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Abstract: West Nile virus (WNV) continues to be a major cause of human arboviral neuroinvasive
disease. Susceptible non-human vertebrates are particularly diverse, ranging from commonly affected
birds and horses to less commonly affected species such as alligators. This review summarizes
the pathology caused by West Nile virus during natural infections of humans and non-human
animals. While the most well-known findings in human infection involve the central nervous system,
WNV can also cause significant lesions in the heart, kidneys and eyes. Time has also revealed
chronic neurologic sequelae related to prior human WNV infection. Similarly, neurologic disease
is a prominent manifestation of WNV infection in most non-human non-host animals. However,
in some avian species, which serve as the vertebrate host for WNV maintenance in nature, severe
systemic disease can occur, with neurologic, cardiac, intestinal and renal injury leading to death. The
pathology seen in experimental animal models of West Nile virus infection and knowledge gains on
viral pathogenesis derived from these animal models are also briefly discussed. A gap in the current
literature exists regarding the relationship between the neurotropic nature of WNV in vertebrates,
virus propagation and transmission in nature. This and other knowledge gaps, and future directions
for research into WNV pathology, are addressed.
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1. Introduction

Twenty years after its introduction, West Nile virus (WNV, Flaviviridae: Flavivirus) continues to be
the leading cause of arboviral disease in the continental United States (US) [1]. WNV was first isolated
in 1937 from the blood of a woman in the West Nile district of Uganda [2]. During the 1950s, the virus
was isolated from birds, mosquitoes and people in Egypt [3,4]. The virus continued to present primarily
as recurrent epidemics of mild febrile disease in Africa, the Middle East and Europe [5]. However, the
disease phenotype was drastically different during outbreaks in the United States, Romania, Russia
and Israel, which occurred in the late 1990s and early 2000s [6,7]. In the United States, about 1 in 150
clinical patients developed neuroinvasive disease, characterized by meningitis, encephalitis, and/or
poliomyelitis [8,9]. Of those with neuroinvasive disease, 9% experienced mortality [10]. The US
outbreak represented the first known introduction of WNV to the Western hemisphere. Outbreaks
during the late 1990s in Israel and eastern Europe were also characterized by higher rates of fatal
neuroinvasive disease [11,12]. Given that these outbreaks occurred in disparate locations, phylogenetic
analysis was performed to assess the degree of relatedness between the virus isolates. The strain
introduced into the United States (NY99) had greater than 99.8% nucleotide homology to virus isolated
from the brain of a goose in Israel from 1998 and human Israeli cases in 1999 [13,14]. Isolates from the US
also held similar relatedness to isolates from Romania [13,15]. It is surmised that these closely related
viruses were able to cause disease in these distant locations as a result of globalization. Following its
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arrival in the United States, the virus showed remarkable adaptability to a new environment, quickly
spread and is now endemic.

2. The Virus and Its Ecology

WNV is a member of the genus Flavivirus within the family Flaviviridae. The WNV genome is
a positive-sense, single-stranded RNA molecule of approximately 11,000 nucleotides. Within host
cells, viral RNA is translated and processed into 10 proteins: three structural (envelope, membrane
and nucleocapsid) and seven nonstructural (NS) (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5) [13].
The virus has two commonly accepted major genetic lineages and at least five additional proposed
lineages [6,12,16–21]. Lineage 1 is widely distributed and contains isolates from Africa, Asia, Australia,
Europe, the Middle East, India and North America [21,22]. Lineage 2 viruses have been isolated in
Africa, Madagascar, the Middle East and Europe [23–26]. Initially, lineage 1 viruses were considered
to be more virulent than lineage 2 viruses; however, it has been shown that both lineages can cause
neuroinvasive disease in humans and animals and lineage 2 has now displaced lineage 1 as the primary
cause of WNV disease in Europe [23,27–31].

WNV is maintained in nature by ornithophilic Culex mosquitoes and wild birds, with the particular
mosquito species varying by region in the United States and worldwide (reviewed extensively by
Kramer et al. [32]). Culex tarsalis drive epidemic transmission in the western United States while Culex
pipiens is the main vector in the eastern United States. Culex quinquefasciatus and Culex nigripalpus are
important vectors for WNV in the southeastern United States [33,34]. While many avian species have
been infected with WNV, house sparrows and American robins have been identified as key to the
virus’ maintenance in nature [35–37]. When the preferred bird hosts become less abundant during
late summer and fall, ornithophilic mosquitoes shift their feeding to mammals leading to human
epidemics [38].

In addition to horizontal circulation between birds and mosquitoes, WNV maintenance also
has been described in the absence of a mosquito vector. There have been multiple reports of WNV
viral RNA detected in carcasses and feces in crow roosts during the winter when mosquitoes are
unlikely contributors to transmission, although the transmission mechanism was not specifically
elucidated [39,40]. Similar occurrences of WNV disease during the winter have been seen in Bald
Eagles, where feeding on the carcasses of infected Eared Grebes was considered the most likely
source of infection [41]. Experimentally, non-vector direct transmission also has been demonstrated
in geese, with oral and cloacal shedding serving as the most likely sources of viral transmission [42].
Chronic infection may also contribute to winter transmission as infectious virus has been isolated
from house sparrows up to 43 days post inoculation [43]. Overwintering of WNV may also occur by
vertical transmission from adult female mosquitoes to their progeny, although this process is highly
inefficient [44,45]. In addition to the maintenance of WNV in nature via non-vector mechanisms, WNV
disease has also been reported in humans potentially as a result of non-vector transmission including
percutaneous exposure, transplacental transmission, breast milk consumption, blood transfusion and
organ transplant [46–51].

Interestingly, despite the presence of numerous bird species and mosquitoes which should allow
for its maintenance, WNV is not frequently seen in central and South America. There have been no
major outbreaks and reports are rare in humans and horses [52–55]. Possible causes may include
cross-protection due to other circulating flaviviruses or a dilution effect on WNV due to high disease
host diversity [56,57].

Much of the research surrounding West Nile virus focuses on (a) viral and ecological factors which
affect viral transmission and (b) viral and immune factors which determine pathology and disease. A
distinction must be made between the ability for transmission and pathology. While numerous species
can be infected and experience pathology and disease, birds are well-established as the primary species
which develop the high viral titers required to infect mosquitoes and contribute to virus perpetuation.
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Experimental animal models have been used to examine the factors that affect WNV transmission.
Some of that work has used wild birds, allowing for direct investigation of the most relevant virus
ecology [58–60]. Reports also demonstrate that additional species including Eastern cottontail rabbits,
fox squirrels and alligators have the potential to infect mosquitoes [61–63], indicating that continued
investigation into possible non-avian contributions to WNV maintenance is warranted. While WNV is
primarily transmitted and maintained between birds and mosquitoes, it can infect and cause pathology
and disease in a wide range of vertebrates. This plasticity is relatively unique amongst arboviruses
and has been demonstrated in both natural and experimental infections. When it comes to the viral
and immune factors leading to pathology, much has been examined in mouse models and is briefly
described below. The pathology seen in natural and experimental infections will be discussed in detail
in this review.

3. Natural WNV Disease

3.1. Humans

While approximately 80% of people infected with WNV are asymptomatic, the majority of
symptomatic patients experience a mild febrile disease lasting up to a week, a syndrome known as West
Nile fever (WNF) [64]. In addition to fever, mild disease is characterized by headache, gastrointestinal
problems, rash, myalgia, arthralgia and malaise. West Nile neuroinvasive disease (WNND) occurs
in less than 1% of infected people and is manifested as multiple syndromes including West Nile
meningitis (WNM), West Nile encephalitis (WNE) and West Nile poliomyelitis (WNP) [65]. WNM
describes inflammation which is primarily restricted to the meninges, the connective tissue coverings of
the brain and spinal cord. WNM is typically associated with more favorable outcomes and is the most
common manifestation of neuroinvasive disease in younger patients [66]. WNE is a more invasive
disease process, in which the brain parenchyma is infected and inflamed. This is more commonly seen
in older adults and the immunosuppressed [10]. Clinical signs associated with WNE range in severity
and can include tremors, cerebellar ataxia, and general Parkinsonism [66]. WNP is associated with
infection of the anterior horn cells (lower motor neurons) of the spinal cord, resulting in a polio-like
flaccid paralysis, which at its most severe can cause quadriplegia and respiratory impairment [67–69].
WNP is distinct from a rarer Guillain-Barre syndrome which has been reported in association with
WNV infection [65]. While these classifications are important, clinical presentation of WNV infection
may present as any mixture of these syndromes.

Histological findings in West Nile neuroinvasive disease are nonspecific and typical of many viral
encephalitides, and these are characterized by perivascular lymphocytic infiltrates, microglial nodules,
neuronal loss, and neuronophagia [67,70–72]. In severe cases, necrosis can be seen [73]. Most commonly
affected regions of the central nervous system (CNS) have extrapyramidal (movement-related) function
and include the brainstem (medulla and pons), deep gray matter nuclei (substantia nigra of the basal
ganglia and thalamus), and cerebellum with gray matter being the most severely affected [70,73–76].
In the spinal cord, the anterior horns (ventral horns) and anterior spinal nerve roots are frequently
involved and associated lower motor neuron loss results in muscle weakness [71,74,75,77,78]. Clinically
observed muscle weakness correlates histologically to neurogenic atrophy of the skeletal muscle [78].

While fever and neurological disease are the most well-known clinical manifestations of West
Nile virus infection, there are less frequently observed non-neurological clinical findings. Ocular
manifestations seen in WNV infection, specifically those associated with the optic nerve and the
retina, can be considered an extension of the brain. In one report, 80% of patients with WNV
neurologic disease have chorioretinal involvement, primarily multifocal chorioretinitis, although
it is often asymptomatic and self-limiting [79,80]. Additional WNV ocular manifestations vitritis,
optic neuritis and retinal hemorrhage [81–83]. Renal failure has been documented in one study as
present in 9% of hospitalized WNV patients and in another study, 21% of deceased WNV patients
had renal failure [84,85]. More commonly seen in other vertebrate species, myocarditis has been
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reported occasionally in humans [86–88]. Other rare lesions include hepatitis, pancreatitis, orchitis and
myositis [5,89–91].

There are also sequelae to acute disease which have been observed in both convalescent and
fully recovered patients. Subsequent to WNF, WNM and WNE, there are estimates that 50% of
patients are affected by neurocognitive or functional impairment [92,93]. Neuropsychological sequelae
include memory problems, headache, cognitive dysfunction, depression and fatigue [93–95]. Motor
skill abnormalities include tremors, fatigue, decreased strength and abnormal reflexes [93,94]. On
magnetic resonance imaging (MRI), WNV survivors had significant cortical thinning in the frontal and
limbic cortices and regional atrophy in the cerebellum, brain stem, thalamus, putamen and globus
pallidus [93]. These neuropsychological and motor skills issues are interpreted to be the result of
prolonged or permanent damage to the nervous system.

There is also some evidence for persistent infection of WNV [96–98]. Sequelae from systemic
infections have been observed with the kidneys being one of the most common extra-nervous system
sites of disease. WNV is able to persist chronically in the kidneys up to seven years and previous
infection lead to chronic kidney disease [97,99].

3.2. Birds

During the introduction of West Nile virus to the United States, mortality observed in the Bronx
zoo and surrounding areas showed that avian species across multiple orders could be affected and
included common crows, a fish crow, black-billed magpies, a black-crowned night heron, laughing
gulls, a mallard duck, Himalayan Impeyan pheasants, a Blyth’s tragopan, Chilean flamingos, guanay
cormorants, bronze-winged ducks, a northern bald eagle and a snowy owl [100]. Lesion variability
observed between species is likely multifactorial and related to host factors and intrinsic viral factors
which depend on virus strain [101]. Specifically, levels of high viremia associated with being an
amplifier host have been shown to correlate with mortality in some birds [102]. Interestingly, high
levels of mortality do not always correlate with histopathologic signs and this may be a measure of
acute infection resulting in death and occurring in such rapid fashion that lesions do not develop
histologically [101].

In contrast to humans and other affected species, most major organ systems have been shown to be
affected in natural avian WNV infections. Neurological manifestations are indicative of viral encephalitis
and are similar to findings seen in humans and other non-host vertebrate species. This encephalitis is
characterized as a lymphoplasmacytic meningoencephalitis with an occasional heterophilic component,
heterophils being the avian functional equivalent to the neutrophil. Histologically, there is perivascular
cuffing, glial nodules and gliosis, neuronal necrosis and occasional hemorrhage. Frequently affected
regions of the nervous system include the brain stem and gray matter of the spinal cord, cerebellum
and thalamus. In addition to the nervous system, myocarditis is a common lesion in birds [103–105].
Inflammation and necrosis have also been reported in the gastrointestinal tract, kidney, spleen, liver,
pancreas, lung, adrenal glands, thyroid, thymus, bursa, bone marrow and skeletal muscle [101]. Lesions
in naturally infected birds have been previously reviewed in detail by Gamino and Höfle [95]. This
chart has been modified to include the most recent literature as well as pathologic findings in birds
experimentally infected with WNV (Table 1) [106–116]. Ocular lesions are seen in raptors (red-tailed
hawks, Cooper′s hawks, bald eagles, golden eagles, goshawks) and owls (great horned owls, barred
owls) and range from lymphoplasmacytic pectenitis and chorioretinal inflammation and scarring to
generalized endophthalmitis [110,116–119]. Vasculitis has occasionally been noted within multiple
organs in a variety of affected avian species [103,120,121]. While systemic infection is a hallmark of
WNV infection in many species, adult domestic chickens and turkeys do not frequently experience
significant disease [122,123]. Age and a developed immune system likely contribute to this refractory
nature of adult chickens as young chicks are susceptible and histologic lesions include myocardial
necrosis, necrosis, nephritis and pneumonitis, and rare encephalitis [123].
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Table 1. Distribution of West Nile virus (WNV)-infected bird lesions in natural and experimental infections. Modified from Gamino and Höfle [95].

Order ACCI ANSE CHAR CICO FALC GALL PASS PELE PHOE PSIT STRI

Family ACCI ANAT LARI ARDE FALC PHAS CORV LANI PASS FRIN PHAL PHOE PSIT STRO STRI

Brain

Perivascular cuffs + + + ND + + + + + − − + + + +

Gliosis/glial nodules + + + ND + + + + − − − + + + +

Meningeal inflammation + + − ND + − + − − − + − − − +

Neuronal degeneration
and necrosis + + + ND + + + − − − + − − + +

Vasculitis + − − ND − − + − + − − − − − −

Hemorrhage + − − ND − + − − − − + − − − +

Spinal cord

Inflammation + + ND ND ND ND ND NT ND NT ND ND ND NT +

Neuronal degeneration
and necrosis − + ND ND ND ND ND NT ND NT ND ND ND NT +

Peripheral nervous system

Inflammation + − ND ND + + − NT NT NT ND ND ND NT +

Eye

Retinitis + NT NT NT NT − ND NT NT NT NT NT + NT +

Retinal necrosis + NT NT NT NT − ND NT NT NT NT NT − NT −

Pectenitis + NT NT NT NT + ND NT NT NT NT NT − NT −

Uveitis (inc. iris, choroid,
ciliary body) + NT NT NT + + ND NT NT NT NT NT − NT −

Heart

Inflammation + + + + + + + + − − + + + NT +

Myofiber necrosis + + − − + + + − − − − − + NT +

Myofibril lysis and
mineralization + + + + + + + − − − + + + NT −

Vasculitis − − − − + − + − − − − − − NT −

Hemorrhage + − + + − + + − − − + + + NT −
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Table 1. Cont.

Order ACCI ANSE CHAR CICO FALC GALL PASS PELE PHOE PSIT STRI

Family ACCI ANAT LARI ARDE FALC PHAS CORV LANI PASS FRIN PHAL PHOE PSIT STRO STRI

Gastrointestinal tract

Inflammation + − ND ND − + + − ND − − − + NT +

Enterocyte necrosis − + ND ND − + + − ND − − − − NT +

Crypt necrosis − − ND ND − − + + ND − + + + NT +

Hemorrhage − + ND ND − − + − ND − − + − NT −

Liver

Inflammation + + ND ND + + + + − + − − + + +

Hepatocyte necrosis + + ND ND − + + + + + + + + + +

Vasculitis − − ND ND + − − − − − − − − − −

Bile duct hyperplasia + − ND ND − − − − − − − + − − −

Hemosiderosis + − ND ND − + + − + − − − − − +

Hemorrhage + − ND ND − − + − − − − − − − −

Kidney

Inflammation (interstitial) + + ND + + + + ND + + + + + NT +

Tubular necrosis + + ND − − + + ND + + − − + NT +

Glomerular necrosis − − ND − − − − ND − − − − + NT +

Vasculitis − − ND − + − − ND − − − − − NT −

Hemorrhage − + ND − − − − ND − − − − − NT −

Lung NT

Inflammation + − ND ND − + + − + − ND ND − NT +

Necrosis + − ND ND − − + − − − ND ND − NT +

Vasculitis − − ND ND − − + − − − ND ND − NT −

Edema + − ND ND + − − + + − ND ND − NT −
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Table 1. Cont.

Order ACCI ANSE CHAR CICO FALC GALL PASS PELE PHOE PSIT STRI

Family ACCI ANAT LARI ARDE FALC PHAS CORV LANI PASS FRIN PHAL PHOE PSIT STRO STRI

Spleen

Lymphoid
necrosis/apoptosis + + ND + − + + + − + + ND + NT +

Lymphoid depletion + + ND − + + − − − − − ND − NT +

Fibrin deposition − − ND + − + − + − − + ND − NT +

Hemorrhage − + ND + − − − − − − + ND − NT −

Hemosiderosis + + ND − − + + − + − − ND − NT +

Vasculitis − − ND − + − − − − − − ND − NT −

Other lymphoid organs

Thymic lymphoid
necrosis NT + NT NT NT + NT NT NT NT NT NT − NT +

Bursal epithelial
atrophy−apoptosis + − NT NT NT ND NT NT − NT NT NT ND NT +

Bursal lymphoid
atrophy−apoptosis + + NT NT NT + NT NT + NT NT NT ND NT +

Bone marrow necrosis ND − NT NT NT − + NT NT NT NT NT ND NT ND

Endocrine system

Pancreatic necrosis − + ND ND − + − + ND − − + + NT +

Pancreatic inflammation + + ND ND + + − − ND − + + + NT +

Adrenal gland necrosis − ND ND ND NT + − NT NT NT ND ND + NT −

Adrenal gland
inflammation + ND ND ND NT + + NT NT NT ND ND + NT +

Thyroid gland necrosis − + NT NT NT NT NT NT NT NT NT NT ND NT ND

Thyroid gland
inflammation + − NT NT NT NT NT NT NT NT NT NT ND NT ND

Skin

Inflammation ND + NT NT NT − NT ND NT − NT NT + NT −
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Table 1. Cont.

Order ACCI ANSE CHAR CICO FALC GALL PASS PELE PHOE PSIT STRI

Family ACCI ANAT LARI ARDE FALC PHAS CORV LANI PASS FRIN PHAL PHOE PSIT STRO STRI

Skeletal muscle

Myofibril degeneration
and necrosis + − NT NT + − ND NT NT − NT NT + NT +

Inflammation + − NT NT + + ND NT NT − NT NT + NT +

Fibrosis + − NT NT − − ND NT NT − NT NT − NT +

Gonads

Inflammation − − ND ND − + NT ND NT NT ND ND − NT +

Necrosis − − ND ND − − NT ND NT NT ND ND − NT +

Order: ACCI: Accipitriformes, ANSE: Anseriformes, CHAR: Charadriiformes, CICO: Ciconiiformes, FALC: Falconiformes, GALL: Galliformes, PASS: Passeriformes, PELE: Pelecaniformes,
PHOE: Phoenicopteriformes, PSIT: Psittaciformes, and STRI: Strigiformes. Family: ACCI: Accipitridae, ANAT: Anatidae, LARI: Laridae, ARDE: Ardeidae, FALC: Falconidae, PHAS:
Phasianidae, CORV: Corvidae, LANI Laniidae, PASS: Passeridae, FRIN: Fringillidae, PHAL: Phalacrocoracidae, PHOE: Phoenicopteridae, PSIT: Psittacidae, STRO: Strigopidae, and STRI:
Strigidae. ND: No described lesion. Tissues were collected at necropsy but no description of lesions (present or absent) is provided. NT: Tissue not tested. Tissue not analyzed in the
necropsy. +: Lesion present. Lesion described by at least one author for the tissue. −: Lesion absent. Lesion stated as absent or not specifically described by any author for the tissue.
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The severe systemic infection and mortality observed in avian species have the potential to
significantly alter bird populations. Recent literature has demonstrated massive losses in avian
biodiversity in North America, with estimates of 29% loss of abundance since 1970 [124]. WNV likely
contributes to some avian losses as it has been estimated to negatively affect populations of between
one–fifth and one–half of examined North American avian species, with some (but not all) never
recovering to pre-WNV levels [125–128]. WNV’s negative impacts are potentially exacerbated by
climate change and anthropogenic factors such as human land use [129–131].

3.3. Horses

Clinical signs of WNV infection in horses, aside from fever, are primarily related to nervous system
infection and inflammation. Approximately 20% of infected horses develop clinical neurological
signs [132]. Mortality in unvaccinated horses is between 30 and 50%, inclusive of both natural death and
elective euthanasia [55,133]. Of equine survivors, remnant neurological signs are present in between
10–20% of horses [134]. The most severe clinical signs in horses include limb ataxia, tetraparesis,
paraparesis, recumbency, seizures and death [133,135]. Additional signs include cranial nerve deficits,
muscle fasciculations, hyperexcitability and behavioral changes [52,133,136,137].

In horses, histologically affected spinal cords are similar to those of humans with
polioencephalomyelitis and are characterized by lymphocytes and fewer numbers of macrophages and
neutrophils cuffing vessels, glial nodules, and occasional neuronophagia [138]. Ventral and lateral
horns of the spinal cord gray matter are most affected [136,138]. In addition to the spinal cord, the gray
matter of the midbrain and hindbrain are commonly affected [136]. Perivascular hemorrhage is also
seen in horses. The cerebral cortex seems to be least affected. Extraneural disease in horses includes
sporadic renal hemorrhage, lymphoid atrophy and myocarditis [138].

Several commonalities unite the clinical presentation of WNV in the most affected vertebrates:
birds, horses and humans. These include neurotropism characterized by primarily mononuclear
inflammation, neuronal necrosis and gliosis which frequently affects gray matter and varies according
to host and virus strain. In addition, renal and ocular tropism seems to be a conserved aspect of clinical
disease in birds and humans.

3.4. Additional Affected Vertebrate Species

In addition to birds, humans and horses, WNV infects and causes disease in an extraordinary
array of vertebrate species (see Figure 1). In many of these, clinical disease is solely neurological
and thus similar to what is seen in humans and horses. This is observed in numerous single-animal
case reports including those of an alpaca, harbor seal, reindeer, Barbary macaque, white-tailed deer
and polar bear [139–144]. Histologically, these animals had a nonsuppurative meningoencephalitis
which frequently and preferentially affected the gray matter of the brainstem and spinal cord. Similarly,
convulsions and ataxia in multiple WNV-infected sheep were seen in association with lymphoplasmacytic
meningoencephalitis and myelitis characterized by perivascular cuffing and necrosis [139,145,146].
Histopathology from a sheep which is representative of many species is shown in Figure 2.

While the expected neurological disease is common in dead-end hosts, some species and individual
animals have unique disease presentations. In addition to encephalitis, fox squirrels experience
myocarditis, which has been mentioned as a common manifestation in birds. [147]. In alligators
infected with WNV, systemic disease is sometimes accompanied by inflammatory nodules in the skin
composed of lymphocytes and macrophages [148–150]. In a case report of a dog, polioencephalomyelitis
and myocarditis were accompanied by vasculitis, pancreatitis and plasmacytic synovitis (inflammation
of the articular synovial surface) [151]. In an arctic wolf, renal vasculitis was a significant finding [152].

While WNV antigen distribution is frequently described in both natural infection in humans and
animals and animal experimental infection, immunohistochemical antigen distribution and staining
may indicate sites of replication but do not always correlate to pathology or organ dysfunction;
therefore, extensive lists of IHC and PCR results will not be included in this review [76,153,154].



Pathogens 2020, 9, 48 10 of 23

Additionally, IHC does not always align with well-documented sites of virus replication [155]. Antigen
can be focal and sparse and is typically visible in only 50% of fatal WNV neuroinvasive disease cases,
making this modality relatively insensitive [75].
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infection, but all classical laboratory mice strains are susceptible to infections administered by the 
intracerebral and intraperitoneal routes [156]. This susceptibility has been mapped to a mutation in 
the OAS1b gene, which is regulated by interferon and contributes to viral RNA degradation [157–
159]. Histopathology in the laboratory mouse is characterized by neuronal necrosis, 
lymphohistiocytic perivascular infiltrates, glial nodules, neuronal satellitosis and neuronophagia in 
the cerebral cortex, cerebellum, brainstem, hippocampus and spinal cord [154,160,161]. Commonly 
used strains of mice include C57BL/6 mice, mice on a C57BL/6 background and C3H/HeN mice. 
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Figure 2. Hippocampus of a WNV-infected sheep with neuronal necrosis and necrotic debris (arrows)
and abundant mixed inflammation admixed with remaining neurons. Hematoxylin and eosin staining
at 400×magnification. Inset: Perivascular cuffing with lymphocytes and plasma cells. Hematoxylin and
eosin staining at 200×magnification. Slide courtesy of Dr. Chad B. Frank, Colorado State University.

4. Biomedical Models of WNV Infection

4.1. Mice

A vast body of knowledge regarding the pathogenesis of WNV encephalitis has resulted from
experimental infections using animal models. Interestingly, wild-type mice are resistant to WNV
infection, but all classical laboratory mice strains are susceptible to infections administered by the
intracerebral and intraperitoneal routes [156]. This susceptibility has been mapped to a mutation in
the OAS1b gene, which is regulated by interferon and contributes to viral RNA degradation [157–159].
Histopathology in the laboratory mouse is characterized by neuronal necrosis, lymphohistiocytic
perivascular infiltrates, glial nodules, neuronal satellitosis and neuronophagia in the cerebral cortex,
cerebellum, brainstem, hippocampus and spinal cord [154,160,161]. Commonly used strains of mice
include C57BL/6 mice, mice on a C57BL/6 background and C3H/HeN mice. Disease is not limited to
the brain in mice. Thymic atrophy has been described in affected mice, and similarly, the thymus has
been affected in ducklings and other birds [154,162]. Gastrointestinal lesions in mice including dilation
of the stomach and small intestine and villus blunting (shortening) have been seen in association with
degeneration and necrosis of intestinal myenteric ganglia [155,163]. This may serve as a model for
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gastrointestinal dysmotility seen in humans after flavivirus infection [164]. Gastrointestinal disease is
also frequently seen in birds.

An abundance of information about WNV pathogenesis has been yielded from mouse models
of infection. After inoculation, initial viral replication is thought to occur in Langerhans dendritic
cells of the skin [165]. These infected Langerhans cells then migrate to draining lymph nodes where
virus can be transported to the systemic circulation after return through the thoracic and lymphatic
ducts [166,167]. At that point a primary viremia allows for viral dissemination to the visceral organs
for additional viral replication [168,169]. Virus must then traverse the blood–brain barrier before
replication in nervous tissue to cause encephalitis disease. The lesions of encephalitis and poliomyelitis
seen in WNV infection cannot be attributed solely to viral replication or the immune response, but
rather are the result of both direct viral injury and immune-mediated pathogenesis. Specific work
examines the immunologic mechanisms by which lymphocytes, the primary responding cell type, are
recruited into the central nervous system where inflammatory mediators exacerbate viral-induced
damage [161,170–175].

4.2. Hamsters

Golden hamsters are excellent models for WNV encephalitis because they mimic human disease
in regards to length of viremia, muscle weakness, gastrointestinal signs, respiratory symptoms and
clinical signs including tremors [156,176–178]. Hamsters infected with WNV develop neurologic
symptoms including tremors and hind limb paralysis associated with progressive pathology in the
cerebellum and spinal cord [179]. Histologically, this correlates with lymphoplasmacytic inflammation
in those nervous system tissues. The significance of axonal transport as a contributor to entrance
of WNV to the CNS has also been demonstrated in hamsters [180]. Hamsters also have persistent
renal infection, which mimics the chronic renal infection observed in humans [181]. Overall, hamsters
provide good models of disease, but mice are more easily genetically manipulated to assess specific
alterations to the immune system.

4.3. Non-Human Primates

In addition to mice, some early experimental work examining WNV encephalitis was performed
in non-human primates. Depending on the viral strain, intracerebral inoculation resulted in disease
ranging from asymptomatic infection to febrile disease to overt encephalitis [182,183]. Histopathology
in acute WNV encephalitis includes severe perivascular and diffuse lymphoplasmacytic inflammation,
neuronal degeneration and necrosis and glial nodules in the gray matter. Lesions were most frequent
in the cerebellum, brainstem and anterior horns of the spinal cord. Chronic lesions also include loss
of Purkinje cells in the cerebellum and spinal motor neurons. In contrast, more recent experimental
infections examining antibody response to WNV infection in immunocompetent rhesus macaques and
marmosets resulted in low to absent viremia and minimal to absent infectious virus detection in the
CNS [184,185]. Persistent viral infection of the CNS, kidney and spleen were seen up to 167 days post
infection in some non-human primates [183]. Partially as a result of the associated financial costs and
ethical implications, current use of non-human primates in WNV research is infrequent. However,
they may be used in continued development of a human vaccine.

4.4. Additional Animal Species Used in WNV Biomedical Research

Multiple other species have been used in WNV biomedical research and contributed to varying
aspects of the field. Rats were used in some of the earliest experimental work studying WNV and
while older rats were resistant to fatal disease, newborn rats were susceptible [186,187]. Histologically
these infections were relatively mild and characterized by meningitis and mild inflammatory infiltrates
and perivascular cuffs. The most severe lesions were seen in the hippocampus. In contemporary
work, the use of rats is primarily related to toxicology studies which assess for the safety of WNV
vaccines [188–190].
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As the species most frequently and significantly affected by WNV infections aside from birds and
humans, horses have been used in pathogenesis work and in efficacy and safety studies required for
approval of WNV equine vaccines [191–196]. There are currently four United States Department of
Agriculture-licensed equine WNV vaccines available in the United States [197].

New Zealand White rabbits have been demonstrated to be appropriate models for non-lethal
WNV infections as only weanling rabbits demonstrate severe lesions and clinical symptoms [198].
Rabbits are also commonly used to generate antibodies against WNV which can be utilized in assays
such as immunohistochemistry. Other species which have been examined as animal models for WNV
infection include pigs, dog and cats [199,200]. Experimental infection of snakes and bats failed to
demonstrate significant viremia and disease [201,202]. Young chicks have occasionally been used as
models for avian infection as wild birds can be difficult to work with and require trapping and special
care [203–207].

Importantly, wild birds have been used for experimental WNV infections, not as a model for
mammalian disease, but to assess pathogenesis and factors affecting viral evolution and transmission
in the most relevant amplifying hosts [58,60,208–215]. This use is crucial as cell culture and computer
modelling are insufficient in their representation of complex living systems.

5. Summary and Future Directions

One of the more interesting features of the emergence of WNV is its somewhat unique ecological
generalism. Whereas most flaviviruses productively infect a relatively restricted subset of animal
species, WNV can infect an extraordinarily wide array of vertebrate taxa. This generalism has produced
opportunities to learn about viral pathogenesis across taxa and increase knowledge regarding the extent
to which pathogenic mechanisms may be conserved. For example, the most notable feature of WNV
disease in humans is neurotropism resulting most frequently in encephalitis and, more uncommonly,
meningitis and other neurologic syndromes. This set of clinical presentations is largely conserved in
horses, birds and mice. The significance of this broad conservation is that human and avian neurological
disease can be modeled with an uncommonly high degree of fidelity using mice, which has facilitated
improved understanding of mechanisms of neuroinvasion and subsequent immune-mediated injury.

Other clinical syndromes are also present across broadly divergent vertebrate taxa. Renal tropism
is a feature of WNV infection in birds that facilitated early surveillance efforts. Several human
studies have demonstrated that renal failure may contribute to poor long-term outcomes among
WNV survivors [99]. These studies also documented the presence of WNV in urine sediment from
individuals with a history of WNV [216]. In some of these patients, WNV was detected up to nine
years after acute infection. Similarly, avian kidneys have been found to persistently harbor WNV after
natural and experimental infection. WNV, though typically considered a neurotropic virus, also has
significant renal tropism that contributes to pathogenesis in humans, and possibly avian hosts. The
degree to which renal infection impacts the health of naturally infected hosts, including humans and
birds remains to be fully described.

The detection of persistent infection in the kidneys of people and birds raises another important
common feature of WNV pathogenesis that is conserved across several vertebrates and has been
previously underappreciated. This is the extent to which WNV can persist within vertebrates despite
the induction of a strong antibody and cell-mediated immune response. Monkeys, mice, birds and
people have all been demonstrated to develop long-term persistent infections after acute WNV. This
has also been noted in a human case of Russian spring–summer encephalitis (caused by tick-borne
encephalitis virus) that resulted in progressive neurological disease approximately thirteen years after
acute infection [217]. Chronic lesions of prior viral and immune-mediated injury may manifest as the
human populations previously affected by WNV continue to age. An important question that remains
to be answered is whether persistent, chronic infection by WNV and other flaviviruses, years after
acute infection, is an underrecognized aspect of viral pathogenesis.
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