frames (1× 10 sec, 6× 5 sec,
4 × 20 sec, 2 × 1min, 3 × 2min, and 10 × 5min).
18F-FDG-PET/CT scans were obtained 50min after

an intravenous injection of 18F-FDG at 4.81 to 5.55MBq
(0.13–0.15mCi) kg−1. All participants were instructed to fast
for 4 to 6 h. The blood glucose levels were also measured
before injection to ensure that the levels were within the ref-
erence range. A 5-min frame was collected in 3D acquisition
mode. Data obtained from the CT scans were used to correct
the attenuation for PET emission data.

5.3. MR Structural Imaging. All participants underwent
structural MRI with a 3.0-T GE scanner (Signa HD, WI,
USA) and a standard GE quadrature head coil. The MRI
and PET/CT examinations were performed within one week.
The scan protocol included a high-resolution 3DT1-weighted
spoiled gradient recalled echo sequence (TR = 7.0ms, TE =
2.9ms, Inversion time = 450ms, thickness = 1.2mm, matrix
= 256 × 256, FOV = 240mm, and in plane resolution = 0.9 ×
0.9mm2) to produce contiguous sagittal anatomic images for
subsequent spatial normalization and coregistration.

The preprocessing of MRI and PET imaging is detailed
elsewhere [10]. Specifically, all structural MRI images were
segmented into gray matter, white matter, and cerebrospinal
fluid and then used to construct a population template using
DARTEL of SPM8 (http://www.fil.ion.ucl.ac.uk/spm). The
mid-frame (the 16th frame) of the dynamic PIB images and
FDG images was coregistered with the corresponding MRI
scan, and the PET scans were transformed to the population
template with the deformation fields generated in the regis-
tration procedure of the MRI scans. Finally, all images were
spatially normalized to the Montreal Neurological Institute
space.

5.4. Computation of 11
𝐶-pPIB Image from Dynamic 11

𝐶-PIB
Scans. The procedure to compute the 11C-pPIB images from
the dynamic PIB scans has been reported previously [10]. Par-
ticularly, 11C-pPIB images were computed based on a 7-min
time-window of the dynamic 11C-PIB-PET, starting from
9th frame to 15th frame and corresponding to the frames of
1.33–8min, yielding the highest correlation between 18F-FDG
and 11C-PIB (𝑅 = 0.87). Also, 11C-PIB and 18F-FDG images
shared a similar radioactive distribution pattern in CN, MCI,
and AD groups.

http://www.fil.ion.ucl.ac.uk/spm
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5.5. Statistical Analysis. The pICA algorithm (Fusion ICA
Toolbox, http://icatb.sourceforge.net, with MATLAB 7.1) was
applied to the 11C-pPIB and 18F-FDG images of all the
patients to jointly extract statistical factors from the 11C-pPIB
and 18F-FDG data and identify their mutual relationship.

The number of independent components was set to
eight, based on a previous study [49]. The outputs from
the pICA were pairs of 11C-pPIB and 18F-FDG independent
components. Their correlation coefficients were indicative of
a relationship between the two modalities. The independent
components of 11C-pPIB and 18F-FDG data measured the
perfusion and metabolic variability among the participants.
All components had a threshold at a supra level, |𝑍| > 1.5,
to identify statistically significant regions that contributed to
the overall signal of the corresponding components. Corre-
lation coefficients between components of the two imaging
modalities were used to identify the most associated pairs of
components.

Subsequently, voxel wise 11C-pPIB and 18F-FDG mea-
surements within the most associated pair of components
were compared between AD-CN, MCI-CN, and AD-MCI
groups using a two-sample 𝑡-test. The multiple comparisons
were corrected for using the AlphaSim program in REST
(http://restfmri.net/forum/rest) with a full-width at half-
maximum of 6mm. The threshold for the group differences
was 𝑝 < 0.05 with the AlphaSim correction (with 𝑝 < 0.001
threshold and a minimum cluster size of 12 voxels).
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