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In toxicogenomics, functional annotation is an important step to gain additional
insights into genes with aberrant expression that drive pathophysiological mechanisms.
Nevertheless, there exists a gap on annotation of these genes which often hampers the
interpretation of results and limits their applicability in translational medicine. In this study,
we evaluated the coverage of functional annotations of differentially expressed genes
(DEGs) induced by 10 selected compounds from the TG-GATEs database identified as
high- or no-risk in causing drug-induced liver injury (most-DILI or no-DILI, respectively)
using in vitro human data. Functional roles of DEGs not present in the most common
biological annotation databases – termed “dark genes” – were unveiled via literature
mining and via the identification of shared regulatory transcription factors or signaling
pathways. Our results demonstrated that there were approximately 13% of dark genes
induced by these compounds in vitro and we were able to obtain additional relevant
information for up to 76% of those. Using interactome data from several sources, we
have uncovered genes such as LRBA, and WDR26 as highly connected in the protein
network that play roles in drug response. Genes such as MALAT1, H19, and MIR29C –
whose links to hepatotoxicity have been confirmed – were identified as markers for the
most-DILI group and appeared as top hits across all literature-based mining methods.
Furthermore, we investigated the potential impact of dark genes on liver toxicity by
identifying their rat orthologs in combination with their correlation to drug-induced
liver pathologies observed in vivo following chemical exposure. We identified a set of
important regulatory transcription factors of dark genes for all most-DILI compounds
including E2F1 and JUND with supporting evidences in literature and we found Magee1
correlated with chemically induced bile duct hyperplasia and adverse responses at
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29 days in rats in vivo. In conclusion, in this study we show the potential role of these
poorly annotated genes in mechanisms underlying hepatotoxicity and offer a number of
computational approaches that may help to minimize current gaps in gene annotation
and highlight their values as potential biomarkers in toxicological studies.

Keywords: annotation, DILI, gene ontology, text mining, network biology, translational bioinformatics

INTRODUCTION

In the field of toxicogenomics, various computational approaches
have been developed and upgraded over the years. Nowadays,
the most commonly applied method consists of the use of
differential analysis, i.e., the application of statistical approaches
to identify and biologically annotate differentially expressed
genes (DEGs) upon compounds’ perturbation (Khatri et al., 2012;
Souza et al., 2016). Genome-wide, unsupervised methods such as
gene set enrichment analysis (GSEA), biclustering and weighted
co-expression analysis (WGCNA) can be used to identify gene
sets associated with specific phenotypes (AbdulHameed et al.,
2014; Tawa et al., 2014; Sutherland et al., 2016). Another branch of
methods includes network-based analyses such as the clustering
of gene sets based on their centrality in molecular networks
(Kotlyar et al., 2012), as well as mechanistic modeling in smaller
scales such as Boolean logic modeling (Zhang J.D. et al., 2014) and
ordinary differential equation (ODE)-based models (Hendrickx
et al., 2017)– the latter providing dynamical information of the
systems in a more refined granularity.

An important bottleneck across all methodologies, however,
is the biological annotation of the gene sets. This biological
annotation is provided by collections of pathways or gene
sets stored in popular knowledge-driven resources such as
Reactome (Fabregat et al., 2018) and the Gene Ontology (The
Gene Ontology Consortium, 2017). Despite the ever-increasing
amount of information deposited in pathway knowledge
databases, gaps on functional protein interaction and other types
of biological annotation still exist. In addition, a large number of
non-coding genes, i.e., small- and long- non-coding genes and
pseudogenes, covering around 37,000 molecular entities whose
biological roles elucidation is an ongoing task. The “biological
process” branch of the Gene Ontology (GO BP) is one of
the most commonly used sources of biological annotations.
Nevertheless, GO BP terms only cover 33% (19,691 genes) from
the entire human genome (estimated in approximately 60,200
genes according to NCBI’s gene annotation) (Brown et al.,
2015). On the pathway side, high-confidence databases such as
Reactome comprise only around half of all human protein-coding
genes (10,762 genes) (Fabregat et al., 2018) while low-confidence
high-coverage databases such as Pathway Commons coverage for
coding and non-coding portions of the genome is around 38%
(22,754 genes). Furthermore, most common pathway resources
only cover information regarding protein coding genes, while the
role of non-coding RNAs (ncRNAs) in processes such as disease
or drug response, remains uncovered. We argue here that these
missing entities should not be neglected due to their potential
biological functionality with respect to human health.

Community-based efforts can help to fill this gap. An
example of this is the creation of GeneRIF (Mitchell et al.,
2003), a platform to share short functional descriptions of
genes which are generally observed by experimentalists. Such
a database allows users to rapidly scan through the additional
functional information on genes of interest which are stored
in a standardized format. In parallel, user-friendly text mining
tools that allow automatic retrieval of information about gene
function from the literature have been developed. One such tool
is PubTator (Wei et al., 2013), which supports manual literature
curation besides offering a collection of annotated abstracts,
including relationships among diseases, genes, and drugs. In
addition, even if genes are not annotated for their biological
processes, they can still be linked to verified disease signatures
with, e.g., DisGeNET (Piñero et al., 2017).

Besides text mining, various emerging computational
approaches in Systems Biology have been developed with
high potential to be applied for unveiling the functional roles
of genes. For instance, the inference of transcription factor
(TF) activities based on gene expression data may reflect the
common regulatory patterns of signaling pathways which are
shared among downstream targets with or without functional
annotation (Alvarez et al., 2016; Garcia-Alonso et al., 2018).
In parallel, the activity of regulatory signaling pathways can be
independently predicted by computational approaches based
on the expression of genes that reflect the activities of the
respective pathway upon perturbation, thus highlighting possible
involvement of signaling modulation via unannotated genes
(Tarca et al., 2009; Khatri et al., 2012; Schubert et al., 2018). By
investigating the list of genes with unknown function which were
applied to derive transcription factors’ activities and signaling
pathways’ signatures, one could infer their biological functions
associated to the role of the predicted upstream regulatory
modules.

Recently, Sutherland et al. (2016, 2017) have shown that gene
expression in chemically exposed rats coalesce into groups of
co-expressed genes (i.e., modules) – some of which appear to
be correlated to phenotypes indicative of toxicity or adverse
outcomes. Interestingly, this approach highlighted branches
comprising a number of modules of interest with little or
no biological annotation, some of which containing ncRNAs.
Their roles in cellular functioning and disease are slowly being
elucidated (Luo et al., 2016; Xu et al., 2017), but their modulation
upon drug exposure remains largely uncovered. In spite of that,
toxicologists have pointed that their involvement in apical effects
should be investigated and considered in regulatory frameworks,
i.e., mode-of-action (MoA) and adverse outcome pathway (AOP)
analyses (Aigner et al., 2016). Studies to unveil the functionality
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of these poorly annotated genes are therefore necessary to
generate potentially novel biomarkers to improve risk assessment
during the preclinical phase. In addition, connecting the poorly
annotated genes to the pathological outcomes of rodent studies
will further aid to identify their function. Therefore, the
identification of human orthologs is imperative to allow and
improve translation of the rodent data to the human context.

Therefore, in this work we aim to assess the coverage of the
current functional annotation of genes represented in public
databases using toxicogenomics sets; those not found in these
representative biological annotation databases were coined “dark
genes” in this study. Our second goal is to (a) estimate the
relevance for cellular functions of dark genes involved in drug
response, and (b) assign putative functions to them. For the first
task, we assess the presence of these genes in human interactomes
built from several sources, in literature-based resources and
their association to diseases. For the second, we employed
computational approaches to identify (i) common regulatory
transcription factors and (ii) signaling pathways’ signatures
which are shared between annotated and unannotated genes.
Finally, we examine these chemical-induced changes in the light
of toxicity and as potential markers of drug-induced liver injury
(DILI) given their regulation in human in vitro and associations
to pathological responses in rat in vivo.

MATERIALS AND METHODS

Compound Selection
In order to obtain robust modulation of genes and minimize
noisy expression, we opted for analyzing inducible responses
across multiple compounds. To investigate whether gene
modulation of entities of interest is associated with distinct
toxicities, we created two equally sized groups of chemicals
to avoid sample bias, selected according to their current
classification as agents involved in human DILI. For this,
we used a classification based on weight of evidence of
causality (DILIRank) (Chen et al., 2016), which categorize
compounds in three main classes: most-DILI (drugs withdrawn
or with severe DILI indication), less-DILI (drugs with mild
DILI indication or adverse reactions) and no-DILI. Here, we
selected compounds available on TG-GATEs either classified
as most-DILI (acetaminophen, diclofenac, isoniazid, nimesulide,
and valproic acid) and no-DILI (caffeine, chloramphenicol,
chlorpheniramine, hydroxyzine, and theophylline) to enable an
unambiguous separation of gene modulation responses. Further
information on the compounds and classification proposed by
Chen et al. (2016) can be found in Supplementary Table S1.

Gene Expression Data: Processing and
Differential Gene Expression
Gene expression data were obtained from TG-GATEs1 (Igarashi
et al., 2015). Raw data files generated in vitro from primary
human hepatocytes from each compound selected were
processed (quality control, background correction, RMA

1http://toxico.nibiohn.go.jp/english/datalist.html

normalization) using the R package affy (Gautier et al., 2004).
Genes were annotated with a customCDF (v. 19) with Entrez
gene identifiers for Affymetrix GeneChip Human Genome
U133 Plus 2.0 arrays. Here, we opted for a traditional approach
(i.e., comparison of treated vs. control mean expression) to
obtain DEGs; to obtain maximal transcriptional response, we
selected the highest dose and latest time point (24 h) from each
compound. Differential expression analysis was then performed
on each set using the R package LIMMA and comparing to
time-matched controls from each compound treatment. DEGs
were selected based on their significance after multiple testing
correction (false discovery rate, FDR) and an absolute fold
change of 1.5 (equivalent to log2 fold change of 0.585) with
FDR < 0.05.

Coverage of Biological Annotation
Across Databases
To compute the number of DEGs that were not included in the
most commonly used resources in the field of toxicology and
network biology, we downloaded the files from Gene Ontology2

(The Gene Ontology Consortium, 2017), Reactome3 (Fabregat
et al., 2018), MSigDB (Liberzon et al., 2015) curated pathways4,
Pathway Commons5 (Cerami et al., 2011), and OmniPath6 (Türei
et al., 2016) on May, 2018.

We mapped the gene symbols to Entrez gene identifiers
using the file http://ftp.ncbi.nih.gov/gene/DATA/GENE_INFO/
Mammalia/Homo_sapiens.gene_info.gz downloaded on April,
2018. For those genes for which we could not find an
Entrez gene identifier, we used the correspondence between
UniProt identifiers and Entrez gene identifiers from the
file http://ftp.ebi.ac.uk/pub/databases/genenames/new/tsv/hgnc_
complete_set.txt downloaded on May, 2018. From the Gene
Ontology file, we only took into account the GO BP branch
as this branch provides a better insight into the biological
mechanisms compared to molecular function (MF) and cellular
component (CC). From Pathway Commons, we removed
interactions without pathway annotations. From OmniPath, we
removed interactions that were supported only by protein-
protein interaction databases (BioGRID, HPRD, and IntAct).
A DEG was tagged as dark gene if it was absent in the pathway
databases and GO BP branch.

Furthermore, to assess the global coverage of the biological
annotations, the same steps were performed to categorize all
genes measured within the Affymetrix array platform.

Protein Interaction Networks
We built four protein interaction networks (PINs) using
data from the most comprehensive, and updated databases:
INBIOMAP (Li et al., 2017), HIPPIE (Alanis-Lobato et al., 2017),

2http://geneontology.org/gene-associations/goa_human.gaf.gz
3https://reactome.org/download/current/NCBI2Reactome_All_Levels.txt
4http://software.broadinstitute.org/gsea/msigdb/collections.jsp#C2
5http://www.pathwaycommons.org/archives/PC2/v10/PathwayCommons10.All.
hgnc.txt.gz
6http://omnipathdb.org/interactions/?fields=sources&fields=references
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BIANA (Garcia-Garcia et al., 2010), and IntAct (Orchard et al.,
2014).

To build a HIPPIE-based network, we downloaded the file
http://cbdm-01.zdv.uni-mainz.de/∼mschaefer/hippie/hippie_
current.txt on January, 2018. In the case of INBIOMAP, we
downloaded the file from https://www.intomics.com/inbio/map/
#downloads. We removed predicted interactions. To build an
interactome from BIANA, we downloaded the Homo sapiens
data from http://sbi.imim.es/web/GUILDify2.php/downloads
on January, 2018. For IntAct, we downloaded the file
http://ftp.ebi.ac.uk/pub/databases/intact/current/all.zip on
October, 2017.

Literature-Based Resources
To provide further insight on the relevance of the role of the dark
genes, we checked if they were involved in human diseases using
DisGeNET data, version 5 (Piñero et al., 2017). Additionally, we
assessed the presence of dark genes in the scientific literature. For
that goal we used GeneRIF (Mitchell et al., 2003), that describe
in a short phrase (less than 25 characters in length) the function
or functions of a gene, and PubTator (Wei et al., 2013), a web
tool that supports manual literature curation using text-mining
techniques.

GeneRIFs were downloaded from http://ftp.ncbi.nih.
gov/gene/GeneRIF/generifs_basic.gz and PubTator data was
downloaded from http://ftp.ncbi.nlm.nih.gov/pub/lu/PubTator/
gene2pubtator.gz and http://ftp.ncbi.nlm.nih.gov/pub/lu/Pub
Tator/bioconcepts2pubtator.gz on January 2018.

Identification of Common Regulatory
Transcription Factors and Signaling
Pathways
The list of dark genes was mapped to the list of transcription
factors and their regulated genes (“regulons”) from the tool
DoRothEA (Garcia-Alonso et al., 2018) and to the list of
gene signatures used for the inference of signaling pathways’
activities from the tool PROGENy (Schubert et al., 2018). The
mapping was classified and compared according to the group
of compounds. The shared common transcription factors and
signaling pathways in each group were intersected to derive the
most representative proxies which represent the corresponding
dark genes. Venn diagrams of these results as the ones from
PINs (see section “Protein Interaction Networks”) were generated
with the following web tool: http://bioinformatics.psb.ugent.be/
webtools/Venn.

Comparison to Weighted Gene
Co-expression Network Analysis
(WGCNA) Modules
Co-expression analyses aim to obtain significant relationships
among genes showing similar patterns of expression across
samples. The resulting gene sets (also known as modules) are
useful for reducing dimensionality and correlating molecular
changes to an observed phenotype. Since clusters are generated
in an unbiased manner, it is possible to identify modules

encompassing genes with multiple levels of biological annotation
(e.g., GO terms or pathways).

To investigate the relevance of these dark genes in an animal
model and its implications in adverse outcomes, we identified
rat orthologs of the dark genes present in co-expression modules
detected in Sutherland et al. (2017). The rat orthologs to
human genes were then mapped to modules identified using the
annotation available in the Rat Genome Database (rgd.mcw.edu).
From there, modules associated with pathological outcomes and
underlying GO BPs were further investigated.

RESULTS

Compound-Induced Gene Expression
The number of DEGs modulated by each compound can be
found in Table 1. By merging the DEGs groupwise, a total
of 5,446 and 3,845 genes were found to be induced by most-
DILI and no-DILI groups, respectively, comprising in total 6,918
unique genes. These genes were classified using the Ensembl gene
annotation information, which showed that the majority of all
genes identified were protein coding (95%), followed by non-
coding RNA (ncRNA, 4.2%), pseudogenes, snoRNA and others
(less than 1% each). An overview of the number of DEGs shared
by compounds from the same DILI risk group can be found in
the Supplementary Table S1.

Biological Annotation and Gene
Annotation of Dark Genes
Among the 6,918 genes deemed significantly affected by chemical
exposure, 916 genes (∼13%) were not included in any biological
pathway or process. This number is lower than the number of
genes in the array lacking this type of annotation, identified
as 22% (4,210 out of 19,441 genes). In total, 760 out of 916
entities were categorized into gene types based on Ensembl
annotation; the majority of those is considered protein coding
(Table 2). A detailed description of gene types from the array
and modulated by chemicals can be found in the Supplementary
Table S1. A comparison of database coverage can be found in
Supplementary Date Sheet S1. In addition, a comprehensive
list encompassing gene modulation per compound/DILI risk
group, as well as pathway and GO annotation and results from
the methodologies applied for annotation of the dark genes

TABLE 1 | Number of differentially expressed genes (DEGs, absolute FC > 1.5
and FDR < 0.05) of compounds from most-DILI and no-DILI groups.

Most-DILI Number of
DEGs

No-DILI Number of
DEGs

Acetaminophen 2,280 Caffeine 2,316

Diclofenac 1,888 Chloramphenicol 108

Isoniazid 1,024 Chlorpheniramine 93

Nimesulide 1,697 Hydroxyzine 815

Valproic acid 2,290 Theophylline 2,918

Total unique DEGs 5,446 Total unique
DEGs

3,845
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TABLE 2 | Classification of genes without GO BP annotation and absent on
Reactome, MSigDB, OmniPath, and Pathway Commons databases (dark genes)
modulated by compounds from most-DILI and no-DILI groups.

Gene type Array dark
genes

Most-DILI No-DILI Dark
DEGes

Protein coding 1,756 444 278 567

Antisense RNA 527 69 33 78

lincRNA 722 53 33 63

Processed transcript 113 11 8 15

Pseudogenes1 56 18 14 25

snoRNA 8 4 3 5

Sense intronic 25 3 1 3

Sense overlapping 10 1 1 2

miRNA 3 1 0 1

TEC2 11 1 1 1

Total 3231 605 372 760

1Pseudogenes from the categories “transcribed unprocessed pseudogene,”
“transcribed unitary pseudogene” and “transcribed processed pseudogene.”
2TEC: to be experimentally confirmed.

is available as Supplementary Table S1 while an overview of
gene modulation shared across compounds from each group is
available in Supplementary Data Sheet S1.

Characterization of Dark Genes in the
Human Interactome
Furthermore, we investigated the coverage of the dark genes in
four different sources of human protein–protein interactions. We
found 492, 420, 475, and 285 dark genes included in HIPPIE,
IntAct, Inbiomap and Biana interactomes, respectively. Among
them, 536 dark genes were present in at least one of these
resources, while 268 were included in all four resources. The
overlaps can be found in Supplementary Data Sheet S1.

We further characterized the dark genes present in the
interactomes. Figure 1 shows histograms of the degree
distribution of the dark genes in each interactome. A large
fraction of the dark genes has low connectivity in all four
interactomes, although there are some genes with relatively high
degrees. Some examples of these latter genes, more connected
than the rest of dark genes in the four interactomes, are shown
in Table 3.

Literature Mining: Disease Association,
GeneRIF, and PubTator
We also evaluated other literature-based resources containing
functional information. First, we used DisGeNET v5.0 to
determine whether the dark genes are associated to human
diseases. We found 60 dark genes with disease annotations
reported by curated databases, and 255 dark genes in DisGeNET
ALL dataset, which also includes the results from automatic text
mining in the scientific literature. The top genes with disease
annotations in the curated data in DisGeNET are shown in
Table 4. The diseases in which these genes were more frequently
involved were different types of neoplasms, although they seem to

play a role in a wide variety of diseases, and abnormal phenotypes
(Supplementary Table S1).

We also evaluated the coverage of the dark genes in GeneRIF
which contains users-submitted compact information regarding
the function of the genes. We found 356 dark genes with
GeneRIF annotations. Twenty-three dark genes had 10 or more
GeneRIFs, and among those, several ncRNAs (Table 5). Some
relevant examples of the GeneRIFs for MALAT1 are “MALAT1
level is associated with liver damage, and has clinical utility
for predicting development of hepatocellular carcinoma” or
“observations suggest that MALAT1 promotes hepatic steatosis
and insulin resistance by increasing nuclear SREBP-1c protein
stability.”

A similar exercise was performed using PubTator to obtain
additional information with a unbiased text-mining approach.
We found that 550 dark genes matched the entries in PubTator.
Interestingly, the two genes with the highest number of hits were,
again, two long non-coding RNAs, MALAT1 and H19 (Table 5),
with over 1,000 papers each. In some cases a single entry on
PubTator was a match for multiple hits, as for instance “Central
role of the p53 pathway in the non-coding-RNA response to
oxidative stress,” which related MALAT1, NEAT1, and PVT1 (3
dark ncRNAs) to oxidative stress produced by H2O2 (Fuschi
et al., 2017).

Mapping Functional Information of the
Dark Genes With Common Regulatory
TF and Signaling Pathways
By mapping the DEGs of the selected compounds, we found
that about 16% of dark genes are the targets genes of regulatory
TFs in DoRothEA (Table 6). The intersections of regulatory
TFs between most-DILI and no-DILI compounds are shown in
Figure 2. Here, the most representative TFs for most-DILI group
overlapped across all five compounds (n = 14) were AR, E2F1,
E2F4, ETS1, FOXA1, FOXP3, GATA1, GATA2, GATA3, HNF4A,
JUND, REST, SPI1, and TFAP2C, while the most representative
for non-DILI group shared by all five compounds (n = 1) was
GATA2.

In parallel, we found that about 4% of dark genes can be
grouped together with the gene signatures used for the inference
of signaling pathways’ activities in PROGENy (Table 6). The
most representative signaling pathways overlapped among all
five most-DILI compounds (n = 2) were Hypoxia and PI3K,
whereas TNF-alpha was the most representative one for non-
DILI compounds (excluding chloramphenicol which did not have
an enriched pathway), see Figure 2.

The scripts for all analyses conducted in this study are available
in Supplementary Data Sheets S2, S3.

Rat Orthologs to Human Dark Genes in
Co-expression Modules
Identification of rat orthologs to human dark genes and
comparison to co-expression modules generated from rats
exposed to chemicals showed that 544 human dark genes had
an ortholog in rat and, from these, 241 were included in at least
one WGCNA module. Among these genes, at least 20 comprised
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FIGURE 1 | Degree distribution of the dark genes in human interactome databases Biana, HIPPIE, Inbiomap, and IntAct.

those coding for transmembrane proteins (TMEM family).
These dark genes were found in (1) modules from branches
with global poor GO BP annotation (branches C.I and C.II
indicated by Sutherland et al., 2017) and (2) modules associated
with pathology. Table 7 contains a list of dark gene orthologs
whose modules were associated with specific pathologies and
the underlying GO BP (whenever available). The complete list
of dark genes orthologs mapped to modules can be found in
Supplementary Table S1.

DISCUSSION

Pathway and network analyses are essential steps downstream to
the identification of interesting features (e.g., differential analysis)
in diverse fields of ‘omics research. Despite advances in biological
annotation of the human genome, there is still a considerable
gap in knowledge, owed mainly to experimental evaluation of
already well-studied entities, which hampers biomedical research
(Haynes et al., 2018). In this study, we aimed to investigate these

poorly annotated entities (coined dark genes) in the light of
chemical exposure since many studies in mechanistic toxicology
are heavily attached to biological roles and many genes with
potential mechanistic and predictive roles may remain uncovered
as a result.

From our analysis, we observed that approximately 13% of
DEGs and 22% of all genes in the array were not mapped to
GO BP, OmniPath, MSigDB, Reactome or Pathway Commons.
This finding highlights that the issue with unannotated genes is
generalized and the biological functions of a number of DEGs
identified in gene expression studies remain to be uncovered.
Genes with Ensembl classification were mostly categorized as
protein coding (73%), while 8% of dark genes were classified
as long-intergenic non-coding RNA (lincRNAs), which have
increasing evidences to play a role in drug-induced organ toxicity
(Zhou et al., 2015; Dempsey and Cui, 2017).

It was demonstrated that up to 59% of dark genes are present
in at least one of the human interactome databases. Of these, a
few have higher degree of connectivities to the other genes as
shown in Table 3. In the context of drug development, PINs
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TABLE 3 | Degree of connectivity for top 10 genes in human protein–protein
interaction databases.

Gene
symbol

Description BIANA HIPPIE INBIOMAP IntAct

RBM12 RNA binding motif
protein 12

405 44 17 8

LRBA LPS responsive
beige-like anchor
protein

402 28 16 9

SGTB Small glutamine rich
tetratricopeptide repeat
containing beta

8 87 88 177

TMEM25 Transmembrane protein
25

3 85 77 2

FAM189A2 Family with sequence
similarity 189 member
A2

10 78 75 10

ZCCHC10 Zinc finger CCHC-type
containing 10

51 52 53 59

C1orf109 Chromosome 1 open
reading frame 109

45 51 53 116

TSSC4 Tumor suppressing
subtransferable
candidate 4

13 68 59 17

WDR26 WD repeat domain 26 3 79 51 33

FAM90A1 Family with sequence
similarity 90 member
A1

33 49 50 122

have been employed to understand the perturbations elicited by
drug treatment in cellular processes, and to characterize drug
targets (Yı ldırım et al., 2007) and side effects (Wang et al.,
2013). Recently, Piñero et al. (2018) has shown that within

TABLE 4 | Top 10 genes associated to diseases in DisGeNET (curated data).

Symbol Description Gene type DILI risk
group(s)

Number of
diseases

CLIP2 CAP-Gly domain
containing linker protein
2

Protein-
coding

Most-DILI 141

IPW Imprinted in Prader-Willi
syndrome (non-protein
coding)

ncRNA Most-DILI,
no-DILI

66

TGDS TDP-glucose
4,6-dehydratase

Protein-
coding

Most-DILI 62

LRBA LPS responsive
beige-like anchor
protein

Protein-
coding

Most-DILI 33

AMMECR1 Alport syndrome, mental
retardation, midface
hypoplasia and
elliptocytosis
chromosomal region
gene 1

Protein-
coding

Most-DILI,
no-DILI

27

TMEM98 Transmembrane
protein 98

Protein-
coding

Most-DILI 9

H19 H19, imprinted
maternally expressed
transcript (non-protein
coding)

ncRNA Most-DILI 7

MALAT1 Metastasis associated
lung adenocarcinoma
transcript 1 (non-protein
coding)

ncRNA Most-DILI 7

WDR11 WD repeat domain 11 Protein-
coding

Most-DILI 6

CMYA5 Cardiomyopathy
associated 5

Protein-
coding

no-DILI 3

TABLE 5 | Top 10 dark genes by number of GeneRIFs with their corresponding number of publications indexed on PubTator.

Symbol Description Gene Type DILI risk group(s) GeneRIFs Number of
publications

H19 H19, imprinted maternally
expressed transcript
(non-protein coding)

ncRNA Most-DILI 193 1169

MALAT1 Metastasis associated lung
adenocarcinoma transcript 1
(non-protein coding)

ncRNA Most-DILI 156 1203

MIR29C microRNA 29c ncRNA Most-DILI 77 234

UCA1 Urothelial cancer associated 1
(non-protein coding)

ncRNA Most-DILI, no-DILI 63 152

NEAT1 Nuclear paraspeckle assembly
transcript 1 (non-protein
coding)

ncRNA Most-DILI, no-DILI 56 223

PVT1 Pvt1 oncogene (non-protein
coding)

ncRNA Most-DILI 56 182

TUG1 Taurine up-regulated 1
(non-protein coding)

ncRNA Most-DILI, no-DILI 41 99

MTUS1 Microtubule associated scaffold
protein 1

Protein-coding Most-DILI, no-DILI 26 71

TM4SF5 Transmembrane 4 L six family
member 5

Protein-coding Most-DILI, no-DILI 20 37

FAM167A Family with sequence similarity
167 member A

Protein-coding Most-DILI 19 32
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TABLE 6 | Overview of mapped dark genes based on transcriptional regulation
(DoRothEA) and on signaling pathway signatures (PROGENy).

Compound Dark
genes

Dark
genes in

DoRothEA

Number of
mapped

TFs

Dark
genes in

PROGENy

Number of
mapped
signaling
pathways

Acetaminophen 294 46 24 11 8

Valproic acid 330 51 28 11 6

Isoniazid 152 22 21 8 5

Diclofenac 221 32 26 10 7

Nimesulide 145 34 26 5 4

Total Most-DILI 732 115 40 29 10

Theophylline 326 48 29 16 6

Caffeine 271 47 30 16 7

Hydroxyzine 81 17 19 3 3

Chloramphenicol 6 2 4 0 0

Chlorpheniramine 7 1 1 1 1

Total No-DILI 451 70 36 19 7

the set of drug targets, those that are related to side effects
are more central in the interactome at local, global and meso-
scale level. In the current study, we have used interactome data
to highlight genes with strong molecular data, such as genes
LRBA, which showed over 400 interaction partners in BIANA

database, being associated to several diseases and involved in
the response to DNA damage (Matsuoka et al., 2007). Another
example is WDR26 – with over 70 partners in HIPPIE database
and also disease-associated, that has been found to protect cells
from oxidative stress-induced apoptosis (Zhao et al., 2009).
Furthermore, genes such as MYO15B, BEX5, C12orf75, and
SPATA2L, that appear differentially expressed in at least 4 of
the 5 DILI compounds and not perturbed upon no-DILI drugs,
are also involved in protein-protein interactions according to
most PPI databases, thus making them interesting potential DILI
biomarker candidates to further pursue.

On the other hand, the use of text mining tools allowed to
obtain information about non-coding RNAs – entities which are
not included in PINs. With these methods we identified genes
such as microRNA MIR29C, and non-coding RNAs H19 and
MALAT1, all found exclusively in the most-DILI risk group.
Deregulation of H19 and MALAT1 has been associated with
liver disease (Takahashi et al., 2014). Downregulation of H19,
which was consistently observed in all most-DILI compounds
except nimesulide, has been associated with formation of
Mallory-Denk bodies (MDBs), aggresomes of proteins found in
many types of liver diseases (Oliva et al., 2009). Furthermore,
downregulation of circulating microRNAs from the mir29 family
were shown in liver cirrhosis patients (Loosen et al., 2017) and
MIR29C in particular has been associated to acute and chronic

FIGURE 2 | Venn diagrams showing the intersection of transcription factors (TFs) and signaling pathways regulating at least one dark gene. The number
accompanying each compound refers to the number of transcription factors and signaling pathways enriched by dark genes and the intersected modules by all or
most of the compounds are highlighted in the adjacent boxes. (A,B) Regulatory TFs of hepatotoxic and non-hepatotoxic compounds, respectively. (C,D) Regulatory
signaling pathways of hepatotoxic and non-hepatotoxic compounds, respectively. No enriched signaling pathway was found for Chloramphenicol (absent in D).
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TABLE 7 | Orthologs to human dark genes present in modules associated to
pathologies in rats described by Sutherland et al. (2017).

Module Gene symbol Pathology
association

GO-BP

13m Smim14 Adverse at 29 days,
Hematopoiesis

Complement activation;
Inflammatory response,
Leukocyte chemotaxis

39 Lhfpl6 BDH Extracellular matrix
organization, Collagen
fibril organization

205 Thyn1 BDH, Adverse at
29 days

Cellular response to
DNA damage stimulus,
Signal transduction by
p53 class mediator

293 Magee1 BDH –

55m Abracl Fibrosis, BDH,
Necrosis

Membrane raft
assembly, Regulation of
cytoskeleton
organization

14m Wdr70, Lyrm1,
Tmem209

Hypertrophy Protein folding, tRNA
metabolic process

10 RGD1560010,
Abhd8, Tbc1d31

Increased mitosis Cell cycle, Mitotic cell
cycle

81 Jpt1 Increased mitosis,
BDH

Actin polymerization or
depolymerization

70 Spata2l, Ubald1 Single cell necrosis Cell cycle arrest

309 RGD1359127 Single cell necrosis –

147 Oser1 Single cell necrosis –

27m C2cd2 Vacuolation

BDH, bile duct hyperplasia.

models of hepatotoxicity (Schueller et al., 2018). The relevance
of these genes in diseases, in particular liver diseases, was
demonstrated in the disease association analysis with DisGeNET
(Figure 3). Clear associations to common compound-induced
liver injuries (fatty liver, fibrosis, steatohepatitis, and cirrhosis),
in addition to cancer-related processes, were observed.

Drug-disease relationships are regarded as important ways
to improve toxicity testing and drug safety and discovery;
methods such as Connectivity map have been successfully
applied to datasets, showing that correlation of ‘omics’ profiles
between certain drugs and disease profiles recapitulate drug
disease risks (Lamb et al., 2006; Caiment et al., 2014). Here, we
show the potential of poorly annotated genes to strengthen these
connections, impacting the discovery of potentially novel toxicity
markers.

On another perspective, even though regulatory TF and
pathway enrichment analyses have already been widely applied to
many fields in biomedicine especially in cancer research (Darnell,
2002; Bhagwat and Vakoc, 2015), only a few case studies were
shown in the field of drug safety and toxicity (Souza et al.,
2017). Our unbiased enrichment analysis of regulatory TFs and
pathways is one of the first studies to combine the analysis
of both transcription factors and signaling pathways related to
drug toxicity, especially focusing on poorly annotated entities
regulated by these systems in an effort to propose additional
markers of drug toxicity (Andersen et al., 2013; Jennings et al.,
2013).

In our analyses we show that approximately 16% of the dark
genes were mapped in TF-regulon database DoRothEA (Table 6).
Among the enriched TFs of dark genes in the most-DILI group,
we detected, for instance, E2F1, which has been demonstrated to
be involved in liver fibrosis, a common end-point of compound-
induced liver injury (Zhang Y. et al., 2014), as well as JUND in
the inflammatory process in liver (Seki et al., 2012). Pathways’
signatures, which are largely curated and expected to represent
the activity states of signaling pathways, were also found to
contain approximately 4% of dark genes modulated in this
study. Enriched pathways for these entities included the Hypoxia
pathway, known to play a role in inflammation and fibrosis
(Nath and Szabo, 2012), PI3K pathway, that mediates liver injury
in chronic fluorosis (Fan et al., 2015), as well as that of TNF-
alpha pathway as the mediator of hepatotoxicity and regeneration

FIGURE 3 | Association between H19, MALAT1, and MIR29C and liver -related disease phenotypes.

Frontiers in Genetics | www.frontiersin.org 9 November 2018 | Volume 9 | Article 527

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-09-00527 November 19, 2018 Time: 16:49 # 10

Souza et al. Computational Tools Unveiling Gene Function

(Schwabe and Brenner, 2006), inflammation and homeostasis
(Tacke et al., 2009). These liver-injury mediating TFs E2F1 and
JUND together with the representatives from hepatotoxic-related
pathways such as HIF1A, AKT, and TNF-receptor could be
perceived as potential markers to demonstrate the involvement
of the dark genes in the context of DILI.

By comparing the dark genes identified in human hepatocytes
to corresponding orthologs in vivo in a murine model, we found
a consistency in the expression of these entities across species.
More importantly, we show that these genes are associated with
pathological outcomes (Table 7), highlighting their potential
value in pre-clinical studies. We were not able to assess the
relevance of aforementioned genes linked to DILI (MALAT1,
H19, and MIR29C) since these genes, although possessing rat
orthologs, were not measured in the arrays. However, functional
annotation performed in vitro pointed similarities to most-DILI
risk – demonstrated through genes such as Magee1. Magee1 was
modulated in vitro only by compounds in the most-DILI group,
and associated to “Liver Cirrhosis, Experimental” according to
DisGeNET data; in vivo, it was found in a module associated with
hepatobiliary outcomes (Sutherland et al., 2017). Furthermore,
genes such as Smim14 and Thyn1 were included in modules
with biological processes; these functions may be putatively
associated to these genes, as it has been shown that genes
acting simultaneously often share the same biological process(es),
and therefore gene co-expression networks can be used for the
purpose of functional annotation (van Dam et al., 2017).

By combining the results of all approaches employed in this
study, we were able to find evidence in at least one approach for
701 out of the initial 916 dark genes, i.e., 76% (Supplementary
Table S1). Some genes were consistently found across all
methodologies in addition to rat-human orthologs mapped to co-
expression modules (e.g., ST7, KLHDC2, CCDC28A, TMEM140,
TRIM47), all of which were included in clusters with GO BP
annotation (Supplementary Table S1) (Sutherland et al., 2017).
Genes exclusively modulated by the most-DILI group with (i)
hits across several methods (i.e., sum of evidences equal or
higher to 8, see Supplementary Table S1) (e.g., ST7, LRBA,
TPD52L2, TSSC4, BOLA1, YIPF1, TMEM168, RSRC2, CCDC92,
ITFG1, ZMYND19, TTC14, and TMEM9) and (ii) moderate
amount of evidence (sum equal or higher than 4) and associated
with pathologies (MAGEE1, TBC1D31, SPATA2L, ABHD8, and
LHFPL6) were also identified. Although there are reports on their
involvement in different liver diseases, including non-alcoholic
steatohepatitis and hepatocellular carcinoma (Cai et al., 2018;
Zhu et al., 2018), their roles in drug-induced organ injury has
not yet been investigated. In addition to that, 215 dark genes
modulated by the chemicals investigated here remain obscure –
the majority (174) being classified as ncRNAs – which have been
presented as potential non-invasive disease biomarkers (Teng
and Ghoshal, 2015; de Gonzalo-Calvo et al., 2018). Regardless
the level of findings, our results indicate concordance in silico,
in vitro, and in vivo and potential roles in toxicity that should pave
the way for further investigations aiming at the confirmation and
uncovering of their biological function.

Overall, our study indicated how limitations arising from
the biological annotation of genes can be minimized using a

number of computational approaches, especially in the field
of toxicogenomics in which uncovering and understanding
of drug-gene responses is necessary to obtain novel/robust
markers of toxicity. Although comprehensive databases such as
Harmonizome (Rouillard et al., 2016) exist, they do not offer
advanced mapping into the TF and pathway signatures nor
cross-species concordance as performed in this study. It should
also be noted that this study was based on a predefined set of
approximately 19,000 genes; analyses of data from unconstrained
methods (e.g., RNA-seq) using the methods described here will
likely be able to provide a more accurate picture of the state of
functional annotation of the whole human genome and shed light
onto new, potentially relevant features in toxicological analysis.

CONCLUSION

In summary, this study highlighted a gap in functional gene
annotation in the field of toxicogenomics and presented potential
methods that can generate a pipeline to fill such gap through
mapping using several resources. We showed that text mining
tools and biocuration offer important insights by revealing
potential chemical-disease associations and functional roles.
The presented microRNA, ncRNAs and regulatory transcription
factors in this study may also be further investigated as
potential biomarkers of DILI. Nevertheless, further experimental
validation of their biological roles are still necessary not only
to extend the biological knowledge beyond the scope of well-
annotated entities, but in order to also fully understand their roles
in toxicity and disease development which would help to unlock
their prognostic and translational value.
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TABLE S1 | Comprehensive overview of the dark genes analyzed, including (i)
modulation by individual chemicals and per DILI risk, (ii) current mapping status to
gene ontology (GO) and pathways (several databases), and (iii) results obtained
from different methodologies applied.

DATA SHEET S1 | Supplementary Figures.

DATA SHEETS S2 and S3 | Scripts (.R) used in all analyses conducted in this
study as well as mapping to databases and IDs.
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