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ABSTRACT: The field of organic photovoltaics has developed rapidly over the last 2
decades, and small solar cells with power conversion efficiencies of 13% have been
demonstrated. Light absorbed in the organic layers forms tightly bound excitons that are
split into free electrons and holes using heterojunctions of electron donor and acceptor
materials, which are then extracted at electrodes to give useful electrical power. This
review gives a concise description of the fundamental processes in photovoltaic devices,
with the main emphasis on the characterization of energy transfer and its role in dictating
device architecture, including multilayer planar heterojunctions, and on the factors that
impact free carrier generation from dissociated excitons. We briefly discuss harvesting of
triplet excitons, which now attracts substantial interest when used in conjunction with
singlet fission. Finally, we introduce the techniques used by researchers for
characterization and engineering of bulk heterojunctions to realize large photocurrents,
and examine the formed morphology in three prototypical blends.
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1. INTRODUCTION

Sunlight is the most abundant renewable energy resource and
underpins life on our planet. Nature has evolved complex
photosynthetic processes to harvest this light for the generation
of chemical energy.1−3 While chemical energy underpins the
natural world, electrical energy is a more easily transmittable
form in human societies. Consequently, harvesting of sunlight
for the generation of electrical energy is highly desirable, and
great developments in the conversion efficiency of photovoltaic
cells have been made over the last 50 years.4 A desire for low-
cost, low toxicity, large-area, thin-film technologies has led to
organic photovoltaic cells showing promise to satisfy all of these
properties.5 In organic photovoltaics, the absorbing material is a
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thin (∼100 nm) layer of organic semiconducting material that
is sandwiched between two electrical contacts. Light absorbed
in the organic layer forms tightly bound excitons that with
clever choices of materials and device architectures are split into
free electrons and holes, which are then extracted at electrodes
to give useful electrical power.
Organic semiconductors have several attractive features for

photovoltaics. They enable simple fabrication either by vacuum
sublimation, printing from solution, or spray-coating.5 Thin
films of organic semiconductors show a high absorption
coefficient of ∼105 cm−1, which is very attractive for
photovoltaic applications because very little material is needed:
layers of only 100 nm can absorb nearly 90% of the incident
light in a double pass using reflection from the metal
electrode.6−10 Thin and lightweight photovoltaic panels can
be made on a wide range of substrates, including flexible ones.5

Flexibility also enables roll-to-roll printing, easy transportation,
and simple installation. Chemical synthesis presents almost
endless opportunities to tune optical, electronic, and mechan-
ical properties of organic materials through molecular engineer-
ing, miscibility, and self-assembly. Organic photovoltaic
materials and devices for solar energy conversion have been
researched extensively in the last 2 decades, and remarkable
progress has been achieved, with recorded power conversion
efficiencies over 10% for organic solar cells.6−10

In order to harvest sunlight for the generation of electrical
energy, the active layer of a photovoltaic solar cell has to
perform several functions: it has to absorb the solar light that
then has to generate free charge carriers, and these carriers need
to reach the electrodes to give photovoltage and photocurrent.
The highest occupied molecular orbital (HOMO) of a neutral
organic molecule in the ground electronic state contains two
electrons with opposite spins. Upon absorption of a photon
(Figure 1A), one electron is promoted to the lowest

unoccupied molecular orbital (LUMO) and its spin is
conserved; therefore, the primary photoexcitations have singlet
(spin zero) character. As they consist of a bound electron−hole
pair, they are usually referred to as singlet excitons. A key
difference from inorganic semiconductors is that primary
photoexcitations in organic semiconductors are strongly
bound Frenkel and charge transfer excitons.11,12 Typical
binding energies of singlet excitons have been reported to be
between 0.1 and 0.4 eV.13−15 In order to split an exciton into a
charge pair, a heterojunction of electron donor and acceptor
materials is used in which the HOMO and LUMO energies of

the acceptor are lower than those of the donor16 (Figure 1B,C).
This energy offset drives electron transfer from the excited
electron donor to acceptor and hole transfer from the excited
electron acceptor to donor. Its function is analogous to a type II
heterojunction (staggered gap) in inorganic semiconductors.
For simplicity in organic photovoltaics a “heterojunction”
usually means a type II heterojunction by default.
It has been shown experimentally that the rate of

photoinduced electron transfer (kET) decreases exponentially
with the distance (RDA) between donor and acceptor17−20

β= −k k Rexp( )ET 0 DA (1)

Here k0 is the electron transfer rate at the donor−acceptor
contact and β is the attenuation factor. These findings suggest
that quantum mechanical tunnelling is the dominant
mechanism.21 The β parameter in covalently linked donor−
bridge−acceptor systems was found to be bridge-specific and
also to depend on the orientation between donor and acceptor
as well as their electronic properties.18−20 For dispersed donors
and acceptors in solution or in organic glasses, as well as for
pairs linked through nonconjugated bridges, values of β > 1 Å−1

are usually observed.17 These results indicate that electron
transfer is limited to subnanometer distances between the
donor and acceptor. Excitons must migrate to a heterojunction
between the electron donor and the electron acceptor in order
to generate charge carriers. Excitons can be transported to a
heterojunction by Förster resonance energy transfer (FRET)
between the electron donor and electron acceptor and by
exciton diffusion in the donor or acceptor materials. Two
organic photovoltaic architectures of donor and acceptor
materials are generally used to harvest sunlight. In the first,
shown on the left in Figure 2, the donor and acceptor materials
are deposited as a simple bilayer structure, while on the right,
the two are mixed throughout the active layer to form a bulk
heterojunction.
In the bilayer structure excitons can only be harvested at a

limited distance from the heterojunction that is determined by
the sum of a FRET distance (LFRET) and of an exciton diffusion
length (LD). Hereand throughout this reviewwe use the
term light harvesting to mean the successful conversion of
absorbed photons into free charge carriers. We emphasize this
definition as if any one element of all the processes fails or leads
to a bottleneck then the ultimate device performance is
determined by it, not the many other steps that are well-
optimized; thus, the concept of light harvesting is important
when one wants to connect the fundamental processes
occurring in devices with the ultimate performance. In a
bilayer, both the diffusion length and FRET distance are limited
by a finite exciton lifetime to distances typically less than 20 nm
in organic films;22−27 therefore, a maximum useful thickness of
donor or acceptor layers in a bilayer is <40 nm, even with an
optimized exciton diffusion length and FRET. Because of a
limited width of the absorption spectra of organic materials, for
the best coverage of the solar spectrum, one has to use donor
and acceptor materials with distinct absorption spectra. A
maximum absorption coefficient in organic materials of 105

cm−1 means that a layer of 40 nm can absorb only up to 55% of
the incident light in a double pass at the peak and less far away
from the absorption maximum. Power conversion efficiencies
(PCE) of around 6% have been achieved in research solar cells
with 1 cm2 active area using organic bilayers.28 It is worth
noting that high-efficiency bilayer solar cells typically have a
rough interface between donor and acceptor layers (about 16

Figure 1. Schematic illustration of charge generation in organic
photovoltaic materials which involves (A) light absorption and the
generation of a singlet exciton with opposite “up” and “down” spins,
followed by energy transfer to a type II heterojunction of an electron
donor and acceptor and then (B) electron or (C) hole transfer at the
heterojunction. Charge transfer can also occur from triplet excitons if
the energy level offset is sufficient.
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nm RMS) that increases the interface area and helps to harvest
excitons from donor and acceptor layers.28 The roughness
occurs naturally by vacuum sublimation of polycrystalline films
or by sequential deposition of donor and acceptor layers from
solution using different solvents for each layer.29

The limited number of excitons reaching the acceptor gives
poor light harvesting in bilayers and so severely limits their
PCE. An elegant solution to improve light harvesting in planar
heterojunctions is to use multilayer architectures of materials
with efficient FRET between layers. Recently, a PCE of 8.4%
has been achieved with a three-layer structure comprising two
electron acceptors and a donor and utilizing FRET between the
acceptor layers.28 We describe this approach in more detail in
section 2.5.
An alternative way to improve light harvesting is to increase

the interface area of the heterojunction even more than the
roughness of the layers allows. This has been successfully
implemented by blending electron donor and acceptor
materials, where spontaneous separation of donor and acceptor
phases forms a nanostructure that is known as a bulk
heterojunction.30−32 This approach (Figure 2, right) enables
light harvesting from materials with a short exciton diffusion
length. Blends can be deposited from solution using a common
solvent or a mixture of solvents or by coevaporation of donor
and acceptor materials. In the overall schematic shown in
Figure 2, the bulk heterojunction is shown at a nanoscale level,
with a donor phase (light blue) surrounded by an acceptor

phase (light red). Absorption of light in the donor phase leads
to the formation of excitons (dark blue ellipse) that may be
some distance from the acceptor phase. If the two components
mix well, then every single donor molecule is close enough to
an acceptor molecule and almost every exciton can migrate to
the donor−acceptor interface. This can proceed by site-to-site
exciton diffusion within the donor phase until the exciton
reaches the interface with the acceptor, or it can occur by direct
FRET from the donor to the acceptor. The small length scale of
the bulk heterojunction phase separation enables good
harvesting of excitons, with only a few example tracks for the
drawn excitons in Figure 2 being lost, with most harvested
(some easily and some only just, depending on the initial
position and the path followed). This contrasts with the bilayer
case, where many are lost inside the donor layer unless it is
significantly thinner than needed for light absorption, as already
discussed. In the bulk heterojunction, once the exciton is at the
donor−acceptor interface it dissociates into a geminate
electron−hole pair. This charge pair has to overcome Coulomb
attraction in order to separate into free charges. The holes are
transported in the donor phase and electrons in the acceptor
phase; therefore, the charge transport pathways in the planar
heterojunction solar cell are straightforward provided there is a
sufficient built-in electric field from the difference of the work
functions of the electrodes. Recent studies of bulk hetero-
junctions have shown that the blend morphology has to be just
right for the charge pair to dissociate into free carriers, and we
discuss this in more detail in section 4.2. The free carrier
generation and their transport to the correct electrodes in bulk
heterojunctions relies on continuous and uninterrupted donor
and acceptor phases. Even with continuous charge transport
pathways, both electrons and holes must navigate the labyrinth
of the complex morphology to the electrodes. If a free electron
encounters a hole, they form a nongeminate pair that can
recombine or dissociate again into free carriers. The rate of
nongeminate charge recombination in bulk heterojunctions
depends on its morphology.33−35 In a heterojunction with small
donor and acceptor domains and very high interface area, a
charge is more likely to encounter the interface with the other
component of the blend and hence more likely to recombine
with its opposite charge. This complex series of steps involved
in light harvesting has led to intensive research efforts on bulk
heterojunction solar cells, and recently, multiple 1 cm2 active
area research cells have been demonstrated with PCE above
10%.36−40 The progress was achieved by rational design of
donor and acceptor materials with efficient light absorption and
good charge transport, morphology optimization of the active
layers, and development of new charge transporting layers.
Recent advances in bulk heterojunction solar cells using
conjugated polymers as electron donors are described in a
review by Yu and co-workers.7

In summation, the key steps of converting light into electrical
power in organic photovoltaics are (a) light absorption, (b)
energy transfer (by exciton diffusion and/or FRET) to a
heterojunction, (c) exciton splitting into an electron−hole pair,
(d) dissociation of bound charge pairs into free carriers, and (e)
charge extraction to the electrodes. In this review we discuss
recent advances toward understanding of processes b, c, and d
and improving their efficiencies in planar and bulk hetero-
junctions. We present an overview of energy transfer
mechanisms, methods to measure exciton transport, and recent
efforts to improve light harvesting in planar heterojunctions by
enhancing the exciton diffusion length, by encouraging

Figure 2. The two main architectures of organic photovoltaic devices
and the processes occurring in them (not to scale). On the left is a
cross section of a planar heterojunction; on the right is a magnified
region of a bulk heterojunction. In both diagrams, the donor region is
light blue and the acceptor region is red, and the key defines the other
elements. Sunlight incident on the devices leads to the formation of
excitons that then diffuse (and/or transfer energy by FRET) to the
heterojunction where charge separation occurs. Some excitons do not
reach the heterojunction and are lost. These processes are discussed in
more detail throughout the review.
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interlayer FRET, and by directing exciton diffusion. We briefly
discuss harvesting of triplet excitons, which now attracts
substantial interest when used in conjunction with singlet
fission, where one high-energy singlet exciton can generate two
triplet excitons and so double the charge carrier yield. Then we
review the main experimental findings and inferred mechanisms
of charge pair generation and dissociation into free carriers. In
particular, we discuss the role of the morphology of bulk
heterojunctions, which has to be “just right” for the best solar
conversion efficiency. We introduce the main techniques for
measuring the morphology of bulk heterojunctions and discuss
optimized morphologies for photovoltaic performance. Charge
extraction and nongeminate recombination are not discussed
here, and we refer the reader to recent reviews on these
topics.33−35 Light capture by microstructures and plasmonics
are also excluded from this review but have been covered in
detail recently by others.7

2. EXCITATION ENERGY TRANSFER TO
HETEROJUNCTION

Because electron transfer in organic materials occurs only at
subnanometre distances between molecules, excitons must
migrate to a heterojunction between the electron donor and the
electron acceptor in order to generate charge carriers. In this
section we discuss the mechanisms of energy transfer, the
techniques to measure exciton diffusion, and recent efforts to
enhance the exciton harvesting range by increasing their
diffusion length and by directing exciton transport.

2.1. Intermolecular Interactions and Energy Transfer
Mechanisms

Electronic energy transfer between molecules can be radiative
or nonradiative. Radiative, or “trivial”, energy transfer involves
emission of a photon from one molecule and absorption of that
photon by another molecule. Nonradiative energy transfer
occurs by two different types of intermolecular interactions: (1)
Coulombic interaction of a transition dipole moment
responsible for the luminescence of an exciton with the
absorption transition dipole of a nearby molecule and (2)
electron exchange interactions, which involve simultaneous
exchange of electrons in HOMOs and LUMOs between
nearest neighbors (Figure 3).
Nonradiative energy transfer dominates over radiative

transfer in organic thin films. Energy transfer by Coulombic
coupling is usually referred to as Förster resonance energy
transfer, in recognition of the contribution of the German
scientist Theodor Förster to the theory.41 In the weak coupling

limit the rate of FRET can be calculated using the Fermi golden
rule

π=
ℏ

| |k sV J
2

FRET
2

(2)

where V is the electronic coupling energy between the exciton
and energy-accepting chromophore; s is the dielectric screening
of the interaction by the surrounding medium; J is the spectral
overlap between the homogeneous spectral profiles of exciton
luminescence f hom(E) and absorption of energy-accepting
chromophore ahom(E), which have each been normalized to

unit area on an energy scale, ∫=J f E a E E( ) ( ) d
E

0
hom hommax ;

and Emax is the upper energy of the luminescence and
absorption spectra.42 In a dipole approximation, s = 1/n2,
where n is the refractive index of the surrounding medium,
typically in the range of 1.5−2 for organic semiconductors.
When the emitting and absorbing dipoles can be approximated
as point dipoles, the energy transfer rate has a simple
expression41

τ
= ⎜ ⎟⎛

⎝
⎞
⎠k

R
R

1
FRET

0
6

(3)

where τ is the luminescence lifetime of the excited
chromophore in the absence of energy transfer, R is the
distance between the exciton emission dipole and the energy-
accepting dipole, and R0 is the Förster radius, which depends
on the photoluminescence quantum yield of the excited
chromophore, the angle between the donor emission and
acceptor absorption transition dipole moments, and the
spectral overlap J, which was defined above. The point dipole
approximation is only accurate when the distance between the
interacting chromophores is much larger than the size of the
exciton. When these distances are comparable, calculations of
the electrostatic interaction between transition dipoles require
more sophisticated methods, such as transition density
calculations or multicentric monopole expansion.42,43 For
elongated chromophores, such as conjugated polymers, a line-
dipole approximation gives satisfactory results with modest
computational resources.44−46

While fluorescent singlet excitons move predominantly by
FRET, triplet excitons have an electronic spin of 1 and
therefore are spin-forbidden from emitting light. The
absorption of neutral molecules from a singlet ground state
to a triplet excited state is also spin-forbidden. As efficient
FRET requires strong spectral overlap of absorption and
emission, FRET from the triplet to singlet state is inefficient,
and triplet−triplet FRET is very inefficient. The dominant
transport mechanism of triplet excitons is by electron exchange,
which is often referred to as Dexter transfer. This requires an
overlap of molecular orbitals of neighboring molecules;
therefore, the transfer rate decreases exponentially with a
distance between molecules and operates effectively only over a
distance of less than 2 nm.42,47,48

Localized excitons move by spontaneously hopping from one
site to another by FRET or Dexter transfer. However, in an
ideal molecular aggregate, when the interaction energy between
molecules is higher than the energetic disorder and the
dissipation of electronic excitation energy is slow, the exciton is
delocalized between participating units and can transfer energy
coherently in a wavelike motion. Recent experiments suggested
that coherent energy transfer takes place in photosynthetic
pigment−protein complexes.49 Macroscopic spatial coherence

Figure 3. Schematic illustration of nonradiative Förster resonance
energy transfer of singlet exciton S1 and Dexter transfer of triplet
exciton T1. The “up” and “down” arrows illustrate electron spins, and
S0 denotes a chromophore in the ground state.
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reaching tens of micrometers has been observed in ordered
single chains of a conjugated polymer polydiacetylene at
cryogenic temperatures.50 Several experimental studies sug-
gested that primary excitons in conjugated polymers are
delocalized along the chain in the first 100 fs after excitation,
even at room temperature.51−53 Theoretically it has been
shown that correlated fluctuations of electronic transition
energy in molecular aggregates can help to preserve the
electronic coherence between excitonic states and only
uncorrelated fluctuations result in loss of coherence.54

Correlated exciton relaxation has been reported in poly(3-
hexylthiophene), which suggests that indeed coherent energy
transfer can occur in conjugated polymers on a 100 fs time
scale.55 The signatures of delocalized primary excitons have also
been reported in helical π-stacks of self-assembled perylene
bisimides56 and in star-shaped molecules.57,58 Generally,
exciton localization on fewer units of a polymer or an aggregate
is observed in 100−300 fs at room temperature and is

attributed to exciton self-trapping driven by structural
relaxation of excited units.51−53,57,58 However, recent observa-
tions of efficient exciton transport over micrometer-scale
distances in individual self-assembled nanofibers suggest the
existence of delocalized singlet excitons at room temperature in
well-ordered H-type aggregates which significantly enhance the
distance of energy transfer.59,60 Nevertheless, in most circum-
stances, excitons hop from chromophore to chromophore in
the material, and methods to measure this diffusion are the
topics under discussion in the next sections.

2.2. Methods To Measure Exciton Transport

In this section, we review the main techniques to measure the
distances over which singlet and triplet excitons can be
transported in their finite lifetime. For excitons, which move
by random walk, the convention is to quote their average
diffusion length τ=L ZDD , where D is the exciton diffusivity,
τ is the exciton lifetime, and Z = 1, 2, or 3 for one-dimensional,
two-dimensional, and three-dimensional diffusion, respectively.

Figure 4. Schematic of the surface quenching technique. (A) Varying thicknesses of the material of interest (blue block in the stack) are deposited on
top of a quencher material (red block), and the time-resolved PL decays are measured (schematically shown in panel B) and compared against a
reference film of the material prepared without the quencher layer. The thickness dependence of the time-resolved quenching can be used to
determine the exciton diffusion coefficient. Shown in panel C are experimental data of surface quenching in 6.5, 12, and 32 nm thick films of the
polymer P3HT deposited on titania (the quencher). Panel C is modified and reprinted with permission from ref 65. Copyright 2008 John Wiley and
Sons.
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In the case of time-dependent exciton diffusivity, the integral of
D over the time interval τ should be used.
2.2.1. Surface Quenching of Photoluminescence. A

film of the organic material under study is deposited on a
surface that quenches the luminescence of the organic material,
as depicted in Figure 4. For this measurement, the studied
material has to be at least weakly luminescent. The advantage of
this technique is that it measures energy transfer to the donor−
acceptor interface in a bilayer and is directly linked to light
harvesting in planar heterojunctions. The quenching can be
measured by either steady-state or time-resolved photo-
luminescence (PL).61−69 In steady-state measurements, one
has to take into account a variation of the amount of light
absorbed because of the optical interference, which in turn
requires a detailed knowledge of optical constants and a
calculation.70 The overall quenching dynamics involves two
consecutive processes: exciton transport to the surface and
quenching by charge transfer to a quencher or by FRET. To
measure exciton transport it is very important that the exciton
is quenched very quickly at the interface so that the quenching
dynamics are transport-limited. When quenching at the
interface is slower than exciton transport, the overall quenching
kinetics are monoexponential and very different from transport-
limited quenching.71 Time-resolved measurements have an
advantage in being able to distinguish between the transport-
limited quenching and surface-limited quenching.
If exciton transport is studied in an electron donor material,

then it is best to use a layer of an electron acceptor as a
quencher and vice versa. The luminescence intensity at time t is
proportional to the concentration of excitons, N(x,t), integrated
over the thickness of the film; here x is the distance from the
exciton to the quencher surface. It is assumed that excitons
move by a random walk, and the results can then be modeled
using a one-dimensional diffusion equation

∂
∂

= + ∂
∂

− +N x t
t

G x t D
N x t

x
k x k N x t

( , )
( , )

( , )
[ ( ) ] ( , )

2

2 Q s

(4)

where G(x,t) is the exciton generation rate, D is the exciton
diffusivity in the direction perpendicular to the quenching
interface, kQ(x) is the rate constant of surface quenching, which
depends on the distance to the quenching interface, and ks is
the rate constant of spontaneous exciton decay measured in the
reference film of the same thickness but on a nonquenching
surface (for example, fused silica). The fluorescence intensity at
time t is proportional to the integral of N(x,t) over the
thickness of the film. In the simplest analysis and estimation of
the exciton diffusion length, it is usually assumed that exciton
diffusivity is time-independent;65−68 however, different models
have been proposed to describe time-dependent exciton
diffusivity in materials with significant energetic disorder,72−75

and we discuss this in more detail in section 2.3. To study
exciton diffusion in electron donor materials it is common to
use a layer of fullerene molecules as a quencher, which can
quench by electron transfer and FRET.26,69 When using a
vacuum-deposited C60 fullerene as a quencher, care must be
taken to avoid interdiffusion of C60 molecules with the donor
molecules, which would lead to an overestimation of the
exciton diffusion length (Figure 5).67 For this purpose, the C60
derivatives can be cross-linked67 or tethered to the substrate.26

When a long-distance FRET to the quencher is active as a
quenching mechanism, it has to be included in the rate constant
kQ(x) in eq 4 to get an accurate measurement of the exciton

diffusion length. For example, Luhman and Holmes have
obtained consistent values of the singlet exciton diffusion length
in films of boron subphthalocyanine chloride using three
different electron acceptors with very different Förster radii R0
for FRET to the acceptor, which they measured independ-
ently.69

2.2.2. Volume Quenching of Photoluminescence. This
technique can be used to study exciton diffusion in luminescent
materials. Sometimes it is referred to as bulk quenching because
it uses dispersed quenchers of PL in the bulk of the film and
therefore measures three-dimensional exciton diffusion.26,76,77

Very low concentrations of quenchers are used to ensure that
they are homogeneously dispersed throughout the film. The
measurement involves recording time-integrated or time-
resolved PL intensity with varying concentration of the
quencher, as depicted in Figure 6.
Time-resolved PL measurements have several advantages

over steady-state measurements: they enable the quenching
mechanisms and time-dependence of exciton diffusion to be
studied, they are less susceptible to thin-film interference
effects, and modeling of the data is strongly constrained, as an
entire decay curve is obtained for each concentration of
quencher. The PL intensity at time t is proportional to the
exciton concentration N(t). The decay rate of excitons in a
blend is the sum of the spontaneous decay rate with the rate
constant ks and a quencher-induced decay rate with the rate
constant kq

= − −N
t

G k N k QN
d
d s q (5)

where G is the exciton generation rate and Q is the quencher
concentration, which is, of course, time-independent. For such
a monomolecular quenching process, the PL quenching rate
constant kq is easily isolated from the rate constant of the
unquenched, spontaneous decay of excitons by differentiating
the natural logarithm of the PL ratio using26

= −
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥k

Q t

N

N
1 d

d
lnq

doped

pristine (6)

Figure 5. Fluorescence quenching efficiency in the 26 nm polymer
film as a function of time after evaporation of C60 on top. The C60
evaporation starts at t = 0. The inset shows the increase of the
apparent exciton diffusion distance with time, which indicates
intermixing of the evaporated C60 molecules with the soft polymer
layer. This leads to an overestimate of the intrinsic exciton diffusion
length. Reprinted with permission from ref 67. Copyright 2005
American Chemical Society.
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where Ndoped is the exciton density in the film doped with
quenchers and Npristine is the exciton density in the pristine
reference film. With this technique, it is particularly important
that the exciton is quenched on the first encounter with the
quencher and to include all active quenching mechanisms in the
analysis. For example, long-distance FRET to the quencher has
to be taken into account, as well as exciton diffusion to the
quencher, and analytical expressions for kq exist for both
processes.26,78,79 Alternatively, Monte Carlo simulation of 3D
exciton diffusion in the blend can be used to fit the quenching
dynamics and to determine exciton diffusivity.76,80 This
approach can be used even when the quencher distribution is
not uniform but it has to be included in the model.
Ward et al. showed that the quenching rate of PL in films of

the conjugated polymer PTB7 by electron transfer is at a
maximum for an energy offset of ∼0.4 eV between the electron
affinities of PTB7 and acceptor molecules.81 This dependence
was described well by the Marcus theory of electron transfer.82

For the optimum energy offset, the exciton is quenched on the
first encounter with the quencher and the above-described
analysis can be used. However, when the energy level offset is
not an optimum and the rate of electron transfer is lower, the
exciton can escape quenching by diffusing away. In some cases,
it is possible to include an exciton escape rate into the
analysis.81 If that is not possible, then the measured exciton
diffusivity and diffusion length can only be considered as a
lower limit.

2.2.3. Exciton−Exciton Annihilation. This process occurs
at high excitation densities when one exciton transfers its
energy to another exciton and brings it to a higher-energy
excited state. The higher-energy excited state relaxes rapidly,
and overall an exciton is lost. In so far as quenching occurs
throughout the volume of the sample, this measurement
resembles volume quenching, but with excitons acting as their
own quenchers. In these experiments, typically high light
intensities are used, far higher than used under solar

Figure 6. Schematic illustration of the volume-quenching technique in which quenchers are dispersed throughout the layer of the material to be
studied. Shown in panel A from left to right are three films of the material under investigation (blue block) with increasing concentrations of a
dispersed quencher (red solid circles). Excitons are more readily quenched with increasing quencher concentration, and this is measured with time-
resolved PL and compared against a reference film without any dispersed quenchers, as shown in panel B schematically and in panel C as
experimentally measured data of the polymer PCDTBT mixed with the quencher PC71BM. Panel C adapted and reprinted from ref 26 with
permission. Copyright 2012 American Chemical Society.
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illumination conditions, and the consequences of this have to
be taken into account when analyzing the data. For example,
there is a finite probability for a singlet exciton in the higher-
energy excited state to split into an electron−hole pair83,84 or
into two triplet excitons;85 in that case, both singlet excitons are
lost. The electron−hole pairs and triplets can also quench
singlet excitons; hence, very high light intensities should be
avoided.86 The process can be measured using time-resolved
photoluminescence, as its intensity is proportional to exciton
population (Figure 7), or transient absorption, which can probe
stimulated emission from an exciton or its absorption to higher
excited states.
When excitons can be treated as point particles and energy

transfer occurs by incoherent hopping, the exciton concen-
tration N is described by a kinematic rate equation87

γ= − −N
t

G k N N
d
d s

2
(7)

where G is the exciton generation rate, ks is the exciton decay
rate in the absence of annihilation, and γ is the annihilation rate.
Exciton−exciton annihilation involves two consecutive

processes: multistep exciton hopping from an excited to an
unexcited chromophore (exciton diffusion) and energy transfer
to an excited chromophore (annihilation). When exciton
diffusion is restricted to one dimension (1D) a time
dependence of γ ∝ t−1/2 is observed.88−90 The same time
dependence is observed in a three-dimensional system if
excitons are immobile and exciton−exciton annihilation occurs
by direct Förster energy transfer onto an excited chromophore
(static annihilation). The strong time-dependence of γ in both
cases can be explained by a nonuniform spatial distribution of
excitons because of the fast annihilation of excitons at the
nearest distance; in that case, the annihilation process depends
on the history of excitation dynamics and is therefore non-
Markovian. In the case of fast exciton diffusion in three-
dimensional (3D) systems, a uniform distribution of excitons is

Figure 7. Schematic illustration of exciton−exciton annihilation measurement methodology to determine the exciton diffusion coefficient. (A) The
material under investigation (blue block) is excited with a laser of increasing power (left to right). At higher powers more excitons are created, and
they are closer to each other. As they diffuse they will meet and annihilate, producing a time dependence of the PL intensity as shown schematically
in panel B. If this is compared with a reference PL decay taken at low power, then the exciton diffusion coefficient can be derived. Experimental data
from films of P3HT are shown in panel C and are reprinted with permission from ref 65. Copyright 2008 John Wiley and Sons.
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quickly restored by exciton diffusion and the annihilation rate is
time-independent on a long time scale. When excitons
annihilate on the first encounter, the annihilation rate is limited
by diffusion and in 3D systems can be described by the solution
of the Smoluchowski equation91

γ π
π

= +
⎛
⎝⎜

⎞
⎠⎟t R D

R
Dt

( ) 4 1
23D a

a

(8)

where D is exciton diffusivity and Ra is the annihilation radius.
Here it is assumed that only one exciton is lost per encounter.
For typical values of D ≈ 10−3 cm2 s−1 and Ra ≈ 1 nm, the time-
dependent component becomes negligible for t > 16 ps and eq
8 is reduced to the time-independent form of γ3D = 4πRaD. A
time-independent annihilation rate has been observed at long
times in films of poly(3-hexylthiophene) (P3HT)65 as well as
other polythiophenes and poly(phenylenevinylene) derivatives,
which indicates that annihilation is controlled by 3D exciton
diffusion.92−94 At early times after excitation the annihilation
rate is often time-dependent. For example, Masri et al. observed
a decrease of the γ value in the first 20 ps after the excitation
pulse in P3HT films and fitted it to an equation derived for
diffusion-limited annihilation in the case of preferentially 1D
diffusion and a spherical annihilation volume with a radius ra

86
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here Dz is a high diffusivity in a preferred direction and Dp is a
much lower diffusivity in a direction perpendicular to z. They
obtained Dz ≈ 100Dp and attributed Dz to exciton diffusion
along the π-stack of P3HT chromophores (Figure 8).

Tamai et al. also studied exciton−exciton annihilation in
P3HT films but used selective excitation of the crystalline
regions of the polymer with low-energy photons at 2 eV.95

They observed the γ ∝ t−1/2 time-dependence up to 100 ps and
attributed it to strictly one-dimensional exciton diffusion in the
crystalline domains (Figure 9). This time-dependence of γ has
been observed in the quasi-one-dimensional organic semi-
conductor phthalocyanines and in 4,9,10-perylenetetracarbox-
ylic dianhydride.88−90

These results indicate that the technique is useful not only to
estimate the exciton diffusivity but also to evaluate the
dimensionality of energy transfer. Like other techniques for
measuring exciton diffusion, exciton−exciton annihilation has
various advantages and disadvantages. An important advantage
is that the measurements can be made on a single sample. A

Figure 8. Time dependence of exciton population N(t) in P3HT film measured for different excitation densities by (A) time-resolved fluorescence
after excitation at 2.2 eV and (B) transient absorption after excitation at 2.4 eV. (C) Annihilation rate obtained from time-resolved fluorescence data
using eq 7 and (D) annihilation rate obtained from transient absorption data using eq 7; solid line and dotted lines are simulated rates using eq 9
with Dp and Dz values given in the legend. Reprinted with permission from ref 86. Copyright 2013 John Wiley and Sons.

Figure 9. Annihilation rate for a P3HT film excited at 2 eV obtained
using eq 7. The red line represents the fitting curve using γ ∝ t−1/2.
The blue and green lines represent the annihilation rate coefficient
calculated by the 3D (eq 8) and 2D models, respectively. Reprinted
with permission from ref 95. Copyright 2014 American Chemical
Society.
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serious disadvantage is that in order to determine the diffusion
coefficient, the annihilation radius needs to be known and there
are not convenient ways of determining it independently.
2.2.4. Direct Imaging of Exciton Motion. The vast

majority of measurements of exciton diffusion have used
experiments such as those described above; however, under
some circumstances, it has been possible to image the motion
of excitons directly. The basic idea of these experiments is very
simple: excite a small spot, image the resulting fluorescence,
and watch it spread out. Of course in practice it is challenging,
because the exciton diffusion length is small compared with the
excitation spot. This type of experiment has mainly been
applied to materials with high diffusion coefficients, such as
molecular crystals. Ern et al. studied triplet diffusion in
anthracene crystals, by detecting delayed blue fluorescence
resulting from triplet−triplet annihilation. By varying the spatial
distribution of the exciting red light, they were able to deduce a
diffusion constant of 2 × 10−4 cm2/s for triplet diffusion in the
ab plane on anthracene crystals at room temperature.96 Direct
imaging of the motion of excitons and trions (negatively
charged excitons) was studied by Sanvitto et al.97 and Pulizzi et
al.98 in GaAs/AlGaAs quantum wells at a temperature of 4.2 K.
They used a 40× microscope objective to focus the beam of a
Ti:sapphire laser to a spot of 1.6 μm diameter, and the same
objective imaged the spot through a spectrograph to give spatial
information on one axis and spectral information on the other.
The neutral excitons were found to be more diffusive than the
trions and spread out to a total spatial extent of 10 μm,
corresponding to a diffusion coefficient of 120 cm2 s−1. It
should be remembered, however, that this value is for an
inorganic semiconductor at low temperature; it serves to
demonstrate the technique, though it is not in itself relevant to
OPV.
Recent studies of exciton diffusion in organic crystals have

used closely related approaches. Irkhin and Biaggio studied a
rubrene crystal.99 Excitation from a steady-state laser was
focused using a microscope objective, and the same objective
imaged PL onto a CCD camera. The emission was assigned to
delayed fluorescence due to triplet−triplet annihilation, with
many of the triplets forming as a result of singlet fission. In
contrast to the work of Sanvitto and Pulizzi, spectral selection
was provided by a filter, thereby allowing exciton diffusion
throughout the plane (rather than just in one direction) to be
imaged. This led to the spectacular images shown in Figure 10.
The upper panel shows the excitation spot, and the lower panel
shows the PL detected. The emission has spread much more in

the b direction than in the a direction: the exciton diffusion is
highly anisotropic and the elliptical shape of the lower panel
directly shows this. The spread to ±2 μm in each direction
actually corresponds to triplets diffusing ±4 μm from the center
because the measurement detects delayed fluorescence due to
triplet−triplet annihilation, which is a bimolecular process and
therefore follows the square of the triplet density. These results
show exciton diffusion over micron distances at room
temperature in steady-state measurements on the organic
crystal, rubrene. However, these authors noted they were not
able to observe exciton diffusion directly in tetracene.
Akselrod et al.100 refined the above measurement in two ways

and then applied it to image exciton transport in tetracene. The
refinements were to increase the magnification to ×500,
thereby improving the spatial resolution, and to make time-
resolved measurements. Müller and Bardeen101 had shown that
a streak camera could be used to image the motion of molecular
excited states with picosecond time resolution and 150 nm
spatial resolution, but Akselrod used a simpler approach of
translating an avalanche photodiode (APD) across the image of
the emission. Although the excitation spot is diffraction-limited,
its spread can be imaged with subwavelength resolution. At first
this seems surprising because of the Abbe criterion, which gives
a wavelength-scale limit on resolving two spots. However,
monitoring exciton diffusion does not require two spots to be
distinguished, so more accurate measurements are possible and
indeed are now commonly demonstrated in super-resolution
microscopy. By translating the APD across the image of the
emission spot, the spreading of the emission could be resolved
in time, leading to the results shown in Figure 11.
The initial intensity distribution was described by a Gaussian

with a width of 229 nm that rapidly broadened in the first 2 μs,
followed by a slower expansion to 701 nm at 7 μs. In the first 2
μs, the process could be described by a diffusion coefficient (in
the a direction) of (1.35 ± 0.01) × 10−3 cm2/s. When
combined with the triplet lifetime of 1.37 μs for the crystal
studied, this leads to a diffusion length √(2Dt) of 0.61 μm.
The authors note that ultrapure tetracene can have lifetimes up
to 58 μs, which for the same diffusion coefficient would enable
diffusion up to 4 μm. As in the case of other exciton diffusion
measurements, time-resolved measurements provide additional
information, in particular how the excitons spread as a function
of time. This is summarized in panel C of Figure 11, where it is
found that exciton diffusion becomes slower at longer time, and
this is attributed to trapping associated with energetic disorder.
The anisotropy of exciton diffusion is also reported by making
the same measurement along different crystal directions. For
the b direction, the diffusion coefficient is (2.28 ± 0.07) × 10−3

cm2/s, and for the c direction, it is (0.31 ± 0.02) × 10−3 cm2/s.
A transient absorption microscope has also been used to

image exciton diffusion in tetracene.102 In this experiment, the
pump beam is held at a fixed position and the probe beam is
scanned to form an image. This measurement works best on
picosecond and few nanosecond time scales and so allows both
singlet and triplet dynamics to be studied. For delay times
between 1 and 7 ns, the triplet diffusion coefficients appeared
to be more than an order of magnitude higher than those
deduced from transient luminescence. The authors propose
that this effective enhancement of triplet exciton transport on
picosecond and nanosecond time scales is due to the
interconversion of triplet and singlet excitons enabling singlets
to assist in triplet diffusion. Modeling of their data suggests that
the singlet-mediated process alone would give a diffusion length

Figure 10. Direct imaging of exciton diffusion. Contour plot of the
intensity distribution of the excitation light (A) and the of the PL at
the surface of a rubrene crystal (B). Reprinted with permission from
ref 99. Copyright 2011 American Physical Society.
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for triplets of 1.9 μm. Pure triplet diffusion alone would give a
diffusion length of 5.4 μm if a lifetime of 62.5 μs is assumed,
and the two processes together would give a diffusion length of
5.6 μm.
The demonstrations of direct imaging of exciton diffusion are

very impressive. However, so far they have been only been
applied to a very restricted range of organic semiconductors
with rather high order. It would be much more demanding to
apply them to the most widely used OPV materials, including
conjugated polymers, so there is a continuing need for the
many other techniques described in this section.
2.2.5. Modeling of Photocurrent. As explained at the

start of this review, charge generation in an organic solar cell
arises primarily from the migration of photogenerated excitons
to a heterojunction; hence, device characteristics can be used to
learn about exciton diffusion. In a planar heterojunction, only
excitons within a diffusion length of the heterojunction will
reach it and contribute to photocurrent. The situation is very
similar to surface quenching measurements described above,
except that the loss of the exciton is detected by current instead
of as a loss of fluorescence. By studying the influence of layer
thickness and excitation wavelength it is possible to estimate
the exciton diffusion length, though typically it is necessary to
assume that all the charges generated at the interface are
extracted from the device.
This type of approach was applied to molecular crystals in

the 1960s.103,104 In an extensive and detailed study of
anthracene, Mulder used steady-state excitation spectra of
fluorescence and of photocurrent as methods for measuring
exciton diffusion lengths.104 The results were analyzed in terms
of a diffusion model that also included reabsorbance of
fluorescence. The results of the exciton diffusion length
deduced from fluorescence and from photocurrent were
compared. The latter appeared to depend on the choice of
electrode, but it was found that consistent results could be
obtained by the use of alkaline electrode solutions. The
resulting exciton diffusion length was in the region of 30 nm
and was consistent with values obtained from fluorescence
studies. The exact value depended on the method of
preparation of the crystal and the orientation measured. Higher
(but unreliable) values were obtained for nonalkaline electrode
solutions, which was attributed to charge generation not only
occurring at the surface (as assumed in the exciton diffusion
model) but also at deeper centers such as oxygen molecules and
hydrogen ions penetrating from the (acidic) electrode solution

into a thin layer of the crystal next to the electrode.
Photocurrent studies were applied to study the effect of
introducing dopants on exciton diffusion and to study other
materials, obtaining a diffusion length of 29 nm for tetracene
and 10 nm for β-perylene.
Ghosh and Feng105 also derived diffusion equations and used

photocurrent excitation spectra to study exciton diffusion. In
their case, they studied a solar cell consisting of a layer of
merocyanine in between aluminum and silver contacts. The
main differences from the earlier work are the materials studied,
the contacts used, and the fact that the built-in potential of the
contacts rather than an applied external field was used to extract
charge. Using the spectrum from 440 nm to longer wave-
lengths, an exciton diffusion length of 6 nm was deduced. The
same approach was used by Bulovic and Forrest106 to study
excitons in 3,4,9,10-perylenetetracarboxylic dianhydride
(PTCDA). Two distinct excitonic features with different
diffusion lengths were reported. One was assigned to a self-
trapped charge transfer state with a diffusion length of 225 ± 15
nm; the other was a triplet with a diffusion length of 88 ± 6 nm.
Modeling of the photocurrent in an early polymer solar cell

consisting of the polymer poly(p-phenylenevinylene) [PPV]
and a perylene acceptor layer was performed by Halls and
Friend.107 It was assumed that all excitons excited within a
diffusion length of the interface are ionized at the interface, lead
to separated charges, and are then extracted. The resulting
exciton diffusion length was 9 ± 1 nm. A fuller model of the
photocurrent excitation spectrum of a polymer solar cell was
described by Pettersson et al.108 The treatment of exciton
diffusion and photocurrent generation is similar to that of the
earlier papers, but the paper pays particular attention to
modeling the electric field distribution inside the device, which
of course also determines the spatial profile of photogenerated
excitons. The optical model used complex indices of refraction
and layer thicknesses determined by spectroscopic ellipsometry.
The paper concluded that exciton diffusion has a major effect
on device efficiency. The work also found that it was important
to take into account the optical field distribution and found that
both layers in their device contributed to the photocurrent. The
resulting values of the diffusion length were 4.7 nm for poly(3-
(4′-(1″,4″,7″-trioxaoctyl)phenyl)thiophene) (PEOPT) and 7.7
nm for C60. We note, however, that the latter value is lower
than the value of 20 nm in another report.109,110 Many
subsequent studies have followed the approach of using a full
optical and diffusion model of photocurrent excitation spectra

Figure 11. Time-resolved imaging of exciton diffusion in tetracene. Panel A shows the emission pattern as it evolves in space and time along the
crystal a axis. The distribution at a particular time has been normalized to emphasize changes in the distribution width. Panel B shows cross sections
of the emission intensity map at four time points showing spatial broadening of the intensity distribution. Panel C shows the time evolution of the
mean square displacement of triplet excitons. Reprinted with permission from ref 100. Copyright 2014 Nature Publishing Group.
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to deduce exciton diffusion length. Two contrasting studies
applied the approach to pentacene. Yoo et al.111 reported an
exciton diffusion length of at least 60 nm. Subsequently it has
become clear that pentacene undergoes singlet fission, leading
to the generation of two triplets. After taking account of this
effect, Tabachnyk et al.112 measured a triplet exciton diffusion
length of 40 nm in pentacene.
2.2.6. Time-Resolved Microwave Conductivity and

Transient Absorption. Exciton transport in nonluminescent
materials can be studied using a planar heterojunction to
generate charge carriers and to detect them instantly with
electrodeless techniques, so that the response time is limited by
energy transfer to heterojunction. Researchers at Delft
University of Technology have used a microwave probe to
measure an increase in conductivity in the sensing layer when
an exciton reaches it and injects charge.113,114 Only excitons
within a diffusion length of the heterojunction or FRET
distance contribute to photoconductivity. Using this technique,
a singlet diffusion length of 7 nm has been found in evaporated
C60 films115 and a triplet diffusion length of 28 nm in palladium
tetrakis(4-carboxyphenyl)porphyrin (PdTPPC) films.116 Alter-
natively, transient absorption can be used to detect radical
cations or anions in a planar heterojunction that is within an
exciton diffusion length of a heterojunction.117

2.3. The Influence of Disorder on Exciton Diffusivity

Because of the conformational and positional disorder present
in organic semiconductors, as well as dispersive interactions
between molecules that are caused by rapid fluctuations of
electron densities, the same electronic state has slightly different
energies on different chromophores.11,12 Singlet exciton
transport occurs predominantly by FRET-controlled hopping
from chromophore to chromophore. According to eqs 2 and 3,
in order to get fast exciton hopping, one requires a high
oscillator strength of luminescence and absorption, a short
distance between chromophores, and high spectral overlap of
homogeneous spectral profiles of luminescence and absorption.
Two factors reduce the spectral overlap: the reorganization
energy of individual chromophores in the excited state and
energetic disorder. The spectral overlap is high for excitations
hopping downhill in transition energy, whereas it is much
smaller for excitations hopping uphill and often needs thermal
activation to get to the resonant transition energy. Many
theoretical and experimental studies have explored the
influence of energetic disorder on exciton diffusion. More
than 30 years ago Movaghar et al. derived an analytical theory
to describe the time dependence of exciton diffusion by
incoherent hopping by assuming uncorrelated free energies of
adjacent sites and a Gaussian distribution of site energies.118

Figure 12 shows the diffusivity as a function of time for
different values of the disorder width normalized to the thermal
energy. The theory predicts two different time regimes of
exciton diffusion: an initial dispersive regime, where exciton
diffusivity is decreasing with time when excitations migrate
downhill in energy, and an equilibrium regime with a constant
diffusivity D∞, where transport occurs through low energy sites.
They found that the crossover time tr to long-time behavior
(marked by an arrow on each curve) and diffusivity at long time
D∞ roughly obey the relation tr

βD∞ ≈ const with β = 0.45. The
analytical theory was compared with Monte Carlo simulations
in a cubic lattice, and very good agreement was obtained. Using
a simple thermodynamic argument, Movaghar et al. predicted
that the mean long-time energy is lower than the peak energy

of the Gaussian density of states by a value ΔE = a2/kT, where
a is the half-width of the Gaussian disorder and kT is the
thermal energy.
The Gaussian disorder model described above has been very

successful in describing the time evolution of photolumines-
cence and phosphorescence spectra at different temper-
atures46,72,119−121 and the temperature dependence of the
time-averaged exciton diffusivity. For example, Mikhnenko et al.
measured the time-averaged diffusivity of singlet exciton in
films of the poly(p-phenylenevinylene) derivative MDMO-PPV
using surface quenching of the photoluminescence and found
that the exciton diffusivity decreased by a factor of 2 when
cooling the sample from room temperature to 150 K (Figure
13).80 They explained this result by a decrease of the thermally
activated hopping rate at lower temperature. Below 150 K,
exciton diffusivity was almost temperature-independent,
suggesting that thermally activated hopping is inefficient at
very low temperature and excitons migrated only downhill in
energy. They also found a strong correlation between the
temperature dependence of exciton diffusivity and the PL (0−
0) vibronic peak position, suggesting that the width of energetic
disorder can be estimated simply by measuring the temperature
dependence of the PL spectrum. Ribierre et al. observed a
similar temperature dependence of the time-averaged hopping
rate of triplet excitons in phosphorescent iridium-cored metal−
ligand charge transfer complexes using triplet−triplet annihila-
tion.122

Later models have adopted the Gaussian disorder model but
used eq 2 or 3 to calculate the hopping rate with a time-
dependent Förster radius R0 or spectral overlap term J used
instead of a Boltzmann term.72−75 This approach better
describes an exciton hopping downhill in energy on an early
time scale after excitation.

Figure 12. Plot of log10 of the diffusivity D(t) versus log10 of time for
different values of a/kT, where a is the half-width of the Gaussian
disorder and kT is the thermal energy; the crossover time to long-time
behavior D∞ is denoted by an arrow on each curve; the time axis is
scaled with ν0, which is the hopping rate downhill in energy. The inset
shows the long-time (equilibrium) value D∞(T) and the crossover
time tr plotted versus (a/kT)

2. Reprinted with permission from ref 118.
Copyright 1986 American Physical Society.
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2.4. Increasing Diffusion Length of Singlet Excitons

The one-dimensional diffusion length τ=L DD of singlet
excitons in organic films typically ranges from 5 to 20 nm.24 To
absorb most of the incident light, the thickness of donor and
acceptor layers has to be at least 100 nm; therefore, there is a
strong drive to increase the exciton diffusion length in order to
improve light harvesting in planar heterojunctions. In addition
to the strength of electronic coupling between molecules, two
other main factors influence exciton diffusivity. These are the
spectral overlap integral of the absorption and fluorescence
spectra (term J in eq 2) and energetic disorder. Raisys et al.
showed a direct correlation between the spectral overlap
integral (term J) and the exciton diffusivity in triphenylamine
derivatives with different side arms.123 They observed an
enhancement of diffusivity by a factor of 5 and have obtained a
good agreement with Monte Carlo simulations using the
measured optical properties of the films. Generally longer
diffusion lengths are observed in crystalline materials,61,62 and
this can be explained by lower energetic disorder that results in
higher exciton diffusivity on a long time scale where energy
transport is thermally activated.
Sometimes it is possible to increase the exciton lifetime and

maintain high diffusivity. Menke et al. showed an increase of the
exciton diffusion length from 11 to 15 nm in the electron donor
boron subphthalocyanine chloride by diluting it into a wide-
energy-gap host material UGH2.124 The main reason for the
increased exciton diffusion length was a 6-fold increase of the
exciton lifetime. Using this approach, they made planar-
heterojunction solar cells with the fullerene C60 as an electron
acceptor and obtained a power conversion efficiency of 4.4%,
which is 30% higher than that of the control cell made using
undiluted subphthalocyanine molecules.
However, dilution of chromophores does not always help to

increase exciton lifetime. For example, the dilution of metal-free
phthalocyanine molecules in UGH2 to 25% resulted in a 3-fold
decrease of the exciton lifetime, showing that the nonradiative

decay of singlet excitons is very sensitive to intermolecular
interactions.125

2.5. Interlayer Förster Resonance Energy Transfer

As the diffusion proceeds in a donor material by a random walk,
the range is limited, as excitations are as likely to hop away from
the acceptor as toward it. There is therefore a strong desire to
direct energy transport to planar heterojunctions between
electron donors and acceptors. In contrast to exciton diffusion,
FRET between electron donor and acceptor materials is
directional and can bring excitons directly to a heterojunction.
FRET can enhance the exciton harvesting distance in bulk
heterojunctions;26 however, much bigger enhancement can be
gained in planar heterojunctions.22−25,27,69 The general
equation to describe the rate of FRET from a point donor to
a slab of acceptor molecules of thickness Δ is126

τ
= −

+ Δ
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where z is the distance between the excited donor and the
acceptor film, τ is the PL decay time of the donor in the
absence of energy transfer, and d0 is the critical transfer distance
(Figure 14). The parameter d0 is typically 2−3 times larger than

the Förster radius R0 and is proportional to the density of
energy of accepting chromophores in the acceptor
layer.22−26,126 The transfer rate decreases much more slowly
with distance than in the case of energy transfer between single
chromophores, so interlayer FRET can be efficient over long
distances. It has been shown that ∼90% of excitons can be
transferred over 20 nm distance and ∼50% of excitons over 35
nm.22−27,69

Cnops et al. designed a three-layer planar heterojunction
solar cell using an α-sexithiophene (α-6T) electron donor, a
boron subnaphthalocyanine chloride (SubNc) electron accept-
or, and an additional light-harvesting layer of boron
subphthalocyanine chloride (SubPc) (Figure 15).28 In this
structure, excitons generated in SubPc transfer their energy to
SubNc and subsequently dissociate at both interfaces by hole or
electron transfer. They have demonstrated a PCE of 8.4%
(7.77% certified) in a 1 cm2 active area cell with an external
quantum efficiency in the range of 50−80% over a broad
wavelength ranging from 400 to 720 nm. All three absorbing
materials have contributed to the photocurrent in these devices.
Endres et al. studied the same structure using X-ray
photoemission spectroscopies and found that there is a small
energy barrier between SubNc and SubPc, which may limit the
efficiency of electron extraction in this configuration.127 These
results suggest that even higher efficiencies could be attained by

Figure 13. (A) Temperature dependence of the exciton diffusion
length LD (red circles) and the time-averaged diffusivity ⟨D⟩ (green
squares) in films of the poly(p-phenylenevinylene) derivative MDMO-
PPV. (B) Temperature dependence of the time-integrated photo-
luminescence spectrum vibronic (0−0) peak position. Two temper-
ature regimes are observed: a low-temperature regime (up to 150 K)
highlighted in blue and a high-temperature regime. Reprinted with
permission from ref 80. Copyright 2008 American Chemical Society.

Figure 14. Schematic of FRET from an exciton in a donor layer to a
slab of acceptor molecules.
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aligning the electron affinities of these materials. Reid and
Rumbles used experimentally verified Monte Carlo simulations
to evaluate the maximum achievable efficiencies in planar
multilayer heterojunctions with energy cascades.128 They found
that a PCE of 10% is plausible and 15% is theoretically possible,
assuming a typical 0.6 eV energy loss at the heterojunction.
These results show that multilayered structures with

interlayer FRET are very promising for light harvesting in
organic photovoltaics. This approach allows optimization of the
ordering and thicknesses of different layers to maximize light
absorption in each one by tuning optical interference. In
combination with long-range interlayer FRET, this is very likely
to enable more efficient solar cells with reproducible perform-
ance.
2.6. Directing Energy Transport

Use of multilayer heterojunctions with energy cascades
discussed in the previous section is one of the ways to achieve
directional exciton transport and efficient light harvesting.128

Menke et al. have explored a different approach to direct energy
transport from a diluted to a neat layer of the same organic
semiconductor SubPc.129 In such a structure, there is no energy
gradient between layers and energy transfer occurs in both
directions. However, as there is a higher concentration of
energy-accepting molecules in the neat layer, forward energy
transfer to the neat layer is faster than back energy transfer.
They demonstrated a light-harvesting efficiency of 50% in a
trilayer made of a diluted 20-nm-thick outer layer of SubPc, a
10-nm-thick layer of neat SubPc, and a layer of the electron
acceptor NTCDA.129 Although this efficiency is lower than that
in energy-cascade structures, it can potentially give a higher
open circuit voltage because there is no loss of excitation
photon energy in its transfer between layers.
A high level of control of the energetic disorder and

directional energy transport has been demonstrated by
inclusion of fluorescent molecules into ordered one-dimen-
sional nanochannels made of optically inert host materi-
als.130,131 Such systems are very attractive for basic studies of
guest−host and guest−guest interactions, as well as molecular
dynamics in confined geometries, and they can enable exciton
transport over distances longer than 50 nm according to
calculations.132

2.7. Prospects for Singlet Fission and Triplet Exciton
Harvesting

Light absorption in organic semiconductors generates singlet
excitons. The intersystem crossing rate from the singlet to the
triplet state is usually slower than the radiative and nonradiative
decay of singlet excitons; therefore, the triplet exciton yield is

usually small. Triplet exciton transport now attracts substantial
interest when used in conjunction with singlet fission, where
each singlet exciton can split into two triplet excitons and so
can potentially double the charge carrier yield and photo-
current.133,134 Singlet fission can be efficient in molecules with a
triplet exciton energy less than half the energy of the singlet
exciton and is an attractive way to utilize high-energy photons
of the solar spectrum. The most researched material is
polycrystalline pentacene, which shows very fast singlet fission
in about 80 fs.135 Planar heterojunction organic solar cells have
been reported with a peak external quantum efficiency of up to
126% in a small portion of the visible spectrum using
pentacene, demonstrating the generation of more than one
electron per incident photon.136,137 Tabachnyk et al.
determined the triplet exciton diffusion length in polycrystalline
pentacene to be about 40 nm by modeling the photovoltaic
spectral response.112 These studies suggest that harvesting of
triplet excitons is a bottleneck for charge carrier generation in
bilayer solar cells using polycrystalline pentacene, where the
triplet exciton lifetime is on the order of 5 ns.138 Much longer
lifetimes of triplet excitons are observed in single pentacene
crystals (on the order of 0.4−2 μs),139 so it may be possible to
increase the triplet lifetime and diffusion length in thin films by
increasing crystallinity. It has been shown that triplet exciton
lifetime in other materials can be increased by controlling
intermolecular interactions,140−142 so there might be an
opportunity to increase triplet diffusion length by molecular
engineering.
Measuring triplet exciton transport is also challenging

because only some materials are phosphorescent. An interesting
technique to study triplet diffusion was suggested by
Mikhnenko et al., who used a thin layer of a metal−ligand
charge transfer complex with very fast intersystem crossing rate
to generate triplet excitons and inject them into the studied
material.143 A phosphorescent detector layer was deposited on
the other side of the studied material to detect the transported
triplet excitons. To demonstrate the technique, they measured
the triplet exciton diffusion length in films of N,N′-di-[(1-
naphthyl)-N,N0-diphenyl]-1,10-biphenyl-4,40-diamine (NPD)
and found a value of 87 nm.

3. FREE CARRIER GENERATION

Because charge transfer between electron donor and acceptor is
a short-range process, initially an exciton is split into a bound
geminate electron−hole pair. This charge pair then has to
overcome recombination and dissociate into free carriers in
order to contribute to photocurrent, and this process usually
limits the device performance.77,144−148 In this section, we
briefly discuss the main experimental findings and concepts
suggested to explain free carrier generation in bulk and planar
heterojunctions. For a more detailed description of the
theoretical models, we refer the reader to recently published
perspectives.149−151

3.1. The Influence of Photon Energy

Charge carrier generation has been studied extensively using
ultrafast spectroscopy. The most common technique is ultrafast
transient absorption spectroscopy, where the formation of
characteristic absorption bands of radical cations in an electron
donor and radical anions in an electron acceptor can be
observed. On the basis of experimental findings, several
different mechanisms of free carrier generation have been
proposed and they are shown schematically in Figure 16. It has

Figure 15. Schematic representation of the device architecture with
three active layers and the energy-level diagram of the active layers
illustrating an interlayer FRET from SubPc to SubNc followed by hole
transfer to α-6T and charge extraction. Reprinted with permission
from ref 28. Copyright 2014 Nature Publishing Group.
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been suggested that ballistic charge separation can occur in
higher-energy (hot) charge transfer (CT) states if it can
outcompete the electronic relaxation in the manifold of CT
states and vibrational cooling. For example, extremely fast
charge generation within 50 fs has been reported by Grancini et
al. in a photovoltaic blend of the conjugated polymer
PCPDTBT and the soluble fullerene PC61BM.152 They
observed very different transient absorption spectra when
exciting the polymer with an excess photon energy of 1 eV
above the optical band gap as compared to excitations with
lower-energy photons and suggested that higher-energy exciton
states convert almost resonantly into hot CT states that
dissociate into free charge carriers in less than 200 fs by ballistic
charge transport. This study suggests that electron transfer can
be faster than electronic and vibrational relaxation of the
exciton. Faster electron transfer from hot vibronic states is also
supported by theoretical studies.153 Even the lowest-energy
exciton in the donor or acceptor material, which is marked S1 in
Figure 16, can couple almost resonantly to a hot CT state,
where one of the carriers is delocalized and it can experience a
short-distance ballistic transport before it forms a polaron. Such
a process can generate a loosely bound charge pair with an
effective separation distance of several nanometers, which then
dissociates into free carriers by one carrier hopping away from
its counter charge. Jailaubekov et al. studied the relaxation of
hot CT states generated in planar heterojunctions of copper
phthalocyanine and electron acceptors C60 and C70 using
transient two-photon photoemission spectroscopy.154 In this
technique, a pump pulse generated CT states by splitting
excitons at the heterojunction, whereas a probe pulse was
incident upon the same spot after a variable time delay and led
to ionization of the sample. They analyzed the kinetic energy of
the photoelectrons emitted from the sample, identified hot CT
states at ∼0.3 eV higher energy than the relaxed CT states, and
observed relaxation of hot CT states within ∼1 ps. This study
suggests that in order to assist free carrier generation, the
dissociation of hot CT states has to be faster than 1 ps.

However, several studies have shown that the internal
quantum efficiency (the ratio of collected charges and absorbed
photons at the short circuit condition) in high-performance
bulk heterojunctions is independent of the energy of absorbed
photons, including a direct excitation of the relaxed
intermolecular CT states formed between donor and acceptor
with very low photon energy (indicated by a dashed line in
Figure 16).155−160 The fraction of light absorbed by these CT
states was determined using electroluminescence measure-
ments and was found to be lower by 4 orders of magnitude as
compared to intramolecular absorption by the donor and
acceptor.155−160 Direct excitation of CT states without excess
energy can generate an electron−hole pair only on the nearest-
neighbor donor−acceptor pair with a separation distance of less
than 1 nm. The high efficiency of photocurrent generation
observed by direct excitation of the relaxed CT states indicates
that a charge pair in this state is loosely bound and can
dissociate into free carriers with the help of a rather weak built-
in electric field. Ballistic charge transport is unlikely in the
relaxed CT state; thus, dissociation is expected to occur by
incoherent carrier hopping, and some of its steps have to be
thermally activated. These findings are consistent with
observations of rather slow charge generation in efficient
photovoltaic blends of poly(3-hexylthiophene) (P3HT) with
fullerene acceptors prepared by thermal annealing, where the
majority of charge pairs were found to be generated on a
picosecond time scale, presumably limited by exciton diffusion
to a heterojunction.161−164 Annealing has been shown to triple
the power conversion efficiency of P3HT:fullerene bulk-
heterojunction solar cells to ∼4%,165,166 suggesting that slower
charge generation in these materials is not an obstacle to device
efficiency. Slower charge generation in annealed blends
suggests larger domain sizes of donor and acceptor, which
help dissociation of bound charge pairs into free carriers, as
discussed in section 4.2.2. In very efficient photovoltaic blends
of the electron-donating polymer PTB7 with the acceptor
PC71BM, charge pair generation has been observed on a 100−
300 fs time scale.77,167 These results suggest that the rate of
electron transfer at the heterojunction does not have to be
ultrafast to achieve high device efficiencies in organic
photovoltaics. In the next section, we discuss recent findings
on how the rate depends on the energy offset between donor
and acceptor.

3.2. The Dependence on Driving Force

The difference of the Gibbs free energy between the relaxed
neutral excited state (exciton) and the relaxed CT state
(electron−hole pair) is known as the “driving force” for
electron transfer. In organic photovoltaics, it is desirable to have
the smallest driving force necessary to generate free charge
carriers, as any excess will be converted into heat and will
reduce the photovoltage (and consequently the power
conversion efficiency). A recent study by Coffey et al. showed
the existence of an optimal driving force for the highest yield of
mobile charge carriers that was measured by microwave
conductivity168 (Figure 17). They observed a decrease of the
mobile carrier yield when the optimal driving force was
exceeded and explained their results using the Marcus theory of
electron transfer.82 These findings highlighted the importance
of the reorganization energy in charge generation.
Ward et al. measured electron transfer rates from thermally

relaxed excitons in the conjugated polymer PTB7 to different
electron acceptors in the blends using time-resolved

Figure 16. Hypothetical potential energy surfaces along the charge
separation coordinate illustrating different free carrier generation
mechanisms proposed in the literature. Vertical arrows represent light
absorption in the ground state (G.s.) to generate exciton states S1...Sn
or charge transfer (CT) states. The straight horizontal arrows illustrate
ballistic transport of delocalized carriers in hot CT states suggested by
some studies. The bent arrows indicate incoherent carrier hopping
between sites on donor or acceptor, with red bent arrows representing
thermally activated hopping.
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fluorescence quenching.81 Measurements with very low and
very high loadings of acceptor were used to separate electron
transfer at a short distance to an acceptor (<1 nm) from exciton
diffusion in the PTB7 phase. They found very fast electron
transfer in <2 ps for values of the driving force between 0.2 and
0.6 eV. Higher and lower driving forces outside this range gave
slower rates of electron transfer, as expected from the Marcus
theory of electron transfer. These results show that electron
transfer is very fast and efficient when the driving force equals
the reorganization energy. Fitting to the Marcus model gave a
reorganization energy of ∼0.4 eV. These results suggest that the
energy loss at the donor−acceptor interface can be reduced by
reducing the reorganization energy and maintaining the
optimum offset of electron affinities or ionization potentials.
Although the driving force influences the rate of electron

transfer from donor to acceptor, its effect on dissociation of
photogenerated charge pairs into free carriers is not significant.
This is indicated by the high photocurrent efficiency observed
after direct excitation of the relaxed CT states155−157 and
dissociation of bound charge pairs on a picosecond time scale
that is much slower than the cooling of hot CT states.145−148

These findings imply that it should be possible to design
efficient photovoltaic materials with small reorganization
energies that would give high open circuit voltages without a
trade-off in photocurrent.

3.3. Charge Pair Generation Inside Donor or Acceptor
Domains

Excitons can split into charge pairs in the bulk of an organic
semiconductor, albeit with a lower efficiency than at
heterojunctions. For example, charge pair generation with
15−20% efficiency has been observed in films of conjugated
polymers that are used as electron donors,169−171 and neat films
of fullerene derivatives, which are commonly used as accept-
ors.148,172

Generation of bound charge pairs inside donor or acceptor
domains can be detrimental to device performance because
these pairs often recombine before they can be spatially
separated into donor and acceptor phases. To avoid
recombination losses, the morphology of bulk heterojunction
has to support fast extraction of holes and electrons into the
donor and acceptor domains, respectively, where they can be
transported to the correct electrodes, and this is discussed in
section 4.2 of this review.

3.4. Dissociation of Bound Charge Pairs

Charge pair dissociation into free carriers is a crucial step in the
operation of organic solar cells; therefore, its understanding is
very important for the development of efficient heterojunctions.
However, the mechanism is not understood and is actively
debated. The observations of efficient dissociation of relaxed
charge transfer states in high-performance bulk heterojunctions
suggest that hot CT states are not required to achieve charge
pair dissociation.155−157 The free carrier yield is independent of
the internal electric field in efficient bulk heterojunctions or
shows very weak dependence, indicating that the potential
barrier for charge pair dissociation is very small.145,173 Gao et al.
have estimated an activation energy of around 9 meV for charge
pair dissociation in optimized P3HT:PC61BM bulk hetero-
junctions.174 There are several possible explanations for a low
potential barrier. Several studies suggested that Coulomb
attraction is compensated by the free energy cascade from
interfacial CT states to spatially separated charged states in the
bulk of donor and acceptor domains.77,145,175−178 This concept
is supported by observations of mixed donor−acceptor phases
in the boundaries between pure domains in bulk hetero-
junctions77,179 and findings that the difference in ionization
potentials and electron affinities is favorable for directional
charge transport from a mixed phase into pure donor and
acceptor domains.176,180,181 Higher entropy of spatially
separated charges as compared to CT states can also contribute
to the free energy gain.175 Gao et al. have estimated that the
entropy contribution is sufficient to diminish the activation
energy needed for pair dissociation when it is spaced by just 4
nm, assuming uninterrupted three-dimensional charge trans-
port at 300 K and a dielectric constant of 3.5.174 In that case,
charge pairs separated by >4 nm can be considered unbound
and can dissociate into free carriers provided there are
continuous donor and acceptor domains to support charge
transport. It has been suggested that long-range charge-
separated states (up to 4 nm separation) can be accessed
through ballistic transport of delocalized carriers in hot CT
states182−184 or very fast initial carrier hopping.145−148,161,185,186

Fewer studies of charge pair dissociation have been
conducted in planar heterojunctions. The dissociation efficiency
has been shown to increase with increasing electric field up to
0.05−0.5 MV cm−1 and to saturate above these values.148,187,188

The dissociation efficiency was found to saturate at lower field
values when polymers with longer conjugation length were

Figure 17. Yield of mobile charge carriers (A) and the rate constant
for electron transfer (B) plotted against the driving force ΔG. Points
5−7 in the bottom panel have arrows denoting that they are lower
limits. Panel A reprinted with permission from ref 168. Copyright
2012 American Chemical Society. Panel B reprinted from ref 81 and
licensed under CC-BY-4.0.
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used as electron donors. This suggests that an increase of hole
delocalization along the conjugated chain decreases the binding
energy of the geminate electron pair and helps its dissociation
into free carriers.187,188

In summary, the rate of charge generation has been shown to
depend on the driving force for electron transfer, and in some
cases, charge generation was found to be faster than electronic
and vibrational relaxation. However, in high-performance
photovoltaic blends, the free carrier yield was found to be
independent of photon energy and electric field, indicating that
hot charge transfer states do not play a major role. Free carrier
generation in these blends occurs through relaxed charge
transfer states and is influenced by blend morphology,
energetics of mixed and pure donor and acceptor phases,
charge delocalization, and carrier mobility. More studies are
needed to understand the role of each of these factors. Free
carrier generation in planar heterojunctions has been found to
depend on applied electric field and conjugation length of the
electron donor, indicating that the mechanism could be
different from that in the bulk heterojunction. It is possible
that there is no universal mechanism and more than one
mechanism is involved in some cases.

4. OPTIMUM MORPHOLOGIES OF BULK
HETEROJUNCTIONS

So far we have recounted that absorption of light by donor and
acceptor materials in a bulk heterojunction readily occurs;
however, harvesting that light requires, among other things,
getting the formed exciton to the donor:acceptor interface via
exciton diffusion or FRET and getting free charges through the
active layer to their respective electrodes to be extracted, as
discussed above. Consequently, it is clear that the structural
arrangement of the donor and acceptor in the blendthe
morphologyis of vital importance to enable light harvesting.
If the donor and acceptor are too far apart, then excitons will
not be able to traverse the distance to enable them to be split
into charge pairs, and if the distance is too short, then while
excitons will easily dissociate, sufficiently separate pathways of
material will not be available to suppress recombination of the
readily formed charge pairs. The optimal distance between the
two materials is on the order of 10−20 nm, approximately the
exciton diffusion length. Measuring the morphology on such
length scales is very challenging; the donor and acceptor are
typically both carbon-based materials, soft in nature, with
similar physical properties. In this section, we will review the
principal methods of measuring the morphology of BHJ blends,
discuss some of the key results published to date and their
implications for light harvesting in organic photovoltaics, and
highlight the challenges that remain. This is not meant to be an
exhaustive treatment of morphology in organic photovoltaic
blends, which more detailed singular reviews already cover in
great detail,189−194 but rather an overview of how it links to
light harvesting for organic photovoltaics.

4.1. Measurement Techniques

The length scale of merit for BHJs as discussed above is ∼10−
20 nm, this is much smaller than the optical diffraction limit,
and thus, alternative techniques to classical optical microscopy
have been used to measure the blend morphology.
4.1.1. Atomic Force Microscopy. A key technique to

measure nanoscale morphology is atomic force microscopy
(AFM) and variants thereof.195 Here a cantilevered tip honed
to a 10−20 nm point is scanned across the sample. Atomic

repulsion forces can be used to keep the tip a constant distance
from the actual sample (giving topographical information), and
the frequencies of an oscillating tip can be used to derive more
information on surface force response, revealing finer details
(so-called “phase” images). In the context of organic photo-
voltaics, AFM can give information on the surface and
subsurface topography of the film.
Conventional topography images simply show the surface of

the film and can give information on the organization of the
two materials in the blend only when they fully phase separate
into clear separate domains, e.g., in a polymer−polymer blend,
as shown in Figure 18A. Rarely is this the case in good OPV
blends, and thus phase images instead can be used to reveal
more subtle details, as shown in Figure 18B,C.
Unfortunately, frequently in high-performance OPV blends

the blend morphology is such that there are subtle degrees of
mixing between the two materials, leading overall to a relatively
featureless image in AFM topography and phase. Here instead
an extension of the AFM concept can be used, wherein a metal-
coated AFM tip is used as a conductivity probe as it is scanned
across the sample surface, giving rise to the technique of
conductive AFM (C-AFM). Material composition can be
derived by exploiting the clear conductivity differences between
p-type electron donors and n-type electron acceptors used in
the BHJ blend. Given the small contact area between the
sample and the AFM tip (of diameter ∼40 nm), the measured
currents tend to be very small (pico or nanoamps), and
significant biases (a few volts) are typically used to ensure clear
current maps that have distinguishable features measurable
above the noise floor. An extension of the conductivity map is
to measure photoconductivity with an AFM (PC-AFM).198

Here light is shone onto the sample, creating excitons that
dissociate in the blend into charge pairs. Extraction of the
charge pairs by the metal-coated AFM tip under bias with
respect to the sample substrate contact leads to a measured
photocurrent, which then will vary depending upon blend
composition as the tip is scanned across the sample, as depicted
in Figure 19. This enables a photocurrent map to be built that
can be qualitatively analogous to the donor:acceptor concen-
tration.

4.1.2. Scanning Near-Field Optical Microscopy. The
length scale of interest, 10−50 nm, as indicated above, is well
below the diffraction limit enabled with conventional confocal
optical microscopy; however, this is just within the capabilities
of another optical microscopy technique, scanning near-field
optical microscopy (SNOM).199−202 Here an AFM is used,
either with a tip that has a ∼50 nm aperture in it that light is
coupled into or with a solid tip that light is scattered off of. In
both cases, the evanescent wave of light from the end of the tip
is coupled into the sample below, leading to a spatial resolution
below the diffraction limit. Transmission and reflection of the
excitation light can be collected, as well as fluorescence from
the sample under investigation. Additionally, Raman spectros-
copy of the scattered incident excitation light can be performed.
All of these modes can contribute to discriminating the blend
morphology in a bulk heterojunction. Despite the promising
path for SNOM in helping with BHJ morphology, typically that
has proved challenging in reality. This can be attributed to the
advanced nature of the suite of SNOM techniques, along with
the challenges in reaching the headline spatial resolution of <50
nm. Additionally, mixing between the donor and acceptor tends
to “blur” the SNOM images, making high resolutions difficult
to achieve. Nevertheless, successful investigations of organic
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semiconductors using SNOM techniques have been made. In
Figure 20, a blend of poly(9,9′-dioctylfluorene) and poly(9,9′-
dioctylfluorene-alt-benzothiadiazole) is investigated with
SNOM.196 In this system, the two polymers show clear phase

separation, and this allows nanoscale mapping of the
fluorescence from each of them to be made. OPV blends
were investigated by Schubert et al., who looked at the
absorption of light by the donor and acceptor to build up maps
of the two materials.203 Shown in Figure 20 are maps of the
donor P3HT absorption in blends cast from different solvents,
indicating both the changes in nanomorphology and the mixing
enhancements that lead to loss of contrast with the acceptor.
Exploring the Raman properties of materials, a recent paper has
investigated the nanoscale composition of materials, as also
shown in Figure 20, finding that materials can be distinguished
by their vibrational responses.204

4.1.3. Electron Microscopy. At first glance, the most
practical route to achieving the high spatial resolution required
for observing BHJ morphology is the use of electron
microscopy.205−207 The de Broglie wavelength of accelerated
electrons can reach the picometer length scale, and while other
practicalities of electron microscopy restrict the spatial
resolution to the angstrom scale, this is still well within the
requirements for measuring the length scales of interest in OPV
blends. The qualifier on this promising route is that both the
donor and acceptor in OPV blends are primarily carbon-based,
and thus, the two materials have a very similar response to
electrons, thus measuring contrast can be challenging and
frequently requires the application of specific blends with
favorable contrast and advanced measurement techniques or
sample preparation.

Figure 18. (A) AFM topography of a blend film of PFO and F8BT,
showing clear phase separation. (B) Topography and (C) phase image
of the same area of a P3HT:PC61BM blend film, indicating the finer
details that the phase measurement reveals. The image in panel A is
reprinted with permission from ref 196. Copyright 2003 Nature
Publishing Group. The images in panels B and C are reprinted with
permission from ref 197. Copyright 2008 John Wiley and Sons.

Figure 19. Schematic illustration of a photoconductive AFM setup.
Illumination of a sample leads to the generation of excitons that
dissociate into charges. These charges are then extracted by the metal
AFM tip, which is under bias with respect to the sample substrate.
Spatial scanning of the sample (or the tip) allows a 2D photocurrent
map to be recorded. Reprinted with permission from ref 198.
Copyright 2010 American Chemical Society.
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In classical bright-field transmission electron microscopy
(TEM), an electron gun is imaged onto a sample, and the
transmitted intensity is measured on a phosphor screen. The
whole thickness of the sample is imaged, and thus, absorption
of electrons through the sample volume will lead to a reduced
signal in the image plane, while transmission of electrons will
lead to a higher signal. Contrast differences between materials
are required to see features. Typically, for all-organic BHJ films
very limited contrast exists, and thus, only specific blends with
fortuitous compositions can readily be imaged with bright-field
conventional TEM, such as choosing a blend with a high purity
of phases, as demonstrated in Figure 21A.
Conventional TEM images are simple projections of the

sample volume onto a plane; however, 3D information can be
derived if multiple projections are made at different sample
angles with respect to the electron beam plane, enabling
computer-aided TEM tomography to be performed. High
contrast between blend components is required as a
prerequisite before attempting tomography, as the reconstruc-
tion process is challenging; however, as shown in Figure 21B,
when a suitable system is measured, the results can lead to
detailed and valuable information on the full three-dimensional
morphology of the blend, leading to a large amount of
secondary information, such as mean free paths of material and
connectivity analysis. The stunning image shown illustrates the
remarkable level of detail that can be achieved in a best-case
situation. However, a hybrid solar cell, i.e., an organic donor
with an inorganic acceptor, is a situation that gives strong
contrast. For organic/organic bulk heterojunctions, a range of
advanced TEM techniques discussed below have proved useful
to enhance contrast and/or give compositional informa-
tion.206,207

In energy-filtered transmission electron microscopy
(EFTEM), inelastically scattered electrons from the sample
are selectively filtered for detection. Such inelastic scattering
can occur with different amounts of energy loss for different
elements, e.g., due to different energies of core electron

transitions. Selective transmission of specific scattered electron
energies, e.g., carbon K edge, sulfur, or fluorine, can be made
and imaged, leading to elemental maps. This can be used to
distinguish between the components of a photovoltaic blend,
for while carbon is generally a constituent in both blend
materials, the polymer will typically include sulfur or fluorine
atoms that can be used to give contrast.
In high-resolution transmission electron microscopy

(HRTEM), the highest spatial resolution is achieved, at the
potential cost of not having discriminatory compositional
information. This technique is thus most useful for resolving
crystalline regions of material, commonly associated with OPV
blend materials, such as P3HT, that show high degrees of local
ordering. Advanced defocusing techniques may be used to
enhance the resolved image; however, caution has to be applied
when doing this, as the dangers of misinterpretation are
significant. Shown in Figure 22 is a HRTEM image of a blend
of the small molecule donor material p-DTS(FBTTh2)2 with
PC61BM. Highly ordered regions are observed, indicating both
the lattice spacing and the domain boundaries of the crystallite.
As noted above, compositional information is lacking; thus, it is
not known if the crystallite is set within the amorphous material
of the donor itself or of the acceptor.

4.1.4. Time-Resolved Photophysics. To probe the local
morphology at the smallest length scales, angstroms to
nanometers, there exists the possibility to use the time-
dependent light emission or absorption from the organic
materials in the blend themselves as nanoscale probes of the
local composition. This has the added advantage of determining
the exciton harvesting of the blend itself directly, with the
population of excitons formed from light absorption being
measured and the degree of quenching by the other component
of the blend quantified. With this technique, transient
photoluminescence (TPL) or transient absorption (TA) can
be used to determine certain geometric shapes, if the exciton
diffusion coefficient is known. For example, as shown
schematically in Figure 23, if the exciton diffusion coefficient

Figure 20. Scanning near-field optical microscopy of the blend of the conjugated polymers PFO and F8BT showing the AFM topography (A) and
F8BT near-field PL (B); arrow 1 indicates regions of F8BT, while arrow 2 shows PFO. Reprinted with permission from ref 196. Copyright 2003
Nature Publishing Group. (C and D) Optical density (absorption) measurements of P3HT blended with a naphthalene-polymer-based acceptor.
Casting from p-xylene (C) gives large-scale phase separation, while casting from a 1:1 mixture of p-xylene and chloronapthalene (D) gives a well-
mixed blend. Reprinted with permission from ref 203. Copyright 2012 John Wiley and Sons. (E and F) Block-co-polymer of polystyrene and
poly(methyl methacrylate) measured with AFM phase (E) and near-field Raman imaging of the 1735 cm−1 carbonyl mode (F). Reprinted with
permission from ref 204. Copyright 2014 Nature Publishing Group.
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of a donor material (blue) is known, and it is surrounded by an
acceptor material (red), then with sufficient time resolution, the
Smoluchowski equation can be used to determine the radius, r,
of the donor domain. This method relies on a presumed
knowledge of the geometry of the donor domain (spherical,
cylindrical, oblate spheroid, etc.) and for easiest modeling an
analytical solution to the Smoluchowski equation for that
geometry.
The main advantage of this technique is that it is sensitive on

the very smallest scale in the immediate vicinity surrounding
the polymer or fullerene. A disadvantage is that the blend
chosen for this technique has to be amenable to analysis, with
relatively pure phases of material present to enable modeling of
the diffusion to a quenching surface; if the quencher is too
dispersed in the blend, i.e., if the blend has a significant mixed
phase, then excitons are quenched without having to diffuse to
the donor:acceptor interface. The blend ratios used in devices

are typically on the order of 1:1 and have significant mixed
phase components, thus leading to kinetics that may be too
complicated to model and understand correctly using accessible
analytical fitting methods. However, in systems amenable to
analysis, the technique can give important information. Shown
in Figure 24 is the derived domain size distribution in a blend
of two polymers, PFB and F8BT, when the ratio between the
two components is modified. One can immediately grasp why
this technique has powerful conclusions when applied correctly,
as such small length scale domain distributions would be very

Figure 21. (A) Bright-field transmission electron microscopy of
MDMO-PPV:PC61BM blend. Strong demixing leads to easily
measurable phase separation, with fullerene regions appearing dark.
Reprinted with permission from ref 208. Copyright 2009 The Royal
Society of Chemistry. (B) TEM tomography reconstruction of
P3HT:ZnO blend, with regions of ZnO being yellow, P3HT appearing
transparent, and the gray region on top being the aluminum top
contact. Reprinted with permission from ref 209. Copyright 2009
Nature Publishing Group.

Figure 22. High-resolution transmission electron microscopy of a
blend film of p-DTS(FBTTh2)2 with PC61BM when processed with
0.4% diiodooctane. Regions of crystalline order are observed.
Reprinted with permission from ref 210. Copyright 2014 American
Chemical Society.

Figure 23. Schematic of time-resolved PL derived morphology with
donor material (blue region in center) surrounded by an acceptor (red
region). An exciton generated in the center of the donor region has an
exciton diffusion radius (LD) denoted by the dashed line, which should
correspond to the natural unquenched PL lifetime. Measured shorter
PL lifetimes can enable (presuming a spherical geometry) the radius to
the acceptor (r) to be determined.
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difficult to observe with the multitude of morphology
techniques discussed above in the previous sections.
4.2. Key Blend Morphologies

With an understanding of the key techniques to measure
morphology, we now turn our attention to study the key
donor:acceptor blend morphologies that have been reported
over the last 15 years. In discussing the morphology here, we
are particularly thinking of its role in light harvesting and the
operation of the device: as already explained, in order to harvest
light in a bulk heterojunction organic photovoltaic cell, the
donor and acceptor domains need to be within an exciton
diffusion length (typically ∼10 nm) of where the light is
absorbed. In looking at the morphology of OPV blends, we aim
to examine why systems do and do not work and any common
themes that we can deduce between different blends. The
number of donor:acceptor combinations in the development of
OPVs is very large, so we focus on three key generations of
OPV donor polymer materials, namely, poly[2-methoxy-5-(3,7-
dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV),
poly[3-hexylthiophene-2,5-diyl] (P3HT), and poly[[4,8-bis-
[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl][3-
fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]]
(PTB7). The chemical structures for these three key donor
materials are shown in Figure 25.

Each donor material represents a key generational point in
the development of OPVs, with MDMO-PPV blends reaching
power conversion efficiencies of 1−3%,212−214 P3HT 3−
5%,165,215−218 and PTB7 7−10%.36,37,219 Here we will examine
the efforts to understand the morphology of blends containing
these donor materials to date. It is worth noting that recently
small molecule donors have begun to match the performance of
polymeric materials.220−223 The morphologies discussed in this
review can be pertinent to small molecule BHJs, but we have
chosen not to feature any specific study of a small molecule
blend owing to the potentially different physics and chemistry
at play in material organization (e.g., crystallinity, miscibility). A
variety of acceptors have been used in fabricating BHJ cells
based on these donors, but generally, fullerene derivatives such
as [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) or
[6,6]-phenyl-C71-butyric acid methyl ester (PC71BM), both
chemical structures shown in Figure 25, have been used.

4.2.1. MDMO-PPV. MDMO-PPV was one of the earliest
successful OPV donor materials, giving reliable power
conversion efficiencies in the region of 1−2%,212 with the
highest efficiency of 3% being reached when blended with
PC71BM.213 Almost no spectral coverage in the red part of the
visible spectrum and relatively low external quantum
efficiencies are responsible for the overall power conversion
efficiency of ∼2%. The completely amorphous nature of
MDMO-PPV prevents the use of X-ray diffraction techniques
to study the polymer or bulk heterojunction blends, so
information on the structural arrangement of the materials
relies solely on other techniques, as detailed below.
The morphology of the MDMO-PPV:fullerene system has

been extensively studied.224−227 The fullerene was found to mix
intimately with MDMO-PPV up to ∼50% mass ratio.225 On the
face of it, such fine mixing is ideal for light harvesting, as it will
give very strong exciton dissociation and good charge-pair
generation. Unfortunately, while maximizing surface area for
charge separation, the large surface area associated with such
fine mixing also leads to strong charge recombination, as
opposite charges can readily meet again. Hence, charge
extraction is very problematic is such a finely mixed structure.
It was found that if the blend has more than 50% fullerene, then
phase separation starts to occur, leading to the formation of
pure unmixed domains comprised solely of PC61BM.225 The

Figure 24. Derived probability density of exciton diffusion length as a
function of distance for different blends of PFB:F8BT. Mass ratios of
PFB:F8BT are as follows: squares are 90:10, circles are 75:25, upward
triangles are 50:50, and downward triangles are 20:80. The solid line
indicates the theoretical exciton diffusion length distribution for a
sphere of 2 nm radius and the dashed line for a 5 nm sphere radius.
Reprinted with permission from ref 211. Copyright 2008 American
Physical Society.

Figure 25. Chemical structures of three donor materials (MDMO-PPV, P3HT, PTB7) and two acceptor materials (PC61BM, PC71BM) that are
examined in this section.
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best device performance was obtained with 80% fullerene:20%
MDMO-PPV by mass. At this blend ratio pure fullerene
domains form that give rise to percolation pathways for
electrons, thus spatially separating the charges and suppressing
recombination. The phase separation is, however, relatively
uncontrolled, and at the optimal fullerene loading ratio of 80%,
large 60−500 nm fullerene domains form, with the size
dependent on the casting solvent used for the blend.227 These
sizes and high degrees of purity enable observation with TEM
(Figure 26A,B), SEM (Figure 26C,D), and AFM (Figure
26E,F). An overall schematic of the morphology is shown in
Figure 27, with charge transport and extraction to a tip contact

indicated. Such morphology is clearly not the most advanta-
geous for photovoltaic cells. Fullerene domains that form near
the top of the active layer promote good electron and hole
extraction to their electrodes and could be thought of in effect
as equivalent to not being too far away from ideal nanoscale-
ordered heterojunctions. On the other hand, when the fullerene
is buried inside the blend, then electrons have to transverse
regions that only contain 50% fullerene (meaning recombina-
tion with holes is likely), while, more critically, holes have to get

through near-pure fullerene domains, an unlikely occurrence.
These restrictions are partly responsible for the relatively low
external quantum efficiency of this optimized blend and
indicate how the morphology has an important role to play
in determining the overall light harvesting and photovoltaic
performance of organic BHJ blends.
The large size of the pure fullerene domains does have the

distinct advantage of making them easier to characterize, and in
particular, the work of Coffey et al. in measuring the electrical
characteristics on and off the domains with PC-AFM enabled
novel nanoscale electrical behavior to be explored.228 Position-
ing the PC-AFM tip on different regions of the blend enables
local I−V curves to be constructed, as shown in Figure 28. One
can thus correlate regions of high and low current at different
biases with the AFM topography and other morphological
information to understand how the electrical behavior of the
blend is related to the physical organization of the material.
Finally, it is worth noting that the overall morphological

structure of MDMO-PPV:PC61BM described here has become
a recurring theme in a number of OPV blends with higher than
50% fullerene weighting and has helped in understanding high-
performance blends such as PTB7:PC71BM (vide infra) a
number of years after the original work was reported. This
indicates that knowledge derived for one blend, while specific
to that blend, can also contain general information or indicators
for others.

4.2.2. P3HT. P3HT was the prototypical OPV donor
polymer for a significant number of years and continues to be
important as a benchmark system to study and understand.
Power conversion efficiencies range between 3 and 5% for
P3HT blended with PC61BM.165,215−218

In contrast to the completely amorphous polymer MDMO-
PPV discussed above, P3HT is characterized by its semicrystal-
line nature, where regions of P3HT are amorphous and small
regions, ∼10 × 10 × 20 nm are ordered into crystallites.229 This
semicrystalline nature of the polymer is important to the
photovoltaic performance of the material and has major effects

Figure 26. Microscopy images of MDMO-PPV:PC61BM blends spin-coated from toluene (top row, A, C, E) and chlorobenzene (bottom row, B, D,
F) when measured with bright-field TEM (A, B), cross-section imaging with SEM (C, D), and AFM topography (E, F). Large pure fullerene
domains form when spin-coated from toluene, which get smaller but are still distinct from MDMO-PPV when spin-coated from chlorobenzene.
Images in panels C−F are reprinted with permission from ref 227. Copyright 2006 Elsevier. Image in panel A reprinted with permission from ref 224.
Copyright 2003 Elsevier. Image in panel B reprinted with permission from ref 208. Copyright 2009 The Royal Society of Chemistry.

Figure 27. Schematic of the morphology in MDMO-PPV:PC61BM
blends when large pure fullerene domains are formed, indicating
relative charge transport and extraction to an AFM tip. Reprinted with
permission from ref 228. Copyright 2007 American Chemical Society.

Chemical Reviews Review

DOI: 10.1021/acs.chemrev.6b00215
Chem. Rev. 2017, 117, 796−837

817

http://dx.doi.org/10.1021/acs.chemrev.6b00215


on the morphology and light harvesting in the blend. These
effects are both positive (crystalline structures lead to higher
mobility and enable diffractive experimental techniques to be
used to characterize the morphology) and negative (the details
of the crystalline and mixed phases are complicated, with
unknowns in both the spatial and size distributions along with
complications in varieties of crystalline ordering controlled by
chemical structure variations). Consequently, while the
P3HT:PC61BM blend has been very heavily studied and is an

important blend to understand, a straightforward conclusive
morphological narrative for it has failed to gain acceptance. The
aim here is to highlight some informative studies that have been
completed on the P3HT-based blends to date and attempt to
build an overall sense of the likely morphology. It should be
noted that some studies that will be covered here do not use
PC61BM as the acceptor but alternatives that can help to
provide better contrast for measures of morphology.
Starting with an examination of the crystallinity aspects of the

polymer, P3HT itself is comprised of repeat units of a
thiophene monomer with a hexyl side chain at the 3-position.
The monomers can be arranged such that the hexyl side chain
is at the same position on every ring (regioregular, RR). This
gives high crystallinity, as the side chains of the polymer can
interleave, as shown in Figure 29, to form a periodic structure.
π-Stacking of the thiophene backbones can also occur to give
large three-dimensional aligned structures, which one can call
crystallites and, as noted above, can grow to ∼10 × 10 × 20 nm
in size.
As might be anticipated, these periodic regions of P3HT are

important in the photovoltaic performance of the material. The
reasons for this are multiple. The hole mobility in crystalline
P3HT can be close to double that of amorphous P3HT.230,231

The ability for charges to move with high mobilities in P3HT is
an obvious advantage when one aims to get holes to the
electrode and extract them quickly before they have a chance to
meet an electron and recombine. This aim is also enhanced by
the crystallinity in a second sense in that crystalline regions do
notby definitioncontain any PC61BM molecules. Thus,
recombination of holes with electrons on fullerene molecules is
suppressed inside the crystallite, allowing the hole to move
freely without being lost. Crystalline P3HT thus seems like an
ideal candidate for use in photovoltaic blends; there are,
however, many challenges in bringing together each of the
advantageous properties in the correct way to enable the
optimal light harvesting. For example, holes may well have high
mobilities and low recombination probabilities inside P3HT
crystallites, but unless that crystallite connects to the anode, the
holes will have to transverse other more disordered regions to
be extracted. The morphology of the entire blend, ordered and
disordered polymer and fullerene, thus determines the overall
light-harvesting and photovoltaic performance of the system.
Where does one begin with such a complex question as to what
is the morphology in P3HT-based blends?
Compositionally, large-scale phase separation does not occur

in blends of P3HT:PC61BM, and this makes the determination
of compositional maps challenging. Initial bright-field TEM
studies232 were able to discern some features, but the low
contrast hampered strong interpretation of the data. A strategy
of creating contrast by shrewd choice of blend components
thus arose as a method for understanding the morphology. In
work by Roehling et al.,233 an endohedral fullerene was used as
the acceptor. Here a heavy-metal lutetium-based trimetallic
nitride, Lu3N, is contained within a solubilized C80 fullerene
cage. Blends of P3HT with Lu3N−PC81BH produce power
conversion efficiencies of up to 4%,234 with advantageous open
circuit voltages of ∼0.8 V, and so are a valid blend composition
for investigation of morphology. The heavy metal contained
within the fullerene affords strong contrast with the P3HT in
the high-angle annular dark-field scanning transmission electron
microscopy tomography experiments that the authors report.233

Examination of the three phases (P3HT, fullerene-rich, and
mixed) in as-cast films and annealed films that give optimal

Figure 28. Photoconductive AFM of MDMO-PPV:PC61BM blend.
(A) Schematic of the experimental setup. (B) AFM topography of
blend film. (C) Photocurrent map of the same region as in panel B, at
0 V bias, showing regions high and low in current. (D) I−V curves for
specific points as indicated by the symbols on panels B and C.
Reprinted with permission from ref 228. Copyright 2007 American
Chemical Society.
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power conversion efficiencies show strong differences that
explain the differing light harvesting. In the as-cast films, the
P3HT and fullerene are separated into distinct, small domains
surrounded by a large mixed-phase component (Figure 30, left
side). The role of thermal annealing is clear in the
morphological evolution of the blend (Figure 30, right side),
as fullerene-rich and P3HT domains have become larger and
connected together to form networks. Crucially, the tomog-
raphy technique enables the morphology in the z direction (i.e.,
perpendicular to the substrate) to be determined. For the
annealed blend, one can see in cross-sectional reconstructions
(Figure 30, bottom row) that the P3HT and fullerene-rich
domains have extended in the z direction as well as the x and y
directions. This is important, for charges are flowing in
primarily the z direction, and one can see that clear continuous
phases of P3HT and fullerene exist throughout this direction,
enabling charges to be extracted with low recombination
probabilities.
The large endohedral fullerene molecules are not frequently

used, so there is a desire for determination of the three-
dimensional morphology of more commonly studied blends.
To this end, another way of obtaining high contrast was to
study the hybrid inorganic blend of P3HT with zinc oxide.
Power conversion efficiencies in these devices can reach
2%,209,235 and it is an interesting candidate for photovoltaic
cells, as the inorganic component carries distinct advantages
(high dielectric constant, high charge mobility), so the formed
morphology is important. The organic:inorganic blend gives
rise to high contrast in transmission electron microscopy,
enabling TEM tomography to be performed.209 We chose to
highlight this tomography study owing to both the exceptional
contrast that is garnered from the blend components and the
analysis that the authors have provided, which goes beyond
simple pictorial representations of the morphology into a more
detailed quantitative investigation. Three thicknesses of
P3HT:ZnO films were investigated, 57, 100, and 167 nm
thick, and the tomography of each was measured, as shown in

Figure 31A−C, where ZnO is highlighted in yellow and P3HT
is transparent. It can be seen that the thinnest film contains a
great degree of phase separation, with large areas of P3HT
surrounded by small clusters of ZnO. When the films are made
thicker, the ZnO becomes more distributed inside the film
volume and the P3HT domains are substantially reduced in
size. The work does not just end at the 3D reconstruction of
the morphology, however, but applies the now known 3D
organization of the materials to look at the efficiency of
quenching of P3HT excitons by applying a diffusion model
with the known exciton lifetime and diffusion coefficient. This
enables a 3D model of the exciton quenching to be generated,
as shown in Figure 31D−F. These results are now determining
quantitative information on how the blend behaves in a
photovoltaic context at harvesting light and are a gold standard
for others to aim at in quantifying light harvesting of a blend as
opposed to simply showing images.
The modeled exciton quenching reveals that large areas of

the 57 nm thick film have no or very little light harvesting at all.
Doubling of the thickness to 100 nm shows a dramatic
improvement, with only a very small region of the film not able
to contribute to light harvesting. Finally, at a film thickness of
167 nm, there are no regions of the film that do not contribute,
and the worst areas are only a few small domains that have only
50% probability of light harvesting. It is clear from this study
that the most powerful way to examine light harvesting in bulk
heterojunction organic photovoltaic blends is with the ability to
combine detailed morphological information with photo-
physical knowledge.
The best examination of the morphology and light-harvesting

properties of P3HT would be with PC61BM, as this is the most
common blend combination and is the most well understood
blend in terms of other electrical and photophysical
studies.65,145,163,236−247 The challenge, however, as already
noted, is that poor contrast exists between the materials to
enable discrimination of the composition. Consequently, more
advanced microscopy techniques have been used. The most

Figure 29. Crystalline organization of P3HT chains, which can form edge-on (A) or face-on (B) aggregates to the substrate. Reprinted with
permission from ref 229. Copyright 2012 American Physical Society.
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promising study made use of a variant of energy-filtered TEM
and significant computational image analysis to enable the
production of material maps looking through the film248

(Figure 32). Here P3HT and PC61BM domains could be
mapped, along with a mixed phase of the two materials,
showing that isolated domains of both materials are found

embedded in a mixed-phase matrix. The compositional maps of
as-cast films of the blend were compared with those of
thermally annealed films.
Thermal annealing is a postdeposition processing step

commonly used to great ly enhance device effi -
ciency.165,217,249−251 In thermal annealing, the film is heated,
leading to it softening and the possibility of both the polymer
and fullerene rearranging their packing in the film. In particular,
when the film is heated to a temperature above the glass
transition temperature (Tg) of the polymer, the polymer enters
a “rubbery” phase that enables the chains to move, bend, and
reshape themselves to enable crystalline order between or
among the chains to be formed. Alternatively, solvent vapor
annealing (SVA) can be used252,253 to enhance crystallinity.
Here a film is exposed to solvent vapor, which causes it to swell,
thereby allowing rearrangement of the polymer chains (and
fullerene) and enabling crystallinity to increase. Upon thermal
annealing, the domains of P3HT and PC61BM are found to
grow, joining together to form in-plane bicontinuous networks,
with a feature size of 14−100 nm found by analyzing the
spectral power density of the image in Figure 32B. This result is
consistent with the endohedral fullerene STEM tomography
measurements already presented above and gives good
confidence that thermal annealing consistently increases
domain size and purity to enhance charge transport networks
in the active layer.
This result is a good starting point for understanding

P3HT:PC61BM light-harvesting morphologies, but there are
many unknowns remaining, as primarily the plane parallel to
the substrate was mapped, with the compositional information
integrated along the z direction, as is commonly the case with
TEM-based techniques. Extracting z information is possible
with spectroscopic ellipsometry,254 but at the cost of not having
lateral information (x and y directions) on the same sample
volume. Ideally, one would like full three-dimensional
information. Two ways to obtain such information have been
found. In the first, Masters et al. have developed a novel energy
filtering of secondary electrons in scanning electron microscopy
for use with organic BHJ blends.255 The advantage of this is
that only the top few (1−3) nanometers are able to contribute
to the EFSEM signal, ensuring the observations give only xy
plane morphology rather than the full-film thickness z-
integrated morphology that was measured above with
EFTEM. If one were to selectively remove layers of the sample
with etching, then 3D information could be derived. The
EFSEM measurements were as much a proof-of-principle on
using the technique with all-organic BHJ blends as a detailed
examination of morphology, but the authors did choose to
investigate P3HT:PC61BM to validate their methods. With
confidence that only the surface of the film is being imaged, the
authors first find a P3HT “skin” layer on top of the blend that
they need to remove with plasma treatment. Once that has
been removed, they were able to use energy filtering to directly
observe P3HT-rich, mixed, and PC61BM-rich phases before and
after thermal annealing (Figure 33), finding typical phase sizes
of 16 and 28 nm. Such phase sizes are indicative of why
P3HT:PC61BM works well as a BHJ OPV blend, as they are on
the correct order for ensuring that excitons created are able to
diffuse to the interface and be separated into charge pairs, as
already discussed in this review. Consequently, with such phase
sizes, good light harvesting can be achieved. These results
corroborate what has been observed previously, but do so with

Figure 30. TEM tomography reconstructions of as cast (left column)
and thermally annealed (right column) P3HT:Lu-PC61BM blend films.
Shown are identified P3HT regions (first row), fullerene-rich regions
(second row), mixed-phase regions (third row), and cross-sectional
composites of all three (fourth row). Scale bars are 100 nm. Reprinted
with permission from ref 233. Copyright 2013 John Wiley and Sons.
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the distinction that they are definitively only looking at a very
thin plane of the morphology rather than z-integrated results.
The second way to address the problem of getting z

information for P3HT:PC61BM is the use of computer aided
TEM tomography as already discussed, but this is extremely
challenging with the limited contrast available in conventional
bright-field TEM. Recent pioneering studies have utilized
energy-filtered TEM tomography256 and energy-filtered scan-
ning electron microscopy on a different OPV blend, indicating
that such techniques are possible. Consequently, for
P3HT:PC61BM-based blends some alternative strategies have

been used to enable the generation of contrast. In work in
2009, van Bavel et al.208 undertook TEM tomography on
P3HT:PC61BM blend films to determine the three-dimensional
organization of the blend. Using relatively low molecular weight
P3HT (19.4 kDa) that preferentially forms highly crystalline
nanorods,257 contrast was enabled for tomography. The work
enabled full 3D reconstructions of the blend morphology in as-
cast, thermally annealed, and solvent-annealed samples. In the
as-cast film, few features were seen, owing to the primarily
amorphous nature of the P3HT being indistinguishable from
the PC61BM. However, in the two annealed samples, strong

Figure 31. Morphology of P3HT:ZnO blend films of three thicknesses (57 nm, first column; 100 nm, second column; and 157 nm, third column).
Panels A−C show the reconstructed TEM tomography for the films, with ZnO yellow and P3HT transparent. Panels D−F show modeled exciton
harvesting for each determined morphology when using the known P3HT exciton diffusion coefficient, with red regions corresponding to near-unity
harvesting and blue/black regions to almost none. Reprinted with permission from ref 209. Copyright 2009 Nature Publishing Group.

Figure 32. EFTEM of P3HT:PC61BM blend as-cast (A) and after
thermal annealing (B). Green areas show P3HT, red areas PC61BM,
and yellow areas a mixture of the two. Reprinted with permission from
ref 248. Copyright 2011 American Chemical Society.

Figure 33. Novel energy-filtered SEM image of P3HT:PC61BM blends
as cast (A) and after thermal annealing (B), with red indicating P3HT-
rich areas and blue PC61BM rich areas, while gray denotes mixed
regions. Reprinted from ref 255. Licensed under CC-BY-4.0.

Chemical Reviews Review

DOI: 10.1021/acs.chemrev.6b00215
Chem. Rev. 2017, 117, 796−837

821

http://dx.doi.org/10.1021/acs.chemrev.6b00215


P3HT nanorod crystallization was induced and strong contrast
was formed. The 3D reconstruction allows information on the
composition perpendicular to the substrate (the z direction) to
be deduced, as shown in Figure 34. The proportion of

crystalline P3HT nanorods as a function of depth through the
film can be measured and shows that the majority lie close to
the bottom of the film. This is an important result and is
consistent with good device performance, as hole extraction is
through the ITO anode at the bottom of the film.
The disadvantages of the study, as the authors concede, is

that contrast is only provided with the highly crystalline P3HT
nanorods; thus, no information is deduced on the amorphous
P3HT. In addition, the relatively low molecular weight of the
P3HT used is a little different from the values typically used in
devices, where such nanorods are not commonly observed.
However, these limitations must be viewed in the context of the
aim of truly observing the three-dimensional nanomorphology
of the blend, which was achieved.
The second part of the P3HT:PC61BM light-harvesting

morphology narrative, as discussed at the beginning of this
section, is the crystallinity of the P3HT. This is a difficult and
challenging set of variables to measure, but numerous
diffraction techniques can aid in understanding. Given the
number of studies that have been undertaken on P3HT,257−263

we have selected only a few that offer the most comprehensive
overall impression of crystallinity in the polymer as it pertains
to OPV blends. To examine the blend crystallinity it is
pertinent to begin by just looking at the organization in films of
P3HT on its own. A comprehensive investigation by Duong et
al.229 using grazing-incidence X-ray diffraction (GIXRD) was
able to quantify the orientation, size, and spatial placement of
crystalline P3HT regions within neat films. By analyzing the
intensities of edge-on and face-on diffraction peaks in situ
during film formation, along with optical absorption spectra, a
picture is able to be drawn of the overall evolution of film
crystallinity formation and orientations, as shown in Figure 35.
The term “aggregate” was used to describe one-dimensional

π-stacking, while “crystallite” was used to describe lamellae of
those aggregates giving two-dimensional ordering.229 It was
found that edge-on P3HT crystallites, 20 × 10 × 10 nm in size
dominate at the substrate−film boundary, before giving way to
face-on orientated crystallites 6 × 8 × 3 nm in size further
inside the film. The ratio of the overall edge- and face-on
orientations was dependent on the casting solvent used, with
chloroform giving predominantly face-on aggregates in the bulk
of the film, while dichlorobenzene gave primarily edge-on.

Figure 34. TEM tomography slices of a 100−200 nm thick
P3HT:PC61BM blend film, with P3HT indicated by the color yellow.
Slices are taken toward the bottom of the film (A) and toward the top
of the film (B), indicating differences in the amount of P3HT. This can
enable the P3HT volume percentage as a function of z-position in the
film, as shown in panel C, to be measured. Reprinted with permission
from ref 208. Copyright 2009 American Chemical Society.

Figure 35. Schematic of how P3HT films form during spin-coating deposition. Initial edge-on aggregates align on the substrate (A), which grow into
crystallites (B), followed by the formation of face-on aggregates higher up in the film (C), which grow into crystallites (D) before all the elements
finally form a tightly packed structure (E). Reprinted with permission from ref 229. Copyright 2012 American Physical Society.
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For light harvesting, the structure of the P3HT:PC61BM BHJ
blends is important, and it is found that some of the same
observations hold true. In the as-cast blend, P3HT crystallites
are primarily edge-on to the substrate, while after thermal
annealing it was found that these reorientate to face-on.262 The
size of the crystallites increases upon annealing,208 and in
another study, it was found that the inclusion of PC61BM
somewhat restricts the size that the P3HT crystallites can grow
to upon annealing when compared to films of neat P3HT.262 A
detailed discussion of the complex results that can be obtained
from diffraction techniques is outside the scope of this work,
but we note that a number of studies have investigated
polymer:fullerene blends (typically P3HT:PC61BM) and
attempted to place those results within the context of other
morphological, electrical, and photophysical knowledge on the
blend,264−269 and a comprehensive review of the topic has also
been published by Rivnay et al. that goes into far greater
detail.270 One final application of diffraction techniques that we
do wish to highlight is their use for in situ studies of the
evolution of order in thin films as they are annealed. This can
also be in combination with other photophysical measurements,
such as variable-angle spectroscopic ellipsometry (VASE) or
field-effect mobility measurements to give a greater under-
standing of the annealing process.271 Observing the evolution
of the material crystallinity during annealing can give new
insights into how the crystalline regions form and grow under
the influence of heat, as shown for P3HT:PC61BM films in
Figure 36.272 Here grazing-incidence X-ray diffraction measure-
ments have been made continuously while the blend film has
been annealed, and the out-of-plane [100] crystallite domain
size has been calculated from the scattering peak size with the
Scherrer equation. It can be seen that as soon as heat is applied
to the film, the domain size increases and is then followed by a
slower period of growth lasting for ∼10 min of annealing.
Annealing longer than 10 min leads to a subtle loss of domain
size over time, consistent with the optimal annealing time in
devices being in the 10−15 min range. When the film is cooled,
a clear drop in the P3HT domain size is observed and may be
linked to some disorder being reintroduced now that less
thermal energy is available. From these results, one can see that
dynamical experiments to study annealing can give unique
information on the morphology of BHJ blends, and a number
of important studies have been reported that indicate the power
of this methodology.272−274

Finally, to draw all of the knowledge presented on the
morphology of P3HT:PC61BM together, we present an overall
schematic of the as-cast organization of the material and how
that is altered by thermal annealing, as depicted in Figure 37.
After casting P3HT:PC61BM solution by spin-coating we

have a primarily mixed blend of the two materials, with phase
separation promoted on small length scales. Small P3HT
crystallites align edge-on to the substrate, but overall, light
harvesting in an OPV configuration is hindered owing to the
small isolated domains of both materials that will enhance
exciton dissociation but strongly hamper charge transport and
extraction. Thermal annealing of P3HT:PC61BM blends has
been shown to triple the power conversion efficiency,165,166 and
morphology studies can explain why. In this blend, the light
harvesting is optimized owing to the larger phase separation
that leads to bicontinuous pathways of polymer and fullerene
that form in-plane and out-of-plane. A mixed phase of the two
materials still exists, but it constitutes a smaller fraction of the
overall film after annealing. These results are consistent with

transient absorption studies that showed that charge generation
is much slower in thermally annealed P3HT:PC61BM blends
than in as-cast blends and presumably is limited by exciton
diffusion to a heterojunction.161−164 The charge recombination
mechanism also changes upon thermal annealing of
P3HT:PC61BM blends: while as-cast blends show substantial
geminate recombination, in annealed blends, recombination is
predominantly bimolecular, indicating that charge pairs
dissociate more efficiently into free carriers in annealed
blends.161−163,275 Geminate recombination is suppressed by
thermal annealing, but the network is still spatially fine enough
to ensure that all excitons reach heterojunction by diffusion and
give efficient charge generation.

4.2.3. PTB7. The final material that we will examine in detail
for how light harvesting is dependent on optimization of the
morphology is the high-performance polymer PTB7. With
optimized electrodes and interlayers, PTB7-based blends are
capable of reaching power conversion efficiencies in the range
of 9−10%.36,37 The material has proven important in propelling
organic photovoltaic devices to and across the 10% efficiency
barrier, an important milestone not just psychologically, but
also to enable OPVs to be potentially competitive with
amorphous silicon PV as a low-cost power generation
technology.

Figure 36. Time evolution of [100] out-of-plane (OOP) domain sizes
for P3HT calculated from Scherrer’s equation on the recorded grazing
incidence X-ray diffraction peaks. The sample is heated (the
temperature is indicated by the black line, right-hand axis) and the
domain size is monitored for different weight percentages of
P3HT:PC61BM blend films. Overall, the domain size increases when
the film is heated for ∼15 min. A small reduction in domain sizes
occurs when the film is cooled, but the overall sizes are still
substantially larger than before annealing. Reprinted with permission
from ref 272. Copyright 2011 American Chemical Society.
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Nearly always, the highest efficiencies are achieved with the
use of the high boiling point additive 1,8-diiodooctane (DIO).
DIO is added at 3% by volume to the solution prior to spin-
coating and is found to double the efficiency.219 Current−
voltage curves and external quantum efficiency spectra for as-
cast and additive-treated PTB7:PC71BM devices are shown in
Figure 38, with efficiencies slightly lower than in optimum
devices36,37 owing to nonoptimized contacts and lack of
interlayers, but the blends have active layer deposition
conditions (blend ratio, concentration, spin speed, etc.)
identical to those of the highest-efficiency devices. The
doubling of the efficiency with the use of DIO is a good
question to investigate in the context of the interplay between
the blend morphology and its effect on light harvesting, for
such dramatic device performance improvements are at the
heart of understanding why bulk heterojunctions work well and
how the can be fully optimized.
Without the use of the additive DIO, the blend films of PTB7

with PC71BM at a ratio of 1:1.5 show large quasi-periodic round

features 150−200 nm in diameter179,219 that are clearly visible
in AFM and TEM images (Figure 39), not dissimilar to the
observed morphology of MDMO-PPV:PC61BM (vide supra).
For such strong TEM contrast there must be a high degree of

material purity between the PTB7 and PC71BM regions, and
the fullerene can be identified as the main constituent of the
large 150−200 nm domains from its interactions with electrons
that form the TEM image. In OPV blends containing PC71BM,
the fullerene contributes significantly (up to half) of the
photocurrent, absorbing strongly in the blue and green. With
large pure fullerene domains this should lead to a low degree of
light harvesting from the fullerene, for excitons that form inside
such a large volume will only be able to diffuse ∼3 nm before
decaying to the ground state.77 It is thus surprising when time-
resolved photoluminescence of the fullerene was measured in
the blend and showed a very fast decay, with an average lifetime
of 67 ps, indicating that there was a significant amount of
quencher (i.e., PTB7) in the immediate vicinity of the fullerene
molecules.77 This is in contrast to the AFM and TEM images,
which show homogeneous, presumed pure, domains of
PC71BM.
The average lifetime is in fact comprised of a number of

components, including a fast ∼300 fs decay that is consistent
with fullerene exciton dissociation due to hole transfer to PTB7
that has to be right next to the fullerene molecules. Slower
picosecond decays represent exciton diffusion within regions of
PC71BM before quenching due to hole transfer to PTB7. As the
diffusion coefficient of PC71BM has been determined,77 the
morphology can be derived from the time-resolved PL decays.

Figure 37. Overall P3HT:PC61BM morphology, in-plane (A) and
laterally (B) of as-cast blend films (left column) and after thermal
annealing (right column), with P3HT-rich shown as shades of blue
and PC61BM-rich as shades of red. Initially, small spatially isolated
domains of both materials form, which after thermal annealing join up
to make contiguous domains in three dimensions. Thermal annealing
promoted the formation of pure crystalline domains of P3HT, which
are shown as the darkest blue regions in the annealed sample. The
impact of the morphology on the charge recombination in transient
absorption is shown in panel C, and here the as-cast film is the black
open squares and the black line and shows fast geminate
recombination owing to a higher degree of mixing, while the annealed
sample (red open circles, red line) has markedly less geminate
recombination. Image in panel C reprinted with permission from ref
163. Copyright 2010 American Chemical Society.

Figure 38. I−V curves (A) and external quantum efficiencies (B) for
PTB7:PC71BM devices from chlorobenzene as cast (black lines) and
with 3% diiodooctane (DIO) added to the casting solvent (red lines).
Device efficiency doubles with the use of DIO. Reprinted from ref 77.
Licensed under CC-BY-3.0.
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A best-fit is found for a region of pure fullerene material,
spherical in shape with a diameter of 60 nm, as shown in Figure
40A, well below the observed fullerene domain size of 150−200
nm. This led to a further examination of the morphology, and
upon closer investigation, a “skin” layer of PTB7 was observed
to be covering the active layer (Figure 40B), similar to some
MDMO-PPV and P3HT blends, as briefly mentioned in their
respective sections above. This skin layer is polymer-rich in
character, blankets the top of the film, and therefore obscures
the structural organization of the material beneath it when
probed with surface characterization techniques such as AFM.
By removing this skin layer with plasma etching, the true
morphology of the as-cast blend could then be observed with
AFM (Figure 40C), and the blend displays a remarkable
ordered morphology, with the large fullerene domains
appearing to actually comprise numerous small fullerene
spheres 20−60 nm in size, surrounded by a PTB7-rich
matrix.77,276

This work is a good example of utilizing time-resolve
photophysics to derive nanoscale morphology in an OPV
blend, for with a cursory glance the fullerene domains would be
presumed to be ∼200 nm in diameter, whereas in fact they are
∼60 nm. The small pure-fullerene spheres sit in a PTB7-rich
matrix, which studies have shown to be ∼70% PTB7 and 30%
PC71BM.179 The matrix and skin layer are presumed to be a
quintessentially mixed phase, with polymer and fullerene
completely mixed together at the smallest length scales with
no discernible phase separation. An overall picture of the
morphology without additive is thus able to be built and
explains the low power conversion efficiencies that are
obtained. Absorption of light and dissociation of excitons into
charge pairs by the polymer and fullerene are both good, but
charge separation, transport, and extraction are made difficult
owing to the morphology. The small pure-fullerene spheres
lead to regions where there is a large surface area for
dissociation but no continuous network for electron transport.
Furthermore, the intimately mixed-phase regions will promote
charge recombination, for there are no separated domains to
keep charges apart. Finally, the polymer-rich skin at the top of
the film acts as a partial electron-blocking layer, which is not the
most advantageous arrangement next to the electron-extracting
cathode in the device stack. Consequently, this morphology
tells us that even when one does have good exciton dissociation
and clear domains of material, light harvesting may not be
possible owing to the fact that all parts of the photovoltaic
process need to be satisfied to turn absorbed photons into
extracted charges.
With the use of a solvent additive, the device performance of

PTB7:PC71BM solar cells doubles.219 As the morphology of
blends without additive was found to be particularly
unattractive for good devices, it was speculated that this is
where major improvements must occur. The use of solvent
additives with OPVs has occurred for a number of different
blends,220,277,278 generally to control the evaporation rates of
the host solvent and to enable the correct amount of
crystallization or phase separation to occur. The type of
additive, its boiling point, and the volume percentage used are
typically determined by trial and error in order to achieve the
optimal device performance. For PTB7:PC71BM, the additive
found to work best is DIO, and the volume added is 3% into
chlorobenzene for an overall 25 mg mL−1 solute concentration
(10 mg of PTB7 and 15 mg of PC71BM).219 AFM or TEM
studies of the optimized blend with DIO show a uniformly
mixed blend (Figure 41A,B) with no discernible features.179,219

This is consistent with the time-resolved PL from the blend,
which shows a very fast predominantly 100 fs decay of fullerene
excitons.77 Using X-ray microscopy, the miscibility of the
fullerene into PTB7 is measured179 and found to be ∼60%,
with variations existing between 52 and 68%, creating regions
that are slightly polymer-rich and regions that are fullerene-rich;
however, the spatial resolution of the technique does not allow
any quantifiable information on that spatial concentration
variability.
As shown, AFM and TEM do not have the ability to

discriminate between the two materials with such a high degree
of mixing between them. Consequently, more advanced
techniques have been applied. The greatest success was seen
with photoconductive AFM (Figure 42), where remarkable
contrast in photocurrent was observed, with feature sizes down
to a few tens of nanometers.77 The PC-AFM photocurrent map
shows swirling linear features of high and low photocurrent.

Figure 39. AFM topography (A) and bright-field TEM (B) of
PTB7:PC71BM blend films from chlorobenzene as-cast. Image in panel
A reprinted with permission from ref 276. Copyright 2015 The Royal
Society of Chemistry. Image in panel B reprinted with permission from
ref 219. Copyright 2010 John Wiley and Sons.
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Light for the generation of photocurrent is provided by the
AFM tip laser at 670 nm and thus is primarily absorbed in
regions that are rich in PTB7, leading to high photocurrent,
while low photocurrent is due to regions rich in PC71BM.
While the observed morphology is in the substrate plane, and
current flow is perpendicular to that, what is observed is still
relevant, as charges may have to move laterally before finding
vertical pathways. If a closer look is taken at the morphology
(Figure 42B), then one can see that the PTB7-rich and
PC71BM-rich domains form extended elongated shapes, with
transitionary photocurrent measured between the domains (i.e.,
the photocurrent transition follows a gradual linear dependence
rather than a sharp step function between the domains).
Examination has also been made of the crystallinity of PTB7

by X-ray diffraction experiments.279,280 In work by Hammond
et al.,279 PTB7 was measured in blends with and without DIO,
and when combined with spectroscopic ellipsometry, informa-
tion on the alignment of the polymer chains and the degree of
crystallinity can be obtained. What was found was that PTB7
was not highly crystalline; indeed, by one measure only ∼21%
of the polymer chains were aligned in blend films. However,
this does not mean that the majority of PTB7 is amorphous, as
the authors comment that paracrystallinity is an important
consideration in the blend films, i.e., partial local ordering aided
by lattice strain. In addition, there is some evidence from other
work281 that polymers very similar to PTB7 readily aggregate,
and while this is not crystalline order, it is not what one would
class as a truly amorphous polymer either. Hammond et al. also
found that DIO plays no role in enhancing the crystallinity in
the blend films, with XRD being almost identical in blends with
and without DIO. The crystals that form are small by the
standards of P3HT discussed above, with typical dimensions of
1.5 × 5 nm (i.e., ca. four π-stacked chains, by ca. three d-
spacings).
Thus, overall the morphology generated with 3% DIO is

highly advantageous for light harvesting in a photovoltaic cell,
creating a blend with large surface areas between donor and
acceptor for efficient exciton dissociation into charge pairs and
quite small, interconnected, pure domains of both materials for
charge separation and transport with minimal recombination
losses. It is clear that in PTB7:PC71BM the morphology plays a
very important role in light harvesting, for if the morphology is
as it is when no DIO additive is used, solar cell efficiency is
halved. The role of DIO in the blend is to enable the highly

advantageous morphology for OPV performance; however, why
DIO has that role is still not fully understood. The common
function of DIO as a high boiling point solvent to slow the
evaporation process to enhance crystallinity is not relevant
here, where neither material is highly crystalline. Instead, DIO
seems to help mixing and miscibility of PTB7 and PC71BM,
with fullerene miscibility into the polymer enhanced from 30 to
60% when DIO is used. However, the improved miscibility not
only leads to well-mixed materials but also to an optimal
fiberlike nanoscale organized morphology, thereby enabling not
only efficient light harvesting to generate charge, but also
extraction of those charges.
Although the highest efficiencies with PTB7 are obtained

with PC71BM, BHJs can also be made with PC61BM, with
power conversion efficiencies in the region of 3−4%. As a
testament to how complex BHJ morphology can be, the
organization of the two materials in the PC61BM blend is
completely different from the PC71BM one discussed above.280

The higher miscibility of PC61BM than PC71BM
282 leads to a

higher degree of mixing and a more complex nanoscale
morphology. Small crystallites a few nanometers in size of
polymer and fullerene form near to each other, embedded in a
more disordered matrix of both materials. A subtle large-scale
phase separation on the order of 150 nm exists, but is not as
well-defined and impactful as in the PC71BM blends. Overall
the role of DIO in the PC61BM blends is less important, with
the additive enhancing mixing when chlorobenzene is used as
the casting solvent but otherwise not changing measured
parameters drastically. This is borne out by the overall device
efficiency, which only increases by a third with the use of DIO,
compared to the doubling of device efficiency for PC71BM-
based blends with chlorobenzene.

4.3. Morphology Summary

To conclude this section, we can see that the morphologythe
spatial organization of the donor and acceptor materials in the
blendis vitally important to successful harvesting of sunlight
in photovoltaic devices. The optimal morphology for each
blend combination frequently reduces to a compromise of
competing photophysical and electrical requirements for light
absorption, charge generation, transport, and extraction. If the
donor and acceptor are too spatially disconnected into phase-
separated domains, then exciton diffusion is unable to ensure
that absorbed light can be converted into charge pairs.

Figure 40. Morphology of PTB7:PC71BM blend film spin-coated from chlorobenzene without DIO. (A) Results of time-resolved PL decay
modeling, using the PC71BM exciton diffusion coefficient to determine that pure fullerene spheres ∼60 nm in size exist, much smaller than what is
observed from the initial morphology measurements. (B) SEM cross-sectional image of the blend, showing the “skin” on top of the blend layer that
was obscuring the true morphology. (C) After removal of the skin with plasma ashing, AFM topography shows that the large domains actually
consist of a large number of small fullerene domains, 20−60 nm in size, agreeing well with the time-resolved PL data in panel A. Reprinted from ref
77. Licensed under CC-BY-3.0.
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Conversely, if the two materials are too well mixed, then charge
pairs form easily but cannot be readily separated or kept apart
for long enough to enable extraction. If crystallinity in some of
the OPV materials is not great enough, then the charge
mobility is too low; if the crystallinity is too high, then charge-
pair generation is restricted. The morphology in OPV blends is
a delicate balancing act, the formed morphology has to be “just
right”, as otherwise losses in device performance are incurred.
Almost always this “just right” morphology is found by trial-
and-error device fabrication runs, combining different solvents,
additives, deposition methods, and postdeposition treatments
(solvent vapor annealing, thermal annealing, etc.) until an
optimum is obtained. Material scientists then explore these
morphologies with a suite of techniques, as detailed in this
section to determine what this “optimal” morphology is.
Scientifically this is not the most efficient way of improving
device performance and finding the best deposition method-

ologies. It is thus a pressing problem to attempt to understand
the actual nanoscale organizational physics of how these
materials interact and blend with each other and then
determine/predict what the resultant morphology would be.
Computationally and in terms of physics understanding this is
obviously a “grand challenge”, all the more challenging because
each blend combination of donor and acceptor forms a
different morphology. The combination of donor and acceptor
materials in terms of synthetic chemistry capabilities is near
infinite; thus, exploring these via trial-and-error device
fabrication with all the possible solvents, additives, etc. is
simply impossible. Significant improvements have been
realized, as this section demonstrates, with approximate
doubling of device efficiencies at each “node” on the path of
progress, from 1 to 2% efficiencies with MDMO-PPV, through

Figure 41. AFM topography (A) and bright-field TEM (B) of
PTB7:PC71BM blend cast from chlorobenzene with 3% DIO added to
the solution prior to spin-coating. Image in panel A reprinted from ref
77. Licensed under CC-BY-3.0. Image in panel B reprinted with
permission from ref 219. Copyright 2010 John Wiley and Sons.

Figure 42. (A) Photocurrent map of PTB7:PC71BM blends spin-
coated from chlorobenzene solution with 3% DIO. Measurements
were made by photoconductive AFM at a bias of −3 V and with
photoexcitation at 670 nm. PTB7-rich regions are shown in blue,
mixed-phase regions in green, and PC71BM-rich regions in red. In
panel B is shown a close-up of the boxed region in panel A, indicating
that the two materials form elongated fiberlike domains with respect to
each other. Reprinted from ref 77. Licensed under CC-BY-3.0.

Chemical Reviews Review

DOI: 10.1021/acs.chemrev.6b00215
Chem. Rev. 2017, 117, 796−837

827

http://dx.doi.org/10.1021/acs.chemrev.6b00215


3−4% with P3HT and now 7−10% with PTB7. To continue
this progress, new materials with advantageous photovoltaic
properties will need to be created and optimal morphologies for
them determined, preferably predictively rather than retro-
spectively, to enable the best light harvesting.

5. SUMMARY AND OUTLOOK
In this review, we have provided a detailed picture of the main
processes and variables that govern light harvesting in organic
photovoltaic cells. The great strength of organic materials for
photovoltaic applications is the strong absorption of light that
enables the use of thin films on the order of 100 nm from
nontoxic, relatively stable, plastic materials. The materials can
be deposited from solution by simple coating processes, and
they offer the prospect of simple fabrication of large areas of
solar cells at low cost and with low energy of manufacture. As
the primary photoexcitations are tightly bound Frenkel
excitons, a key step in light harvesting is splitting them into
free charges which is achieved using a charge-accepting material
(normally an electron acceptor, if as is most often the case the
absorbing material is an electron donor). A combination of
exciton diffusion and FRET leads to exciton transport to the
acceptor. Two main device structures are used: planar and bulk
heterojunctions. Since excitons in most materials diffuse <20
nm, planar heterojunctions are limited to be thin organic layers
that do not fully absorb the incident light. This is overcome by
creating a bulk heterojunction throughout the full 100 nm
thickness of the film, with separation between the electron
donor and acceptor on the order of 20 nm. The bulk
heterojunction is used out of necessity rather than desire, as it
creates a wide-range of complications in designing materials for
efficient harvesting of light. The efficient operation of a bulk
heterojunction requires a particular arrangement of the donors
and acceptors (morphology) that facilitates excitons reaching
the heterojunction and also enables charge separation and
extraction. At present it is not known in advance if a new
material will be able to make a suitable morphology, and
progress in the field is slowed by needing to explore a wide
range of processing conditions with no guarantee of success.
There are three main ways in which this situation could be

improved. The first is by making so-called ordered hetero-
junctions in which either donor or acceptor are patterned and
the other material added to make the desired morphol-
ogy.283−285 The length scales involved are demanding, and so
far efficiencies using this approach have been limited.286,287

Nevertheless, progress in self-assembly and in nanoimprint
lithography could help to achieve this. The second main
approach is to enhance the effective exciton diffusion length; a
factor of ∼5 increase would enable planar heterojunctions to
harvest almost all of the incident sunlight. This would simplify
fabrication, avoid the time-consuming optimization of donor−
acceptor morphology, and enable materials to be used that do
not form appropriate BHJ morphologies. The suggested
increase in the exciton diffusion length is clearly very
challenging, but advances in materials, processing, and possibly
device structure combined with the advanced experimental
techniques and synthetic chemistry available today could enable
it to be realized. The third approach is further improvement of
the bulk heterojunction by moving from an empirical to a
predictive approach. Understanding of exciton diffusion and
dissociation and charge separation, transport, and extraction in
bulk heterojunctions all convolved with a complex nanoscale
morphological arrangement of the materials has reached a

remarkable degree of maturity, given the complexity of the
blends. Moving from a regime of reactive understanding of the
systems created to predictive control of such systems with the
use of advanced electrical, photophysical, morphological,
theoretical, and synthetic chemical scientific techniques is a
prospect with serious merit and one that could transform the
relatively trial-and-error approach that has been used thus far
into a powerful predictive method for improving or optimizing
solar cell efficiencies.
Finally, it is worth pausing to consider the remarkable

progress that has been made in organic photovoltaics, with
power conversion efficiencies of OPVs increasing by a factor of
5 in the last 20 years, with lab-based devices now regularly
exceeding 10%. In this review we have described the key
processes that all have to be present in order for the successful
harvesting of light in an organic solar cell, and have detailed
how understanding of these processes has contributed to such
performance increases. With good prospects for further
understanding and optimization, future improvements in device
efficiency are anticipated. The external quantum efficiencies at
short-circuit conditions now reach 70−80% in record-efficiency
organic photovoltaic cells over spectral regions of strong light
absorption. However, the open-circuit voltage from single-
junction cells is only about 0.8 V or lower and potentially can
be increased. There are several factors that make the open-
circuit voltage much lower than the energy of the absorbed
photon could allow. First, the higher-energy exciton states
usually relax to the lowest-energy exciton before splitting into
an electron−hole pair. These energy losses can be avoided by
developing tandem cells or multijunction cells that use a
combination of different absorbers. In such cells, higher energy
photons are absorbed and converted in a subcell with higher
band gap materials.288 In February 2016, the German company
Heliatek demonstrated a record power conversion efficiency of
13.2% in small organic solar cells using this approach with their
proprietary materials.
A second source of energy loss is the energy offset between

exciton states and charge transfer states, which is the driving
force for charge pair generation. We have discussed recent
findings that the optimum driving force for charge separation
equals the reorganization energy in sections 3.1 and 3.2. This
implies that photovoltaic materials with small reorganization
energies and a small driving force can minimize the loss of
open-circuit voltage at a heterojunction without a trade-off of
photocurrent. A further loss of open-circuit voltage of typically
0.5 V is associated with charge extraction.289 Multiple factors
were suggested to contribute here, including energetic disorder
for charge transport, the nature of the electrical contacts, and
carrier recombination. The main findings on this topic have
been reviewed several times.290−292 Overcoming limitations in
the open-circuit voltage outlined above can be expected to lead
to further progress in the power conversion efficiency of
organic photovoltaic devices.
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