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Abstract
About 50% of humans with aneurysmal subarachnoid hemorrhage (SAH) die and many survivors
have neurological and neurobehavioral dysfunction. Animal studies usually focused on cerebral
vasospasm and sometimes neuronal injury. The difference in endpoints may contribute to lack of
translation of treatments effective in animals to humans. We reviewed prior animal studies of SAH
to determine what neurological and neurobehavioral endpoints had been used, whether they
differentiated between appropriate controls and animals with SAH, whether treatment effects
were reported and whether they correlated with vasospasm. Only a few studies in rats examined
learning and memory. It is concluded that more studies are needed to fully characterize
neurobehavioral performance in animals with SAH and assess effects of treatment.

Introduction
Mortality and morbidity from aneurysmal subarachnoid
hemorrhage (SAH) have decreased with improvements in
surgery, pharmacological treatment and intensive care.
The overall outcome, however, remains relatively poor
[1,2]. Management of SAH includes early obliteration of
the ruptured aneurysm to prevent rebleeding, prevention
of secondary brain injury from such things as decreased
cerebral perfusion and prevention and treatment of
delayed neurological deterioration secondary to cerebral
vasospasm. The case fatality rate is approximately 50%
and 30% of survivors remain dependent on others,
mainly due to the persistent cognitive impairment rather
than focal neurological deficits [3].

Although the mechanisms underlying the cognitive defi-
cits have not been well studied, they have nevertheless
been attributed to ischemic brain injury occurring either
during the initial hemorrhage or as a consequence of
macro- and microvascular dysfunction and delayed
ischemic neurological deterioration (Figure 1) [1]. Other
mechanisms, including delayed neuronal death and corti-
cal spreading depression have been suggested [4,5]. These
processes may lead to large-artery territory infarction,
smaller cortical laminar infarcts or possibly other types of
selective neuronal death or perhaps even dysfunction in
the absence of detectable death [6].

Much work on SAH has focused on cerebral vasospasm.
This is based on the assumption that severe vasospasm
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The pathophysiology of brain injury after SAH may originate from 3 phenomena; transient global ischemia (due to increased intracranial pressure and decreased cerebral perfusion pressure), subarachnoid blood clot and acute hypertensionFigure 1
The pathophysiology of brain injury after SAH may originate from 3 phenomena; transient global ischemia 
(due to increased intracranial pressure and decreased cerebral perfusion pressure), subarachnoid blood clot 
and acute hypertension. These may lead to a variety of secondary effects including brain edema, delayed large artery vasos-
pasm, breakdown of the BBB, microcirculatory changes, thromboemboli, cortical spreading depression and delayed neuronal 
death due to apoptosis or other mechanisms. The end result is focal and scattered brain injury. The role of astrocytes is 
increasingly being recognized also. In the end, these processes have to cause neurological and neurobehavior deficits to be 
important and these will depend on what areas of the brain or networks in the brain are disrupted.
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can reduce cerebral blood flow, cause brain ischemia and
infarction and contribute to poor outcome [7]. For such
studies, an acceptable dependent variable would be angi-
ographic arterial diameter. This might not detect treat-
ment toxicity, however. Considering the fact that the other
proposed mechanisms do not necessarily cause focal cer-
ebral infarctions, how to assess outcome is a problem.
Clinically, neurobehavioral testing could be used and gen-
erally is done 3 to 6 months post-SAH.

Animal studies have often relied on histological assess-
ment of neuron death but there are several problems with
this. The time course of changes needs to be considered
since complications of SAH are often delayed for several
days. Not much is known about the time course of neuro-
nal injury after SAH but it is notable that neuron death
seems to progress over months after experimental
ischemic stroke [8]. Furthermore, lack of neuron death
associated with a treatment does not necessarily indicate
that the rescued neurons are functional. Studies show
ischemia treated with ischemic preconditioning or hypo-
thermia prevents neuron death but that behavior is not
improved and/or there is an inability to induce long term
potentiation in hippocampal slices [8,9]. Therefore, it
seems warranted to employ neurobehavioral testing in
models of SAH.

In this paper, we hypothesize that SAH models in animals
should cause neurological and neurobehavioral altera-
tions that do not occur in sham-operated animals. Treat-
ments that improve histological or other measures of
brain injury should also improve the neurological/neu-
robehavioral alterations. To this end, literature studying
neurological and neurobehavioral alterations after exper-
imental SAH is reviewed to determine what has been
done, whether tests used thus far differentiated between
appropriate controls and animals with SAH, whether
treatment effects were reported and whether neurobehav-
ioral tests correlated with vasospasm. Prior review of ani-
mal models focused on vasospasm and didn't mention
these endpoints [10]. This review is not exhaustive and we
apologize for any omissions. The purpose is not to review
the pathophysiology of brain injury after SAH, although
when relevant, some discussion of this is provided.

Rats
Models
The most common methods of inducing SAH in rats are
to inject blood into the cisterna magna once (single injec-
tion) or twice (separated by 1 or 2 days, double injection)
or to perforate an anterior circulation intracranial artery
endovascularly (perforation model)[10]. Prunell, et al.,
developed an anterior circulation single injection model
where blood was injected into the chiasmatic cistern [11].

Endpoints Used
Mortality
Mortality tends to be lowest with the single injection, is
higher with the double-injection and highest with the
endovascular perforation model (Table 1) [12-15,15-23].
Mortality is probably lower if sham surgery is done with
injection of artificial cerebrospinal fluid (CSF) or physio-
logical saline but this has seldom been documented.
Intracranial pressure also is not usually measured so it is
difficult to differentiate effects of subarachnoid blood
from those of increased intracranial pressure. The larger
the injection volume, the higher the mortality. High mor-
tality rates can be problematic because this may remove
animals that have neurologic deficits, leaving only rela-
tively normal animals for assessment.

Body Weight
Body weight reflects in part feeding and drinking behav-
iour and can be used to assess appetite and motivation.
Body weight decreases significantly after SAH created by
cisternal blood injection in rats but tends to return to nor-
mal within 3 to 5 days [1,12,13,24,25]. Injecting 300:l
blood is associated with less change in body weight than
after injecting 400:l. Injection times also were different
(15 seconds for 300:l and 30 seconds for 400:l). The injec-
tion time affects how high the intracranial pressure rises
during the injection and could also affect body weight and
neurologic function by causing additional injury beyond
that due to SAH itself. Indeed, injection of saline into the
cisterna magna of rats also can be associated with weight
loss [13].

General Neurological Function
Germano and colleagues provided perhaps the first more
detailed neurological evaluation of rats undergoing injec-
tion of artificial CSF, autologous blood or nothing into
the cisterna magna [13]. This comprised simple nonpos-
tural somatomotor functions (duration of suppression of
the pinna reflex, corneal reflexes, startle response) and
acute complex postural somatomotor functions (righting
response, spontaneous locomotion, escape response) that
were summarized from tests developed by other investiga-
tors. Detailed quantification was not done and there were
no differences between rats undergoing sham-operation
or SAH created by cisternal blood injection.

Zausinger, et al., modified a scale developed for assessing
neurological function after asphyxia cardiac arrest in rats
(Table 2)[19,26]. The scale was adapted from one devel-
oped to study cardiac arrest in dogs [27]. Animals with
endovascular SAH had impaired scores by 7 days after
SAH in 3 studies but there was no comparison to sham-
operated controsls so whether the score detects effects of
SAH was not determined [19,28,29]. A variation of this
scale with 175 points did compare sham operated to rats
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mental findings Disconnect between 
vasospasm and 
outcomes

te or delayed neurological 
tion, >90% of surviving rats 
d normal activity within 3 days, 
duction in body weight 36 
fter SAH but eating/feeding 
d to normal within 3 days. CSF 
f eicosanoids (PGE2, PGF2a, 
were significantly higher after 
mpared to noninjected and 
SF injected rats. The increase 
anoids was accompanied by a 
e in the mean vascular 
r (78~82% of control) 2 days 

sternal injection

They correlated

te neurological deficits or 
ce between SAH or saline-
 controls, significant deficits 

ith SAH rats on beam balance 1 
r, beam walking test 1-4 days 
y weight 1-5 days after SAH

Not assessed

sociated with impaired beam 
 and walking and decreased 
eight compared to sham, AVS 
ed neurological function, 
ed the blood-brain barrier and 
ed vasospasm

They correlated

sociated with impaired beam 
 and walking and decreased 
eight compared to sham, AVS 
ed the blood-brain barrier at 
rs and improved behavior, no 
ent of vasospasm

Not assessed

als drowsy the day after 
n but then recovered, SAH 
ted with changes in purinergic 
rs in the basilar artery

Not assessed
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Table 1: Selected Studies of SAH in Rats Examining Mortality and Neurological Endpoints

Author Model Mortality Behavior Tests Controls Experi

Davella1990A Single 300 μl injection 
into cisterna magnia 
within 10-15 seconds, 
ICP not monitored

34/200 (17%) No specific scales, 
observed rats for 
neurological dysfunction, 
drinking and feeding and 
body weight

SAH (n = 200), saline-
injected (n = 100) 
controls or untreated 
controls (n = 60)

No acu
dysfunc
resume
2.6% re
hours a
returne
levels o
TXB2) 
SAH co
mock-C
in eicos
decreas
diamete
after ci

Germano1994 Single 400 μl injection 
into cisterna magna 
within 15-20 seconds, 
no ICP monitoring

None reported Duration of suppression of 
simple nonpostural (pinna 
reflex, corneal reflexes, 
startle response) and 
complex postural 
somatomotor function 
(righting response, 
spontaneous locomotion, 
escape response) after 
SAH. Beam balance, beam 
walking tests and body 
weight for 5 days after SAH

SAH (n = 10), saline-
injected (n = 10) and 
sham-operated (n = 10) 
controls

No acu
differen
injected
seen w
day afte
and bod

Germano1998C Single 400 μl injection 
into cisterna magna 
within 30 seconds, no 
ICP monitoring

None reported beam balance, beam 
walking, body weight

SAH or sham-operated 
controls

SAH as
balance
body w
improv
preserv
decreas

Imperatore2000 Single 400 μl injection 
into cisterna magna 
within 30 seconds, no 
ICP monitoring

None reported Beam balance, beam 
walking

SAH or sham-operated 
controls

SAH as
balance
body w
preserv
48 hou
assessm

Carpenter2001 2 injections of 250-300 
μl into cisterna magna, 
no ICP monitoring

3/80 (3%) General observations SAH or saline injected 
controls

All anim
injectio
associa
recepto
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ciated with impaired beam 
d walking and decreased 
ht compared to sham, 
ibitor decreased deficits and 
blood-brain barrier integrity 
s

Not assessed

nt of SAH were measured Not assessed

highest with endovascular 
n model

Not assessed

highest with endovascular 
n model

Not assessed

ly better neurological scores 
t days of SAH and less 
eath at 7 days after 7.5% 

 dextran treatment, trend 
etter weight and lower 

Not assessed

ced significantly the 
al score at 6 and 24 hours, 

e inhibitor z-VAD-FMK 
 TUNEL and caspase 3 in 
l cells, decreased caspase 3 

, reduced blood-brain barrier 
ity, decreased vasospasm and 

a and improved 
al outcome

They correlated

ced neurological function 
ly 24 hours after SAH, 
 oxygen marked reduced 

and also decreased ICP, 
CBF, slightly improved brain 
 neuronal death, decreased 

aining in hippocampus

Not assessed
Germano2002 Single 400 μl injection 
into cisterna magna 
within 30 seconds, no 
ICP monitoring

None reported Beam balance, beam 
walking, body weight

SAH or sham-operated 
controls

SAH asso
balance an
body weig
calpain inh
improved 
at 48 hour

Prunell2002 Single injection 200 - 
300 μl into chiasmatic 
cistern, ICP 
monitoring

25% with 200, 50% 
with 250 and 100% 
with 300 μl

None SAH or saline-injected 
controls

ICP, amou

Gules2002 Single or double 
injections into cisterna 
magna or endovascular 
perforation

0% single 
hemorrhage, 9% 
double hemorrhage, 
57% endovascular 
perforation

None None Mortality 
perforatio

Prunell2003 Chiasmatic injection 
200 μl, cisterna magna 
injection or 
endovascular 
perforation, with ICP 
monitoring

44% endovascular, 
25% chiasmatic, 0% 
cisterna magna 
injection

None None Mortality 
perforatio

Zausinger2004 Endovascular 
perforation

65% in control 
saline, 60% with 
7.5% NaCl and 35% 
with 7.5% NaCl and 
dextran

100 point neurological 
score composed of general 
behavior and respiration 
(40), cranial nerves (20), 
sensitivity to tactile stimuli 
(10), motor (10), 
coordination (20) 
{Katz1995}

None Significant
within firs
neuronal d
NaCl plus
towards b
mortality

Park2004 Endovascular 
perforation

11/26 (42%) of SAH 
rats died at 24 
hours, statistically 
insignificant 
decrease from 43% 
with sham DMSO to 
25% of z-VAD-FMK 
group

Modified 25-point scale 
testing neurological 
function {Garcia1995}

SAH or sham-operated 
controls

SAH redu
neurologic
pancaspas
decreased
endothelia
activation
permeabil
brain edem
neurologic

Ostrowski2005 Endovascular 
perforation

20/42 (48%) Modified 25-point scale 
testing neurological 
function {Garcia1995}

SAH or sham-operated 
controls

SAH redu
significant
hyperbaric
mortality 
improved 
edema and
TUNEL st

Table 1: Selected Studies of SAH in Rats Examining Mortality and Neurological Endpoints (Continued)
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sociated with TUNEL positive 
o vasospasm, reduced CBF did 

No vasospasm yet TUNEL 
positive neurons and 
decreased CBF

ed mortality and poorer 
gical scores after SAH than 

urgery, pifithrin α associated 
tter neurological scores, less 
dema and blood-brain barrier 
own, less vasospasm, less basilar 
apoptosis

They correlated

behavior with NaCl 7.5% + 
 70 6%, less brain damage, 
CP than after treatment with 
r mannitol

Not assessed

 α decreased mortality, 
ed behavior and decreased 
rain barrier disruption, brain 

, p53, cytochrome C, TUNEL 
 and neuron injury

No vasospasm 
measurements but 
neuronal damage in areas 
not thought to be supplied 
by arteries that develop 
vasospasm in this model

sociated with significant deficits 
 balance scores on days 1 and 2 

beam balance times days 1-3. 
so increased latency to cross 
ays 1-4. Body weight decreased 
5. Felbamate improved behavior 
 body weight and decreased 
rain barrier disruption

Not assessed

ant deficits 6 and 24 hours after 
ss by 72 hours in surviving 
 compared to sham-operated. 
sociated with blood-brain 
 disruption as evidenced by 
 leakage into brain, fewer 

essels and disrupted collagen 4 
he side of the SAH

Not assessed
Prunell2005 Endovascular 
perforation or 
prechiasmatic SAH

46% endovascular, 
24% prechiasmatic

None SAH or sham-operated 
controls

SAH as
cells, n
occur

Cahill2006 Endovascular 
perforation

35/140 (33%) Modified 25-point scale 
testing neurological 
function {Garcia1995}

SAH or sham-operated 
controls

Increas
neurolo
sham s
with be
brain e
breakd
artery 

Bermueller2006 Endovascular 
perforation

60% SAH, 40% 
saline, 73% saline + 
dextran, 73% 
mannitol

91 point neurological score 
composed of general 
behavior and respiration 
(40), cranial nerves (16), 
sensitivity to tactile stimuli 
(10), motor (10), 
coordination (15) 
{Katz1995}, 6 grade 
neuroscore 
{Bederson1986} and 
prehensile traction test 
{Zausinger2000}

None Better 
dextran
lower I
NaCl o

Cahill2007 Endovascular 
perforation

35% of 195 Modified 25-point scale 
testing neurological 
function {Garcia1995}

SAH or sham-operated 
controls

Pifithrin
improv
blood-b
edema
staining

Germano2007 Single 400 μl injection 
into cisterna magna 
within 30 seconds, no 
ICP monitoring

None reported Beam balance, beam 
walking, body weight

SAH or sham-operated 
controls

SAH as
in beam
and in 
SAH al
beam d
days 1-
scores,
blood-b

Scholler2007 Endovascular 
perforation

32% at 72 hours 175 point neurological 
score composed of general 
behavior and respiration 
(40), cranial nerves (20), 
sensitivity to tactile stimuli 
(50), motor (50), 
coordination (15) 
{Katz1995}

SAH or sham-operated 
controls

Signific
SAH, le
animals
SAH as
barrier
albumin
microv
all on t

Table 1: Selected Studies of SAH in Rats Examining Mortality and Neurological Endpoints (Continued)
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 associated with significant 
vior abnormalities, SP600125 
eased neuronal injury by 
easing caspase-3 activation and 
yribonucleic acid damage, 
eased aquaporin 1 upregulation 
brain water, reduced MMP 9 
ation and collagen 4 degradation, 
ented blood-brain barrier 
ption and a trend towards 
ced mortality and better 
ological function

Not assessed

significant differences among 
ps except on 100 point 
oscore on which hypertonic saline 
xtran group had significantly less 
ological deficit on day 1 as 
pared to other groups

Not assessed

cits in rotarod, vertical screen and 
nce beam, Morris water maze 
cted deficits in visual spatial 
ory, decreased CBF for days, 

mal proximal large artery 
spasm (at 3 days), significant 
onal loss in CA1 hippocampus 
ciated with microvascular filling 
cts

Vasospasm was minimal 
but many other deficits 
were noted, authors 
suggested changes were 
not due to increased ICP 
because they injected 
slowly and the blood 
pressure increased so 
cerebral perfusion 
pressure was thought to 
be adequate

 not associated with deficits in 
red beam, limb use asymmetry, 
zontal ladder tasks, SAH did cause 
its in Morris water maze when 
 had to learn new location of the 
orm (longer mean latency and 
nce swum to find platform)

Not assessed
Yatsushige2007 Endovascular 
perforation

0% sham, 35% SAH 
at 24 hours, 23% 
with treatment with 
SP600125

16 point score that graded 
mobility, reflexes, behavior 
and beam walking tests 
{Feldman1996}

SAH or sham-operated 
controls

SAH
beha
decr
decr
deox
decr
and 
activ
prev
disru
redu
neur

Thal2008 Endovascular 
perforation

13/20 SAH (65%), 
12/20 hypertonic 
saline group (60%), 
7/20 hypertonic 
saline + dextran 
(35%)

Beam balance, prehensile 
traction, rotarod, 6 point 
score {Bederson1995} 
which is actually 
{Bederson1986A}, 100 
point neuroscore general 
behavior and respiration 
(40), cranial nerves (20), 
sensitivity to tactile stimuli 
(10), motor (10), 
coordination (20) 
{Katz1995}

None No 
grou
neur
+ de
neur
com

Takata2008 Cisterna magna 
injection 0.5 ml over 
10 minutes, 0.3 ml 2 
days later, shams had 
saline injection, ICP 
not monitored

None reported Longterm sensorimotor 
and cognitive function, 
cerebrovascular diameter 
and microangiography, 8-
hydroxy-2-deoxyguanosine 
immunohistocchemistry, 
regional CBF

SAH or saline-injected 
controls

Defi
bala
dete
mem
mini
vaso
neur
asso
defe

Silasi2008 Endovascular 
perforation

33% Tapered beam, limb use 
asymmetry, horizontal 
ladder tasks, Morris water 
maze

SAH or sham-operated 
controls

SAH
tape
hori
defic
they
platf
dista

Table 1: Selected Studies of SAH in Rats Examining Mortality and Neurological Endpoints (Continued)
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Sugawa  SAH associated with neurological 
deficits, simvastatin prevents 
vasospasm and improved neurological 
grade

Correlation between SAH 
grade, vasospasm and 
neurological score

Sugawa  SAH or SAH with low-dose 
simvastatin associated with 
neurological deficits, these were 
prevented by high dose simvastatin, 
the phosphatidylinositol 3-kinase 
inhibitor wortmannin antagonized 
effects of simvastatin

Correlation between 
vasospasm and 
neurological score

Gao200  SAH associated with behavior deficicts, 
tetramethylpyrazine improved 
behavior at 24 hours compared to 
SAH, as well as brain water content, 
Evans blue leakage, vasospasm and 
decreased apoptosis markers

They correlated

Table 1
ra2008 Endovascular 
perforation

0% sham, 16% SAH, 
4% simvastatin

SAH grading (0-3 in 6 
cisterns), neurological 
assessment (0-3 points on 
spontaneous movement, 
spont movement of all 
limbs, movement of 
forelimbs while being held 
by tail, climbing in cage, 
reaction to touch on both 
sides of trunk, response to 
vibrissae touch) 
{Garcia1995}

SAH or sham-operated
controls

ra2008A Endovascular 
perforation

0% for sham-
operated, varied 
with SAH from 4-
35%, lowest with 
high-dose 
simvastatin but none 
of SAH groups 
significantly different

SAH grading (0-3 in 6 
cisterns), neurological 
assessment (0-3 points on 
spontaneous movement, 
spont movement of all 
limbs, movement of 
forelimbs while being held 
by tail, climbing in cage, 
reaction to touch on both 
sides of trunk, response to 
vibrissae touch) 
{Garcia1995}

SAH or sham-operated
controls

8A Endovascular 
perforation

44% (7/16) with 
SAH and placebo 
treatment died, 38% 
(6/16) with SAH + 
tetramethylpyrazine 
died, none of the 
sham-operated 
controls died, not 
significantly 
decreased by 
tetramethylpyrazine

Modified 25-point scale 
testing neurological 
function {Garcia1995}

SAH or sham-operated
controls

: Selected Studies of SAH in Rats Examining Mortality and Neurological Endpoints (Continued)
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undergoing endovascular SAH [21]. Significant differ-
ences were noted between the sham and SAH groups 6
and 24 but not 72 hours after SAH.

Park, et al., modified a scale that was developed to assess
neurological function after focal cerebral ischemia in rats
(Table 3) [18,30]. Animals were rated on spontaneous
movement, symmetry of limb movements, forepaw out-
stretching, climbing, body proprioception and response
to vibrissae touch for a score of 3 to 18 points [20,22,31].
This scale or modifications of it have repeatedly differen-
tiated rats with endovascular SAH from sham-operated
controls 6 to 72 hours after SAH [18,20,22,23,31-33].
Other scales developed to measure lateralized deficits
after middle cerebral artery occlusion in rats were not
shown tested in SAH and sham-operated rats (Table 4)
[28,29,34]. The prehensile traction test also was measured
in rats with endovascular perforation SAH but without
sham-operated animals [28,29,35]. Rats were suspended
by their front limbs from a metal rod and the time until
falling was measured and treated categorically.

Another 16-point scale developed for rats with traumatic
brain injury was studied in rats undergoing SAH by

endovascular perforation (Table 5)[36,37]. The score
combines mobility, neurological reflexes, neurobehavior
and beam walking. The neurobehavioral test was seeking
behavior. Means for shams were not presented but SAH
animals had a score that would probably be significantly
different from the normal score of 0 to 1.

Silasi and Colbourne did not detect differences in general
activity and forelimb asymmetry in rats undergoing sham
or endovascular perforation SAH for up to 21 days after
SAH [38]. General activity was decreased to a similar
degree after SAH or sham-surgery.

Rotarod, Horizontal Ladder and Other Neurological Tests
The rotarod test measures motor function. There are vari-
ations in how it is conducted that makes comparison
between studies difficult. Thal, et al., placed rats on the
device for 10 seconds [29]. Rotation then started and
accelerated to 40 revolutions per minute (rpm) within 90
seconds and then remained constant for 30 more seconds.
The trial was repeated 5 minutes later and the trial was
stopped if the animal fell off or gripped the rungs and
spun for 2 revolutions. No sham animals were included.
Another method was performed in the double hemor-

Table 2: Behavior Score for Rats with SAH Adapted From Katz, et al.{Katz1995}

Scale Points

General behavioral deficit
Consciousness Explore spontaneously 0

No attempt (comatose) 20
Respirations Normal 0

Abnormal 20
Cranial nerve reflexes Olfactory (sniffing food) Present 0

Absent 4
Vision (follows hand) Present 0

Absent 4
Corneal reflex Present 0

Absent 4
Whisker (movement) Present 0

Absent 4
Hearing (turning to clapped hands) Present 0

Absent 4
Motor deficit Legs/tail movement Normal 0

Stiff 5
Paralyzed 10

Sensory deficit Legs/tail (on pinching) Present 0
Absent 10

Coordination Beam walking (1.5 cm) Present 0
Absent 5

Placing test Present 0
Absent 5

Righting reflex Present 0
Absent 5

Stopping at edge of table Present 0
Absent 5

Total 100
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rhage rat model [39]. The rotation was increased from 4 to
40 rpm over 5 minutes for 3 trials per day for 28 days after
SAH, sham surgery or saline injection. SAH was associated
with marked, persistent deficits for 28 days.

Silasi and Colbourne did not detect differences in tapered
beam walking or horizontal ladder function in rats under-
going sham or endovascular perforation SAH for up to 21
days after SAH [38].

Beam Balance Test
The beam balance test assesses motor and vestibular func-
tion by quantifying the ability to balance on a narrow
wooden beam (diameter of 1–2.5 cm) for up to 60 sec-
onds [1,13,14,25,29,40]. Parameters are beam balance
time (duration the animal steadily remains on the beam)
and beam balance score [13]. Beam balance score is
descriptive and examiner-dependent [29].

Rats with single hemorrhage SAH exhibited significantly
increased beam balance score 1 day after SAH compared
to their function before SAH and to sham-operated and
artificial CSF-injected animals [13]. In later studies, the
beam balance test was carried out on a wooden beam with
a diameter of 1 cm which may increase the sensitivity
compared to the 1.5 cm diameter [13].

Most studies using the beam balance were done by one
laboratory and although the creation of SAH and behav-
ioral assessments were the same, the results varied, sug-
gesting that the sensitivity is relatively low (Table 1).
Deficits usually were detected only in the first 1 to 2 days
after SAH [14,24,25]. Variable results may be due to sev-
eral factors including that the score is subjective and
descriptive [13]. The severity of SAH caused by cisternal
blood injection also is variable [16]. Finally, the beam bal-
ance test is not standardized and there is variability in the

Table 3: Behavior Score for Rats with SAH Adapted from Garcia, et al.{Garcia1995}

Function Score

Spontaneous activity Normal 3
Slightly affected 2
Severely affected 1
No movement 0

Symmetry in movement of 4 limbs assessed when rat held suspended by tail Symmetric 3
Asymmetric 2
Hemiplegic 1

Forepaw outstretching assessed by bringing rat to edge of table and making it 
walk on forelimbs while being held by tail and observing forelimb use

Symmetric forepaws 3

Mild asymmetry 2
Marked asymmetry 1
One forelimb did not move 0

Climbing determined by placing rat on the wall of a wire cage and observing 
climbing and strength of attachment to wall

Climbed easily, gripped tightly 3

One side impaired 2
Failed to climb or tended to circle instead of climbing 1

Body proprioception Equal on both sides 3
Reacted slowly to stimulus on 1 side 2
No response on one side 1

Response to vibrissae touch determined by brushing vibrissae on each side Symmetric 3
Asymmetric 2
No response on 1 side 1

Total 5 to 18

Table 4: Rat Neurological Function From Bederson, et al.{Bederson1995}{Bederson1986A}

Grade Behavior

Grade 5 Rat held by tail had normal extension of both forelimbs toward the floor
Grade 4 Rat with consistent flexion of forelimb on either side and adduction and internal rotation of shoulder
Grade 3 Rats placed on soft plastic coated paper they could grip with forepaws. With tail held by hand, gentle lateral pressure was applied behind 

the shoulder until the forelimbs slid several inches. Severely dysfunctional rat with consistently reduced resistance to the paretic side was 
graded 3

Grade 2 Rats then allowed to move on floor and observed for circling behavior when pulled by tail. Rats circling to paretic side were graded 2
Grade 1 Spontaneous circling when rat allowed to move on floor
Grade 0 No spontaneous motion
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diameter, length, shape and composition of the beam
which may affect the results [29]. Nevertheless, the results
consistently show deficits in the first 24 hours after SAH
that tend to resolve after that.

Beam Walking Test
The beam walking test is a learned avoidance test. A pre-
training session is preceded by a negative reinforcement
paradigm in which termination of the adverse stimuli
(noise and light) serves as a reinforcement reward. The
time taken to traverse the beam and enter a darkened goal
box in order to terminate the loud white noise and bright
light is measured to assess memory, motivation, atten-
tion, somatomotor and locomotor function [13].

Most [1,13,25,40] but not all [14] studies document that
rats with SAH created by cisterna magna blood injection
take a significantly longer time to traverse the beam com-
pared to before SAH and to sham-operated controls for up
to 4 days after SAH. In general, the deficit was maximal 1
day after SAH and then gradually improved. All studies
were from one laboratory. Since memory, motivation and
attention are involved, this test should be more sensitive
to brain injury associated with SAH and this does seem to

be the case compared to the other tests described above
that assess mainly motor functions.

Morris Water Maze
Numerous aspects of learning, memory and neurobehav-
ior can be tested in this apparatus [41]. There are 2 studies
employing it after experimental SAH (Table 1)[38,39].
Takata, et al., studied rats undergoing 2 injections of
blood or saline into the cisterna magna [39]. Mortality
was not reported but would be expected to be high based
on prior studies and the massive amount of blood that
was injected. Rats were tested for escape latency, swim-
ming speed and swim distance for 16, 60-second trials 29
to 35 days after SAH. The platform was placed in a differ-
ent quadrant each day and rats were placed randomly in 1
of 4 locations in the maze. If the platform was not found,
the rat was placed on the platform for 30 seconds in the
first trial or 15 seconds in subsequent trials [42]. The pro-
cedure tests learning and short-term memory. SAH was
associated with significantly longer escape latency, swim
distance and faster swimming speed. Morris water maze
testing correlated with neuronal counts in the hippocam-
pus and neocortex.

Table 5: 25 Point Rat Behavior Scale Based on Feldman and colleagues {Feldman1996}

Characteristic Points

Mobility Inability to exit from a circle 50 cm in diameter when 
placed in center

Within 30 minutes 1

Within 60 minutes 1
At > 60 minutes 1

Hemiplegia (inability to resist forced changes in position) 1
Inability to walk straight when placed on floor 1
Inability to move 1

Reflexes Flexion of hindlimb when raised by tail 1
Loss of startle reflex 1
Loss of righting reflex For 20 min 1

For 40 min 1
For 60 min 1

Behavior Loss of seeking behavior 1
Prostration 1

Functional tests Failure in beam walking task 8.5 cm wide 1
5 cm wide 1
2.5 cm side 1

Failure in beam balancing task (1.5 cm wide) for 20 sec 1
for 40 sec 1
for 60 sec 1

Stability on balance beam (1.5 cm wide) able to walk, normal gait 0
able to walk, impaired gait 1
unable to walk, steady balance on beam 1
unable to walk, steady balance, all limbs on beam 1
unable to walk, unsteady balance, unable to place all limbs 
on beam 1

1

Effort on beam balance (1.5 cm wide) unable to stay on the board 1
unable to try to stay on the board 1

Total 25
Page 11 of 28
(page number not for citation purposes)



BMC Neuroscience 2009, 10:103 http://www.biomedcentral.com/1471-2202/10/103
Silasi and Colbourne compared rats with endovascular
perforation SAH to sham-operated animals [38]. They
were tested in the Morris water maze from approximately
day 21 to 40 after SAH. The procedure was similar to that
of Takata, et al., but with 4 trials of 90 seconds per day.
SAH rats had longer escape latency and swim distance on
days the platform was moved to a new location (every sec-
ond day). There were Fluoro Jade stained neurons in 4 of
5 SAH rats examined but no other histopathological
changes.

Does Treatment of SAH Affect Neurological Tests?
The only treatments that have reduced mortality in rats
undergoing endovascular SAH are hyperbaric oxygen [32]
and pifithrin ∀ (Table 1)[20,31]. These studies provide
some insight into the complex pathophysiology of brain
injury after SAH (Figure 1). These authors hypothesized
that hypoxic brain injury at the time of SAH induced
apoptosis in large artery endothelial cells by activation of
hypoxia-inducible factor 1∀ (HIF1∀). Hyperbaric oxygen
decrease expression of HIF1∀ and its target genes, BNIP3
and vascular endothelial growth factor. This was associ-
ated with less neuronal injury, improved cerebral blood
flow and improved behavior 24 hours after SAH [32].
Apoptosis was inhibited with pifithrin ∀, resulting in less
vasospasm and improved blood-brain barrier (BBB)
integrity and neurological function [20,31].

Weight loss was assessed in 2 studies. The oxygen free rad-
ical scavenger +/- N,N' -propylenedinicotinamide (AVS)
did not affect weight loss in rats undergoing single hem-
orrhage SAH [40]. AVS did improve other endpoints such
as vasospasm, balance beam and beam walking, which
suggests a role for free radicals in vasospasm and brain
injury after SAH and is in keeping with clinical studies
showing beneficial effects of AVS [43]. The calpain inhib-
itor, N-acetyl-leu-leu-methioninal and felbamate pre-
vented body weight reduction for up to 5 days after SAH
in the same model [1,25]. Calpains are calcium-activated
neutral proteases that may be activated in cerebral blood
vessels after SAH, leading to vasospasm and breakdown of
the BBB [25]. Thus, preventing their activation may pre-
serve the BBB, as shown by Germano and colleagues [25].
Felbamate has multiple actions that may be neuroprotec-
tive including inhibition of voltage-dependent sodium
and calcium channels, potentiation of (-amino-butyric
acid-mediated chloride currents and reduction of excita-
tory glutaminergic neurotransmission via N-methyl-D-
aspartate receptors [1].

A number of studies demonstrated what would be
expected to be beneficial effects on the brain such as neu-
ronal preservation, less vasospasm, less BBB breakdown
and/or less brain edema yet found only minimal effects
on behavioral testing, suggesting that general neurological

scales were not very sensitive to alteration by treatment.
The 100 point neurological evaluation or variations of
this were different only 1 day after endovascular SAH
when treating with hypertonic saline [19] or hypertonic
saline plus dextran 70 [29]. Another study comparing
infusions of NaCl, mannitol, dextran and hydroxyethyl-
starch found no differences between groups for up to 7
days after SAH [28]. In all 3 studies, there was less neuro-
nal loss in some of the treated groups at 7 days.

The scale modified from Garcia, et al., differentiated rats
24 hours after endovascular SAH and treatment with cas-
pase inhibitors, hyperbaric oxygen, pifithrin ∀, simvasta-
tin and tetramethylpyrazine [18,20,22,23,32,33]. All
treatments improved multiple measures of brain injury.
Significant differences persisted for 72 hours among rats
treated with pifithrin ∀ compared to dimethylsulfoxide
(DMSO) after endovascular SAH [31]. Deficits measured
on the scale of Bederson, et al., impairment on the pre-
hensile traction test and rotarod testing, all of which
would tend to assess focal motor deficits, were only min-
imally or not impaired after endovascular SAH or did not
differentiate treatment effects [28,29].

The 16-point scale developed for traumatic brain injury
[36] detected improved scores in rats undergoing
endovascular SAH and treatment with the kinase inhibitor
SP600125 compared to DMSO [37]. This scale has advan-
tages of including measures of motor and sensory func-
tion as well as beam walking and mobility that may assess
higher neurological functions more likely to be impaired
after SAH. SP600125, a c-Jun N-terminal kinase inhibitor,
decreased neuronal injury and was associated with
decreased caspase-3 activation and deoxyribonucleic acid
damage, decreased aquaporin 1 upregulation and brain
water, reduced matrix metalloproteinase 9 activation and
collagen 4 degradation, and preservation of the blood
brain barrier (BBB).

Effect of AVS on the beam balance test and BBB function
were assessed in rats with single hemorrhage SAH. Con-
tinuous infusion of AVS, beginning 5 minutes after SAH,
significantly improved BBB integrity, beam balance score
and beam balance time 1 and 2 days after SAH and beam
traverse time on days 1 to 4 (Table 2)[40]. Similar results
were reported by Imperatore, et al. [14]. Other pharmaco-
logic treatments that significantly improved beam balance
scores for 1 to 3 days after single hemorrhage SAH were
the calpain inhibitor, N-acetyl-leu-leu-methioninal [25]
and felbamate [1]. Other investigators questioned the sen-
sitivity of the beam balance test [29]. These investigators
used endovascular SAH instead of cisterna magna single
injection and the rats were randomly assigned to groups
of control (intravenous 0.9% NaCl), moderately neuro-
protective therapy (intravenous 7.5% NaCl) and highly
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effective neuroprotection (intravenous 7.5% NaCl + 6%
dextran 70). The beam balance test employed differed
from prior studies and comprised 2 wood rods (1.5 and
2.5 cm diameter) positioned horizontally 40 cm above a
foam pad. Rats were placed on the center of each beam
and the time they spent on the rod was recorded up to a
maximum of 120 seconds. There were no differences
between groups. Although no sham operated animals
were included, rats were tested before SAH and there were
only minimal deficits in the first 2 days after SAH.

The beam walking test differentiated placebo from treat-
ment effects of AVS [24] and a calpain inhibitor [25] for 1
to 4 days post-SAH and felbamate treatment for 2 days
[1]. Imperatore and colleagues did not find significant
effects of AVS, however [14].

Some differences in results may be due to the model used.
While the injection model may be more applicable to
investigation of the direct effects of hemorrhage and
delayed pathophysiological events like cerebral vasos-
pasm, and hence more enduring behavioral deficits, the
perforation model resembles human pathophysiology of
aneurysmal rupture. The high mortality rate parallels the
human situation and the model has been used to investi-
gate early pathophysiological changes immediately after
SAH. The subtle neurological alterations in the perfora-
tion model correlate with reports that neuronal death in
the perforation model was seen in 11% of rats compared
to 28% of rats undergoing cisterna magna injection SAH
[16].

Correlation with Vasospasm
The pancaspase inhibitor z-VAD-FMK decreased TUNEL
and caspase 3 in endothelial cells, decreased caspase 3
activation, reduced BBB permeability and brain edema,
improved neurological outcome and decreased vasos-
pasm after endovascular SAH [18]. Cahill and colleagues
also reported better neurological scores, less brain edema
and BBB breakdown, less vasospasm and less basilar
artery apoptosis after treatment with pifithrin ∀ [20]. On
the other hand, Takata, et al., used a double hemorrhage
rat SAH model and found deficits in rotarod, vertical
screen and balance beam, Morris water maze, as well as
chronically decreased cerebral blood flow, neuronal loss
in the hippocampus, and microvascular filling defects
despite minimal proximal large artery vasospasm [39].

Therefore, there is some evidence that brain injury can
occur after SAH without vasospasm. This is not surprising,
nor are findings of a lack of correlation between vasos-
pasm and any other endpoint. There are multiple path-
ways to poor outcome after SAH, only one of which is
vasospasm (Figure 1). The relative importance of each will
vary depending on the model and treatment may affect

only one pathway [44]. Furthermore, the relationship
may not be linear so simple statistical tests may not detect
correlations.

What Other Tests Could be Used?
A limitation of most of the neurological tests used is they
were developed to detect deficits produced by focal
ischemia, usually of the middle cerebral artery territory.
While this can occur after SAH, it is not common and
more patients have deficits in neurobehavioral function,
such as memory, visuospatial/construction ability and
executive function than focal neurological deficits
[45,46]. Focal deficits are rare in animal models of SAH.
Tests that would be more sensitive to the effects of SAH in
animals could be selected based on regions of the brain
known to be damaged after experimental SAH and/or
based on deficits that occur more commonly after SAH in
humans. Detailed evaluations of the regions of brain
damaged after SAH in humans and experimental animals
are sparse, however.

After SAH created by cisterna magna injection in rats,
opening of the blood-brain barrier in cerebral cortex,
brainstem and cerebellum was noted [47]. Vasospasm is
most marked in the basilar artery and neuronal death may
occur in the hippocampus and striatum [15,16]. Cerebral
blood flow reductions 15 minutes after SAH were diffuse
but most marked in the brainstem and cerebellum [48].
Neuronal loss was reported in neocortex and hippocam-
pal CA1 [39].

After SAH created by endovascular perforation, there also
was diffuse opening of the BBB. Neuron apoptosis or
increased messenger ribonucleic acid for proteins
involved in apoptosis was reported in basal (orbital, cin-
gulate, prefrontal) cortex [38,49], hippocampus [50], CA1
[16] and Nissl staining showed neuronal injury in hippoc-
ampus (CA1 to CA3), motor cortex, caudoputamen and
cerebellum bilaterally [28,29]. The changes are greater on
the side of endovascular perforation. Vasospasm was cen-
tered in the ipsilateral anterior circulation and reduced
cerebral blood flow 15 minutes after SAH was bilateral
and diffuse but most marked in the anterior circulation
[48]. Findings were similar in the chiasmatic cistern injec-
tion model except that vasospasm is bilateral and severest
in the anterior circulation, BBB changes are diffuse and
neuronal injury was reported in prefrontal and cingulate
cortex, thalamus, striatum and hypothalamus [16,48]. In
some studies, minimal neuronal injury occurs or it is only
observed in some animals so it is likely that sensitive tests
of neurobehavior would be required [38,49].

Neurobehavior tests used in rodents have been used to
assess attention, learning, memory and cognition (Table
6) [51-53]. The 5-choice serial reaction task and reaction
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time procedures measure attention, which is frequently
impaired after SAH in humans [54]. Active avoidance con-
ditioning paradigms, such as fear conditioning, may
assess basal frontal lobe function, which may be damaged
after SAH [55].

Several studies suggest memory is impaired after SAH
[45,46,56]. The specific aspects of memory affected vary
but many can be assessed in rodents [53]. Many para-
digms are available for the Morris water maze [57]. Non-
matching (NMTS) and matching-to-sample (MTS) tests
that can be spatial or non-spatial have been described and
the time between trials can be delayed to test short-term
memory [58]. Open field behavior also is used to assess
neurobehavior. Frontal lobe function can be measured by
the perceptual attentional set shifting task [59,60].

It should be recognized that tests for specific neurobehav-
iors in humans are available and that just as classic neuro-
logical tests can localize various motor and sensory
functions, sophisticated neurobehavior tests may localize
to discrete brain regions. For example, ventromedial fron-
tal cortex damage may be detected specifically by tests like
the Iowa gambling task [61]. Marked abnormalities can
occur when the minimental status examination is normal
[62]. Tests that specifically test discrete areas of rodent cor-
tex are less well documented. Some functions in humans
and rodents, like anxiety and startle responses, may be
mediated by diffuse neural networks. Another problem is
that there is variability in the areas of the brain damaged
by SAH so multiple tests might be needed but this is not
easy to do in humans or experimental animals [46]. At
this point it is difficult to make firm recommendations on
what tests should be used in rodents with SAH. Prelimi-
nary choices might be those assessing attention, short-
term working memory and basal frontal lobe function
that probably involves olfaction in rodents and might be
tested by perceptual attentional set shifting task.

Mice
Models
The 2 most commonly used models are the same as used
in rats; single injection of blood into the cisterna magna
or endovascular perforation [63-65].

Endpoints Used
Motor and sensory activity were assessed in the endovas-
cular perforation model on a scale combined from 2 prior
scales and comprised motor (spontaneous activity, sym-
metry of limb movements, climbing, balance and coordi-
nation for 0–12 points) and sensory (proprioception,
vibrissae, visual, olfactory and tactile responses for 5–15
points, Tables 7 and 8)[30,63,66]. Mortality was not
reported. There was significant weight loss 3 days after
SAH compared to sham-operated animals. Neurological

function was significantly impaired compared to sham-
operated mice. Several variations of this scale were
assessed 72 hours after endovascular SAH [67,68]. It dif-
ferentiated sham from SAH animals and also differenti-
ated animals treated with simvastatin or vehicle [67] but
not between wild-type and transgenic mice overexpress-
ing human extracellular superoxide dismutase [68].

Mortality was reported in several mouse SAH models. Cis-
terna magna injection of autologous blood, 60:l, was
associated with 4% mortality with no mortality men-
tioned for saline-injected animals [65]. In an endovascu-
lar perforation model, mortality (27 to 29%) did not
differ between wild-type and human CuZn superoxide
dismutase overexpressing transgenic mice [64]. Body
weight changes have not been studied.

Mesis and colleagues studied rotarod performance and a
neurological score also used by McGirt, et al., with minor
differences in mice with perforation-induced SAH [69].
The neurological score was a subset of tests from a 48-
point scale developed from prior scales for rats and mice
[30,70-73]. Mortality was not reported. Animals were
tested before SAH and there appeared to be significant
deficits in rotarod performance and neurological scores
for 3 days after SAH.

Does Treatment of SAH Affect Neurological Tests and 
Correlate with Vasospasm?
Treatment of mice with perforation-induced SAH with
high-dose carboxyamidotriazole, a voltage and nonvolt-
age-dependent calcium channel inhibitor, worsened
rotarod performance, decreased vasospasm and was asso-
ciated with a trend to worse neurological score whereas a
low dose did not affect rotarod or neurological function
or vasospasm compared to vehicle-treated animals [69].
Another series of mice were treated with 2 doses of
nimodipine which improved neurological scores, rotarod
latency and decreased vasospasm. There was about a 2%
(2:m) mean diameter difference in vasospasm between
the nimodipine doses that resulted in the effect on vasos-
pasm being insignificant in the low-dose group. An apoE
mimetic peptide, acetyl-AS-Aib-LRKL-Aib-KRLL-amide,
administered alone or with nimodipine, also improved all
3 endpoints [74]. Several interpretations are possible. One
is that carboxyamidotriazole has toxic effects at high doses
that worsen behavior. The beneficial effects of
nimodipine may be separate or in addition to decreasing
vasospasm [75]. ApoE mimetic peptides were neuropro-
tective in other brain injuries and may decrease vasos-
pasm via antiinflammatory mechanisms [74]. In support
of this, the same behavior endpoints were assessed in
mice that express only human APOE3 or APOE4 [74].
After SAH created by endovascular perforation, mice with
APOE3 had better rotarod performance and less vasos-
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Table 6: Other Neurobehavior Tests for Potential Use in SAH Studies

Tests Species Neurobehavior 
Assessed

Measures Methods

Five-choice serial reaction task Rat Attention Steady-state procedure in which 
the effects of various neural and 
behavioral manipulations are 
examined on a baseline of stable 
attention performances

Rat is required to detect brief 
flashes of light occurring in one of 
the 5 holes in order to earn food 
pellets

Reaction time procedure Rat Attention rat's response to visual stimuli 
while its head is in a fixed 
location- time it takes for the rat 
to withdraw its head from the 
central location and thus cease to 
break the vertical photocell beam

rat is trained to hold its head in a 
central location by interrupting the 
photocell beam there. Brief visual 
stimuli are presented to either side 
of the rats head

Active avoidance conditioning 
paradigm 
(eg. Fear conditioning)

Rat Learning/memory to avoid 
noxious stimulus

Escape or avoidance latencies Rat is trained to avoid noxious 
stimulus by withdrawing itself from 
the source of the stimuli 
(eg. Foot shock)

Nonmatching to sample 
(NMTS)/matching to sample 
tests 
(MTS, can be either spatial or 
non-spatial)

Rat Working memory test 
(trial-unique)

Latency to make the choice/error 
in choice (either to pick the same 
[MTS] or alternative [NMTS] 
stimulus)

Rat is pre-trained either to choose 
(on test trial) the same or 
alternative stimulus which is shown 
on sample trial

Delayed NMTS/MTS tests Rat Short-term memory Latency to make the choice/error 
in choice (either to pick the same 
[MTS] or alternative [NMTS] 
stimulus)

Same as NMTS/MTS tests except 
they introduce various inter-trial 
intervals

Radial-arm maze Rat Spatial working memory Errors in first 10 choices, total 
errors/session

Food-deprived rats trained to learn 
to avoid choosing arms (8 arms with 
food baited in one arm) they already 
visited (where there are no food 
pellets) as they learn the spatial 
location of each arm and remember 
the locations they had visited

Open Field Rat Exploratory and 
locomotor activity

Locomotion (number of square 
crossings), rearing, grooming, 
stereotypical behaviors 
(licking, biting, head weaving)

Video camera positioned above 
open field to consistently record 
behavior of rodents in the open field 
apparatus

Perceptual attentional set 
shifting task

Rat Complex attention Reversal/set shift task where rat 
required to discriminate which of 
2 bowls has food based on 
variations in odor and texture of 
the medium the food is in

Number of trials and errors to learn 
location of food

Morris water maze Rat Spatial learning and 
memory

Escape latency, swimming 
distance, time spent in each 
quadrants, annulus crossing 
numbers

Animals are allowed freely swim to 
find a platform in swimming pool, 
guided by extramaze cues that 
surround the pool

Eyeblink classical conditioning Rabbit Associated learning Number of paired trials required 
to reach the learning criterion (eg. 
8 conditioned responses in 9 
consecutive trials)

One eye held open. Conditioned 
stimulus such as a sound presented 
after unconditioned stimulus such as 
corneal airpuff. Paired trial present 
throughout the training. Minitorque 
potentiometer measures nictitating 
membrane/eyeblink response.
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pasm compared to APOE4 mice. An ApoE4 peptide
mimetic administered to wild-type mice after SAH
reduced mortality and improved neurological score,
rotarod latency and vasospasm.

Another report from the same laboratory found that leve-
tiracetam had the same pattern of effects in that it
improved all 3 measures in high doses in SAH mice [76].
Levetiracetam may be neuroprotective and antivasospastic
by virtue of its ability to inhibit voltage-dependent cal-
cium, (-aminobutyric acid and glycine currents [76].

What Other Tests Could be Used?
Few studies have examined areas of brain injured after
SAH in mice. Learning, memory and neurobehavior

assessment in mice, while not identical, is similar to in
rats and has not been assessed yet after murine SAH. Rec-
ommendations would probably be similar to those for
rats.

Rabbits
Models
This is limited to cisterna magna injections of blood once
or twice [77,78]. SAH has been combined with ligation of
the carotid arteries in an attempt to induce cerebral
ischemia from vasospasm [79].

Endpoints Used
Endo, et al., ligated both common carotid arteries and 2
weeks later induced SAH by injecting blood into the cis-

Open field Rabbit Behavioral reactivity Movement activity (eg. Jump, 
rearing, locomotor, grooming), 
social behavior, aggressive 
behavior (strong blows with the 
hindpaws), emotional tension 
(number boluses), passive-
defensive behavior (freezing time)

Video camera positioned above 
open field records behavior of 
animal in the open field apparatus 
during a specific time period

Discriminative avoidance/
approach task

Rabbit Cognition Number of training sessions 
required for animals to attain the 
criterion

Rabbits learn to prevent a foot-
shock by stepping in a large activity 
wheel in response to a shock-
predictive tone and they ignore 
different tone which does not 
predict the shock

Delayed-non-matching-to-
position (DNMP)

Dog Visuospatial learning/
memory and working 
memory

Response-choice latency on the 
test trial

Animals are allowed to displace the 
red block and retrieve the food 
reward beneath the block on the 
sample trial. Animals are permitted 
access to the food reward by 
displacing the block over the non-
match position on the test trial 
(inter-trial interval varies for 
working memory)

Open field Dog Exploratory and 
locomotor activity

Exploratory behavior, 
locomotion, inactivity, sniffing, 
urinating, jumping, rearing, 
vocalization

Video camera positioned above 
open field records behavior of 
animal in the open field apparatus 
during a specific time period

Object discrimination task Dog Working memory Performance accuracy Two wooden blocks that were 
identical except for color present as 
stimuli (eg black and white). Dogs 
are pre-trained to approach one of 
the two blocks to obtain food 
reward. Testing is repeated after 
SAH

Reversal task (usually followed 
by object or size 
discrimination task)

Dog Executive function 
(inhibitory control, 
performance monitoring-
eg reversal learning)

Total number of errors Two identical wooden blocks in 
color and material, different only in 
size present as stimuli. Dogs learn 
the size preference for the food 
reward, followed by reversal 
learning in which the reward 
contingencies of positive and 
negative block are reversed

Table 6: Other Neurobehavior Tests for Potential Use in SAH Studies (Continued)
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terna magna of rabbits (Table 9)[79]. Neurological defi-
cits were categorized as normal, minimal or suspicious
neurological deficit, mild deficit without abnormal move-
ment or severe neurological deficit with abnormal move-
ment. 5 of 13 animals had mild dysfunction after carotid
ligation and this was more severe after SAH and more
severe than in animals with SAH alone. Subtle transient
decrements in neurological function were detected in rab-
bits with SAH treated with intravenous anticardiolipin
antibodies compared to those with SAH alone [80].
Whether nimodipine and ecdysterone improved neuro-
logical function on this scale in another study was difficult
to discern from the paper [81]. A more complicated
model added, in addition to bilateral carotid occlusion
and SAH, oxyhemoglobin cisternal injection 2 days after
SAH [82]. No correlation between vasospasm and neuro-
logical score was detected although the degree of vasos-
pasm was similar for grades 2 and 3 and worse for grade 4.

Mortality and open-field locomotor activity were assessed
after single SAH in rabbits and compared in animals given
intravenous saline or erythropoeitin [77]. No animals
underwent sham surgery. Mortality was reduced signifi-
cantly after SAH when erythropoeitin was administered.
Open-field locomotor activity was assessed by number or
rearings and a measure of the amount of movement about
an open field apparatus and was improved also with
erythropoeitin.

The 6-point scale developed for dogs was applied to rab-
bits with SAH created by one or 2 injections of blood into
the cisterna magna [78]. The only significant difference
was the appetite score was significantly higher 3 days after

double SAH compared to single hemorrhage. There were
no saline-injected controls.

Mortality rates and weight changes are not well-described
in rabbit models of SAH. One group reported 40% mor-
tality after single cisternal injection SAH in rabbits com-
pared to 0% after saline injection [83] and another had
0% after single and 6% after double injection SAH [78].

Another neurological scale developed to assess myelopa-
thy in rabbits was applied to rabbits undergoing SAH. The
scores were significantly worse in animals with severe
delayed vasospasm compared to those with mild vasos-
pasm or sham surgery [83]. The neurological functions
evaluated were posture, gait, and righting reflexes (each
given a score of 0 for normal, 1 for mild impairment, 2 for
moderate impairment and 3 for severe impairment. Front
and hindlimb reflexes were scored 0 for normal, 1 for
brisk, 2 for spreading and 3 for clonus.

Does Treatment of SAH Affect Neurological Tests and 
Correlate with Vasospasm?
There were no reports of a lack of relationship between the
severity of vasospasm and neurological function in rabbit
models of SAH.

What Other Tests Could be Used?
Some other tests used in rabbits include eyeblink condi-
tioning and the discriminative avoidance/approach task
[84,85]. Open field activity was assessed in one study
already [77,86]. The disadvantages of using a rabbit
model of SAH would be that there are fewer behavior
tests, in addition to limited availability of specific molec-
ular biological reagents for assessing other endpoints.

Table 7: A Mouse Motor and Sensory Scale {Parra2002}.

Function 0 1 2 3

Motor
Activity 
(5 minutes open field)

No movement Moves, no walls 
approached

1-2 walls approached 3-4 walls approached

Limb symmetry 
(suspended by tail)

Left forelimb, no 
movement

Minimal movement Abnormal forelimb walk Symmetrical extension

Climbing 
(on inverted metal mesh)

Fails to hold Hold < 4 seconds Holds, no displacement Displaces across mesh

Balance Falls < 2 seconds Falls > 2 seconds Holds, no displacement Displaces across rod
Sensory Proprioception 

(cotton tip to both sides 
of neck)

No reaction Asymmetrical head 
turning

Symmetric head turning

Vibrissae 
(cotton tip to vibrissae)

No reaction Asymmetrical head 
turning

Symmetric head turning

Visual 
(tip toward each eye)

No reaction Unilateral blink Bilateral blink

Olfactory 
(lemon juice on tip)

No sniffing Brief sniff Sniff > 2 seconds

Tactile 
(needle stick to palm)

No reaction Delayed withdrawal Immediate withdrawal
Page 17 of 28
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Table 8: Selected Studies of SAH in Mice Examining Mortality and Neurological Endpoints

Author Model Mortality Behavior tests Controls Experim

Parra2002 Endovascular 
perforation

none reported Neurobehavior score of 
5-27 72 hours after SAH, 
combined from 2 prior 
scales 
{Garcia1995}{Crawley20
00}, comprised of motor 
(0-12) spontaneous 
activity, symmetry of limb 
movements, climbing, 
balance and coordination 
and sensory (5-15) which 
was proprioception, 
vibrissae, visual, olfactory 
and tactile responses.

SAH or sham-operated 
controls

72 hour
weight r
group, n
worse, c
vasospas

McGirt2002 Endovascular 
perforation

6/34 (18%) simvastatin 
versus 4/36 (11%) vehicle 
which would not be 
significant (Fisher's exact 
test) by my calculations

Neurobehavior score of 
5-27 72 hours after SAH, 
combined from 2 prior 
scales 
{Garcia1995}{Crawley20
00}, comprised of motor 
(0-12) spontaneous 
activity, symmetry of limb 
movements, climbing, 
balance and coordination 
and sensory (5-15) which 
was proprioception, 
vibrissae, visual, olfactory 
and tactile responses.

Simvastatin versus vehicle More va
behavio
compare
simvasta
vasospas
deficits.

McGirt2002A Endovascular 
perforation

9% mortality, no statement 
about if it was different 
between groups

Neurobehavior score of 
9-39 72 hours after SAH, 
combined from 2 prior 
scales 
{Garcia1995}{Crawley20
00}, comprised of motor 
(0-12) spontaneous 
activity, symmetry of limb 
movements, climbing, 
balance and coordination 
and sensory (5-15) which 
was proprioception, 
vibrissae, visual, olfactory 
and tactile responses and 
reflexes (4-12) righting, 
postural, ear and eye

SAH in wild-type, human 
extracellular superoxide 
dismutase transgenics and 
sham-operated controls

More va
behavio
transgen
compare
strains b
between
type, les
staining 
body we
between
type but
at baseli
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Vasospasm could be 
produced, no behavior 
assessment

Not assessed

SAH groups had significantly 
worse behavior than sham-
operated controls. Among 
apoe animals, there was 
better rotarod performance 
and less vasospasm with 
apoe3 mice compared to 
apoe4. Apoe4 peptide 
mimetic reduced mortality, 
improved neurological 
score, rotarod latency and 
vasospasm

They correlated

Levetiracetam improved 
rotarod, neurological score 
and vasospasm

They correlated

Carboxyamidotriazole 
worsened behavioral 
outcome and decreased 
vasospasm whereas 
nimodipine and apo E 
mimetic peptide improved 
neurological scores, rotarod 
latency and decreased 
vasospasm.

Yes, carboxyamidotriazole 
worsened function and 
decreased vasospasm which 
could be due to drug 
toxicity, only low dose 
nimodipine decreased 
vasospasm and improved 
outcome whereas high dose 
did not and the authors 
suggest this proves 
vasospasm does not cause 
all deficits after SAH which 
is true but examination of 
bar graphs shows a 2 μm 
difference (about 2%) 
between the nimodipine 
doses
Lin2003 Single 60 μl cisterna 
magna injection over 1 
minute, no ICP 
monitoring

3% None SAH, saline-injected and 
sham-operated controls

Gao2006 Endovascular 
perforation

18% of apoe3 versus 38% 
of apoe4 mice

Rotarod, neurological 
severity score consisting 
of motor (spontaneous 
activity, symmetry of limb 
movements, climbing and 
balance and 
coordination), sensory 
(body proprioception and 
tactile and vibrissa 
responses)

SAH in apoe3, apoe4, 
apoe4 mimetic peptide 
treated and sham-
operated controls

Wang2006 Endovascular 
perforation

None reported Rotarod, neurological 
severity score consisting 
of motor (spontaneous 
activity, symmetry of limb 
movements, climbing and 
balance and 
coordination), sensory 
(body proprioception and 
tactile and vibrissa 
responses)

SAH and sham-operated 
controls but no results of 
sham-operation reported

Mesis2006 Endovascular 
perforation

None reported Rotarod, neurological 
severity score consisting 
of motor (spontaneous 
activity, symmetry of limb 
movements, climbing and 
balance and 
coordination), sensory 
(body proprioception and 
tactile and vibrissa 
responses)

None

Table 8: Selected Studies of SAH in Mice Examining Mortality and Neurological Endpoints (Continued)
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They correlated

rological deficits in 
e animals

No correlation reported 
between neurological grade 
and vasospasm, there was a 
better correlation between 
CBF and neurological grade. 
Grade 2 and 3 had about 25% 
vasospasm and grade 4 had 
40% so at least the most 
markedly worse neurological 
grade had more vasospasm

rologic deficits and 
spasm worse with 
 plus intravenous 
iolipin antigen 
pared to SAH alone 
reas cyclosporin + 
methasone reversed 
to the SAH alone level

They correlated

hropoeitin improved 
motor activity, one 
ment that that there 
 no corrugation of the 
rnal elastic lamina in 
als treated with 
hropoeitin

Not assessed

hropoeitin improved 
ological status, 
eased necrotic cortical 
ons and vasospasm

They correlated
Table 9: Selected Studies of SAH in Rabbits Examining Mortality and Neurological Endpoints

Author Model Mortality Behavior tests Controls Exp

Endo1988A Single cisterna magna 
injection plus bilateral 
carotid occlusion

None reported after 
SAH, some animals died 
after carotid occlusion

4 point neurological 
grading scale consisting of 
1. No neurologic deficit 
(normal), 2. Minimum or 
suspicious neurologic 
deficit, 3. Mild neurologic 
deficit without abnormal 
movement, 4. Severe 
neurologic deficit with 
abnormal movement

SAH or saline-
injected controls

Wo
prod
in SA
salin

Otsuji1994A Bilateral carotid occlusion, 
then 2 weeks later SAH 
followed 2 days later by 
cisternal injection of 
oxyhemoglobin

8/23 died (32%) after 
the second injection

4 point neurological 
grading scale consisting of 
1. No neurologic deficit 
(normal), 2. Minimum or 
suspicious neurologic 
deficit, 3. Mild neurologic 
deficit without abnormal 
movement, 4. Severe 
neurologic deficit with 
abnormal movement

None Neu
som

Nomura1998 Bilateral carotid occlusion, 
then 5 weeks later SAH by 
single cisterna magna 
injection

0/9 SAH, 3/8 SAH + 
immunization with 
subcutaneous cardiolipin 
antigen, 5/12 SAH + 
intravenous cardiolipin 
antigen, 0/8 SAH plus 
intravenous cardiolipin 
antigen + 
dexamethasone + 
cyclosporin A

4 point neurological 
grading scale consisting of 
1. No neurologic deficit 
(normal), 2. Minimum or 
suspicious neurologic 
deficit, 3. Mild neurologic 
deficit without abnormal 
movement, 4. Severe 
neurologic deficit with 
abnormal movement

None Neu
vaso
SAH
card
com
whe
dexa
this 

Buemi2000 Single cisterna magna 
injection, no ICP monitoring

0% with control or SAH 
+ erythropoeitin, 43% 
SAH + vehicle

Open field locomotor 
activitiy

Probably normal 
rabbits

Eryt
loco
com
was
inte
anim
eryt

Grasso2002 Single cisterna magna 
injection, no ICP monitoring

None reported Daily 4 point neurological 
assessment of normal (1), 
minimal or suspected 
deficit (2), mild deficit (3) 
or severe deficit with 
abnormal movements (4)

SAH or control, 
unoperated animals

Eryt
neur
decr
neur
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Zhou2007A H or control, 
operated animals

Only significant behavior 
difference was poor 
appetite in double 
hemorrhage group, 
vasospasm in both groups, 
a little less with single 
hemorrhage

They correlated

Laslo2008 H or saline-
ected controls

Neurological function 
worse with SAH and with 
more severe vasospasm

They correlated

Tang2008 ne Neurological function and 
vasospasm decreased by 
ecdysterone

They correlated

Table 9: Selected d)
1 or 2 injections into 
cisterna magna, 1.5 ml blood 
once or twice over 1 
minute, no ICP monitoring

0% single, 6% double 
hemorrhage

Vasospasm, mortality, 
clinical assessment by the 6 
point scale {Zhou2005}

SA
un

Single cisterna magna 
injection, no ICP monitoring

10/25 (40%) SAH died, 
no sham-operated 
controls died

Vasospasm and 
neurological scale of 
posture, gait, and righting 
reflexes (each given a 
score: 0 normal, 1 mild, 2 
moderate and 3 severely 
impaired. Front and back 
reflexes were also scored 0 
normal, 1 brisk, 2 spreading 
and 3 clonus

SA
inj

Right common carotid 
artery ligation + single 
cisterna magna blood 
injection

None reported 4 point neurological 
grading scale consisting of 
1. No neurologic deficit 
(normal), 2. Minimum or 
suspicious neurologic 
deficit, 3. Mild neurologic 
deficit without abnormal 
movement, 4. Severe 
neurologic deficit with 
abnormal movement

No

 Studies of SAH in Rabbits Examining Mortality and Neurological Endpoints (Continue
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Dogs
Models
SAH has been produced most commonly by one or 2
injections of blood into the cisterna magna.

Endpoints Used
Several studies assessed neurological function within
hours of SAH or used only broad qualitative assessments
(Table 10) [87-89]. A single injection model in dogs used
a 6 point neurological function scale. There were no
saline-injected controls. Some nonsteroidal antiinflam-
matory drugs decreased vasospasm 24 hours after SAH
and improved scores on this scale [89,90]. Other similar
scales including a dog coma score did not detect deficits
after SAH in dogs [91,92].

The most widely used scale assessed appetite, activity and
neurologic deficits in the double injection model [93-98].
Appetite was graded as finished meal = 2, left meal unfin-
ished = 1, scarcely ate = 0. Activity was graded as active,
barking or standing = 2, lying down, will stand and walk
with some stimulation = 1, almost always lying down = 0.
Neurological deficits were graded as no deficit = 2, unable
to walk because of ataxia or paresis = 1, impossible to walk
or stand because of ataxia or paresis = 0. We could not find
reports of whether the scale differentiates saline-injected
controls from SAH. Mortality is seldom reported but is
low in this model and not significantly different between
SAH and saline-injected controls (R.L. Macdonald, per-
sonal observation). Weight has not been used as an end-
point. The scale detected significant improvement in
appetite and activity after treatment with mitogen associ-
ated protein kinase inhibitor [93]. Caspase inhibitors Ac-
DEVD-CHO and Z-VAD-FMK improved appetite within 3
days of SAH and produced variable improvements in
activity [99]. These results confirm rat studies suggesting
inhibition of endothelial cell apoptosis decreases vasos-
pasm.

Other treatments that were associated with similar
improvements were inhibitors of Ras FTase [100], JNK
[101] and p53 [102], again supporting a role for apoptosis
and signal transduction in the artery wall mediating
vasospasm. The neurological deficit portion of the scale
was almost never affected.

Does Treatment of SAH Affect Neurological Tests and 
Correlate with Vasospasm?
No relation between neurological deficits measured on a
6-point scale and vasospasm was claimed although there
was a general increase in vasospasm with worsening neu-
rological score [89,90]. The scale also is altered by pain
that would be reduced by the drugs independent of any
effects on vasospasm or brain injury.

U-0126 improved behavior but vasospasm was not
decreased [93]. U-0126 is a mitogen-activated protein
kinase kinase inhibitor that decreases arterial contractions
to endothelin and erythrocyte hemolysate. The authors
hypothesized that neuroprotective effects might account
for the improved behavior.

What Other Tests Could be Used?
In the single and double-hemorrhage models, vasospasm
is most severe in the basilar artery and less marked in the
anterior circulation [103]. One study noted caspase-3 and
glial fibrillary acidic protein in astrocytes and neuronal
injury were most marked in the hippocampus, second in
the cortex and least in the brainstem in the double-hem-
orrhage dog model [104]. Tests of learning and memory
might therefore be worth assessing in this model. There
are numerous sophisticated neurobehavior tests available
for dogs, including open field behavior, object discrimi-
nation tasks often with reversal tasks and various permu-
tations of immediate and delayed nonmatching-to-
sample tests [52,105]. These assess attention, executive
function, complex learning and spatial learning and are
sensitive to aging and interventions [106-108].

Summary and Future Directions
High mortality is a characteristic of SAH in humans and it
has been assessed after SAH in rats and mice in several
models and is higher after SAH than sham-surgery (Table
11). This endpoint is not well-described in rabbits and
dogs. Mortality is low in the dog double hemorrhage
model because significant vasospasm can be produced
without having to produce an injury severe enough to be
fatal. Several treatments have reduced mortality in rodent
SAH models and this endpoint should be reported and
probably included in outcome analysis.

Body weight decreases after SAH in rats and mice but has
not been assessed in other animal models. These
decreases can also be mitigated by treatment in some
cases. Neurological scales testing motor, sensory and
reflex functions have been mainly used in rats, mice and
dogs and can detect effects of SAH although the differ-
ences are often small and transient. Rotarod, beam bal-
ance and beam walking tasks have not been widely used
and when they have, again often small, transient effects
are seen both comparing SAH to sham-operated animals
and in detecting treatment effects. Neurobehavioral tests
have only recently been reported in rats and the results are
conflicting with one group showing robust effects and
another only minor differences [38,39]. Different models
were used and the results were markedly different.

There are other neurobehavioral tests that assess neurobe-
havior in rodents, dogs and other species [41,58,109].
Neurobehavioral deficits in humans with SAH have been
Page 22 of 28
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ntal findings Disconnect between 
vasospasm and outcomes

tment for vasospasm 
ehavior abnormalities, 
 for sudoxicam 

Some relation between behavior 
and vasospasm but authors 
reported that there was no 
absolute correlation.

uced more behavior 
n angiography alone

Phenoxybenzamine treatment did 
not decrease vasospasm, no 
correlation between vasospasm 
and behavior

AH had meningeal 
his was significantly 
rug treatment (2/8 
th ibuprofen and 2/8 
th 
dnisolone). 
cal deficits in all groups 
d to improve faster 
treatment, no 
nalysis

Vasospasm correlated with 
meningeal signs and behavior

lline, nifedipine and 
 at single tested doses 
erse vasospasm

Not assessable

fit of nonsteroidal 
atory drugs for early 

 1 and 24 hours after 

No relationship between 
behavioral abnormalities and 
vasospasm 24 hours after blood 
injection altthough the average 
vasoconstriction increased with 
increased behavior abnormality 
(r = 0.44, p < 0.01)

f lavage on vasospasm 
r

No correlation between 
neurological findings and 
vasospasm

bservations that SAH 
ated with animals 
alert and having 
 appetite

Not assessable
Table 10: Selected Studies of SAH in Dogs Examining Mortality and Neurological Endpoints

Author Model Mortality Neurological and 
Neurobehavioral Tests

Controls Experime

White1979 Single cisterna magna 
injection of 2-4 ml without 
ICP monitoring

None reported Whether the animal ate, 
neurological deficits and 
change in demeanor

None Saline trea
gave 46% b
versus 11%
treatment

White1979A Single cisterna magna 
injection of 2-4 ml without 
ICP monitoring

None reported Whether the animal ate, 
stood up, central nervous 
system depression, paresis 
and ataxia

Some animals assessed 
after angiography only

SAH prod
change tha

Chyatte1983 Double hemorrhage model, 
ICP not measured

11/36 (31%) 
eliminated from 
study, including 5 
deaths as result of 
initial anesthesia, 3 
after injection of 
blood and 3 
angiographic 
complications

Brief qualitative mention of 
meningeal signs and 
neurological deficits

None 9/9 with S
signs and t
less with d
treated wi
treated wi
methylpre
Neurologi
but seeme
with drug 
statistical a

Varsos1983 Double hemorrhage model, 
ICP not measured

None reported Brief mention that no dogs 
developed hemiparsis, some 
were drowsy and had 
staggering gait on day 5

None Aminophy
papaverine
did not rev

White1983 Single cisterna magna 
injection of 2-4 ml without 
ICP monitoring

None reported 6 level scale of no 
neurological deficit (0), 
lethargic/decreased motor 
activity (1), paresis/
staggering gait (2), failure to 
eat (3), failure to walk (4), 
failure to stand (5)

None Some bene
antiinflamm
vasospasm
SAH

Alexander1985 Double hemorrhage model, 
ICP not measured

The neurological findings 
were graded from 0 to 5, 
based on meningismus, 
ataxia, paresis, and cranial 
nerve deficits. No significant 
differences in neurological 
grade were found on any 
day between the two 
groups.

None No effect o
or behavio

Diringer1991 4-5 ml blood or saline 
injected 2 to 3 times into 
cisterna magna, ICP not 
measured

None reported Brief description of behavior SAH, saline injected 
and controls

General o
was associ
being less 
decreased
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ad normal 
ness regardless of 
vasospasm

Not assessable

, a mitogen-activated 
nase inhibitor, 
 vasospasm and 
behavior compared to 
ulfoxide and controls. 
as not effective against 
 but did improve 

U-0126 did not prevent 
vasospasm but improved 
behavior

hibitors Ac-DEVD-
 Z-VAD-FMK 
 vasospasm and 
appetite and activity. 
lmost no effect on 
al function

By day 7 behaviour was similar 
among groups despite decreased 
vasospasm with caspase 
inhibitors

l transferase (FTAse) 
FTI-277) and FTAse 
 prevented vasospasm 
ved activity and 
ut had no effect on 
al function which was 
most animals

They correlated

s expressing 
e dismutase or lac Z 
event vasospasm and 
iated with no effect on 
al and neurobehavioral 
 expect for worse 
ore with superoxide 

 treatment 1 day after 

They correlated

erminal kinase (JNK) 
P600125 improved 
nd reduced vasospasm 
pendent manner

They correlated

nal p53 inhibitor, 
pha, improved appetite 
y several days after 
ffect on neurological 
ost dogs were 
ss apoptosis and 

n vasospasm

They correlated
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None reported 11-point coma scale 
assessing motor response, 
eye movements and food 
intake

None All dogs h
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Tibbs2000 Double hemorrhage model, 
ICP not measured

1 of 22 (5%) 3 categories - 1. dog active 
with normal appetite and no 
focal neurological deficits, 2. 
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somnolent or 3. focal 
neurological changes such as 
ataxia or hemiparesis
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protein ki
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dimethyl s
U-0126 w
vasospasm
behavior.

Zhou2004 Double hemorrhage model, 
ICP not measured

None reported 6 point neurological grading 
based on appetite, activity 
and neurological deficits

None Caspase in
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prevented
improved 
SAH had a
neurologic

Yamaguchi2004B Double hemorrhage model, 
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Yamaguchi2004A Double hemorrhage model, 
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deficits
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superoxid
did not pr
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neurologic
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appetite sc
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Yatsushige2005 Double hemorrhage model, 
ICP not measured

None reported 6 point neurological grading 
scale based on appetite, 
activity and neurological 
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None C-jun N-t
inhibitor S
behavior a
in dose-de

Zhou2005 Double hemorrhage model, 
ICP not measured

None reported 6 point neurological grading 
scale based on appetite, 
activity and neurological 
deficits

None Intracister
pifithrin al
and activit
SAH, no e
deficits (m
normal), le
decrease i

Table 10: Selected Studies of SAH in Dogs Examining Mortality and Neurological Endpoints (Continued)
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reported [110-112] but they need to be reviewed in detail
so tests that assess these deficits in animal models can be
used. The purpose would first be to be able to use animal
models to predict whether a treatment would work in
humans. This is a problem now in stroke research because
a drug is tested in rodents and determined to decrease inf-
arct size or neuronal damage and then it is tested in
humans and has no effect. The trials in humans are costly
and time-consuming so a better method to correlate out-
come in animals and humans might facilitate testing of
the most potentially efficacious treatments in humans.
Second, better understanding of the pathogenesis of the
disease, such as SAH in this case, hopefully would be
forthcoming. For example, it is still unclear why neurobe-
havior is affected after SAH and whether this is due to
increased intracranial pressure, SAH or a combination.
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