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Abstract
Despite extensive control efforts, schistosomiasis continues to be a major public health

problem in developing nations in the tropics and sub-tropics. The miracidium, along with the

cercaria, both of which are water-borne and free-living, are the only two stages in the life-

cycle of Schistosoma mansoni which are involved in host invasion. Miracidia penetrate

intermediate host snails and develop into sporocysts, which lead to cercariae that can infect

humans. Infection of the snail host by the miracidium represents an ideal point at which to

interrupt the parasite’s life-cycle. This research focuses on an analysis of the miracidium

proteome, including those proteins that are secreted. We have identified a repertoire of pro-

teins in the S.mansonimiracidium at 2 hours post-hatch, including proteases, venom aller-

gen-like proteins, receptors and HSP70, which might play roles in snail-parasite interplay.

Proteins involved in energy production and conservation were prevalent, as were proteins

predicted to be associated with defence. This study also provides a strong foundation for

further understanding the roles that neurohormones play in host-seeking by schistosomes,

with the potential for development of novel anthelmintics that interfere with its various life-

cycle stages.

Introduction
The schistosome life cycle is complex, involving a number of different stages including larval
cercariae, shed from freshwater intermediate host snails which subsequently penetrate the skin
of their human or other mammalian definitive hosts. On successful invasion, cercariae develop
into schistosomula and mature into adult male and female worms which pair up and migrate
to the portal mesenteric system of the mammalian host, where the females lay eggs. Some of
the eggs leave the host and hatch in water as free-living miracidia. The miracidia seek out inter-
mediate host snails, thus completing the schistosome life cycle.

The publication of the genomes for Schistosoma japonicum and Schistosoma mansoni have
significantly advanced our understanding of schistosome biology [1,2]. Most interest to date
has been devoted to using these data to interpret the mechanisms of interplay between
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schistosomes and their mammalian hosts, and the development of new control interventions
including vaccines or additional therapies to praziquantel [3,4,5,6]. However, insufficiency in
controlling the disease by chemotherapy alone has been increasingly noticed [7]; in addition,
the possibility of the emergence of drug resistant parasites has been raised [8,9]. A feasible
alternative is to decipher the process in which miracidia invade their intermediate snail hosts
to develop new strategies to prevent attraction and/or invasion of snails, thereby preventing
transmission. With this goal in mind, an international consortium was initiated to sequence
the genome of Biomphalaria glabrata, the intermediate host of S.mansoni [10]. As such, S.
mansoni miracidia and B. glabrata represent a highly tractable model for analysis of the snail
host-parasite relationship. The interaction between B. glabrata and water-borne free-living
schistosome miracidia is multifaceted. From the perspective of snail, studies have suggested
that macromolecular glycoconjugates released by snails seem to be miracidium attractants
[11,12]. Following invasion, B. glabrata often fails to activate an appropriate immune response
against S.mansoni. The parasite consequently develops successfully in these susceptible snails,
resulting in the release of infective cercariae several weeks post-exposure.

The proteomic analysis of different subset proteins of Schistosome relevant to the infection
process of snail, including immature egg [13,14], egg secreted proteins/secretome [15,16], egg
contents [13,17], excretory-secretory proteins of miracidia in vitro [18] and sporocysts [19,20],
has been advancing the progress of unveiling the snail-parasite interaction mechanism. Mucins
of S.mansoni were recognised as key factors effecting the interaction between miracidia/sporo-
cysts and host snail [17]. Chaperones, such as Hsp70, 60 and 90, were identified as the most
abundant protein family in egg development, while defence proteins were enriched in the hatch
fluid [13]. Cytoskeletal proteins were with similar expression levels in the immature eggs and
mature eggs contents [13]. The synthetic activity of mature eggs was found to depend on the
secreted proteins, which included two proteases [15]; a later study identified 188 proteins from
the secretome of eggs, playing roles in redox balance, development, protein folding andmolecular
chaperoning, and so forth [16]. At the in vitromiracidium-to-sporocyst stage, 127 identified lar-
val transformation proteins mainly composed of proteases/protease inhibitors, small HSPs,
redox/antioxidant enzymes, ion-binding proteins, and venom allergen-like (VAL) proteins [20].

The characterisation of the proteome of the S.mansonimiracidium has not been reported,
possibly due to the difficulty in purifying eggs of S.mansoni out of the debris of mammalian
organs, which results in low quality proteomic data for miracidia. The present study utilised a
protocol to obtain S.mansoni eggs with minimal mammalian host contamination, and charac-
terised the proteome of miracidium at the stage of 2hrs post-hatch using high-throughput
LC-MS/MS screening. At about 2hrs post-hatch the miracidium has completed development,
initiates host finding and meanwhile starts to die [21,22]. Secreted proteins and chemosensory
receptors are at the forefront of snail-miracidia interaction, and were therefore of particular
interest for investigation. This information furthers our understanding of the complete schisto-
some proteome, and provides the foundation for further investigations into the molecular basis
of schistosome modulation of snail-host immunity and host finding. This increases the possi-
bility of identifying those factors that promote parasite resistance in B. glabrata, and may aid
the development of new approaches to control snail infection, so that schistosomiasis can be
tackled from a new angle.

Materials and Methods

Ethics statement
The conduct and procedures involving animal experimentation were approved by the Animal
Ethics Committee of the QIMR Berghofer Medical Research Institute (project number P242).
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This study was performed in accordance with the recommendations in the Guide for the Care
and Use of Laboratory Animals of the National Institutes of Health.

Collection of Schistosoma mansonimiracidia and protein extraction
We used ARC Swiss, outbred mice which were from the Animal Resource Centre in Western
Australia. The Puerto Rican strain of S.mansoni is maintained, under permit from the Austra-
lian Department Agriculture, Fisheries and Forestry Biosecurity (DAFF), in ARC Swiss mice
and Biomphalaria glabrata snails at QIMR-Berghofer Medical Research Institute (QIMR-B)
from stock originating from the National Institute of Allergy and Infectious Diseases Schistoso-
miasis Resource Centre, Biomedical Research Institute (Rockville, Maryland, USA).

Isolation of Schistosome eggs. Mice were euthanized with CO2 gas and their livers were
perfused with chilled PBS. Eggs of S.mansoni were collected during perfusion of mice. Four
infected mouse livers were sliced with scalpel blades and blended to a smooth consistency in
50 mL phosphate buffered saline (PBS). S.mansoni eggs formed a very firm pellet at the bottom
of the tubes, which was incubated with collagenase B (20 mg) and 110 μL Pen/strep (or 10 μg
penicillin and 20 μg streptomycin) with at 37°C in a shaker overnight [23].

The pellet was washed twice using PBS with centrifugation at 400 x g for 5 min, in a final
volume of 25 mL PBS. This mixture was filtered successively through 250 μm and 150 μm
sieves and subjected to centrifugation at 400 x g for 5 min, and the pellet resuspended in 10 mL
PBS. This mixture was placed onto a Percoll column (8 mL Percoll + 32 mL of 0.25 M sucrose
in 50 mL tube), which was centrifuged at 800 x g for 10 min. Liver cells were removed from the
top of the Percoll column with a Pasture pipette.

The egg pellet was retained within 25 mL PBS containing 1 mM EDTA, 1 mM EGTA, cen-
trifuged at 30 x g for 3 min, then the discarded supernatant was mixed with 10 mL of the same
buffer and centrifuged at 30 x g for 3 min, and the procedure was repeated. The egg pellet was
resuspended in 5 mL PBS and applied on to a second Percoll column (2.5 mL Percoll + 7.5 mL
0.25 M sucrose in a 15 mL tube), followed by centrifugation at 800 g for 10 min. The superna-
tant was removed and the egg pellet washed with 10 mL PBS and then centrifuged at 30 x g for
3 min. The washing with PBS was repeated three times.

Isolation of miracidia. Eggs were transferred into a 200 mL hatching measuring cylinder
wrapped completely in light-blocking black tape with the exclusion of the top 4 cm from the
lip, thereby producing a light-gradient. The hatching cylinder was topped with conditioned
water (Milli-Q water stored with calcium carbonate chips until pH� 7) until above the tape-
covered area ~1.5 cm and exposed to bright light at 27°C. Eggs were incubated for 2 h post-
hatch before collection of the top 10 mL of miracidium-containing water (MCW) above the
light-blocking region. Hatched miracidia were collected by centrifugation at 8,000 x g for 1 min
at 4°C, and were then washed twice with water.

Protein extraction frommiracidia. Miracidia pellets at 2h post-hatch were used for pro-
tein extraction using urea/thiourea buffer [7 M urea, 2 M thiourea, and 4% CHAPS, in 30 mM
Tris-HCl (pH 8.5)] with a protease inhibitor cocktail (GE Healthcare Life Sciences), and
homogenised. The lysate was allowed to settle at room temperature for 10 min; subsequently,
the sample lysate was centrifuged at 15,000 x g for 15 min. The supernatant was collected for
sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE).

SDS-PAGE and trypsin digestion
Lysate proteins were size fractionated by 1D SDS-PAGE with a 4–12% polyacrylamide gradient
gel (Amersham ECL Gel, GE Healthcare Life Sciences) according to the manufacturer’s
instructions. The gel was stained with Coomassie Brilliant Blue R250 (Sigma-Aldrich). Two

Proteomic Analysis of the SchistosomamansoniMiracidium

PLOSONE | DOI:10.1371/journal.pone.0147247 January 22, 2016 3 / 22



lanes of biological replicates (about 150 miracidia each) containing protein were excised
(equally cut into 51 pieces in each lane) and processed for LC-MS/MS. Briefly, proteins within
each gel piece were subjected to reduction (10 mM dithiothreitol, DTT, 45 min at 56°C) and
alkylation (iodoacetamide, IAA, 30 min, RT, in the dark) followed by Sequencing Grade Modi-
fied Trypsin (Promega) for 16 h at 37°C. Peptides were then extracted from the gel pieces as
described [24], desalted and concentrated by Ziptip C18 (Millipore).

NanoHPLC-ESI-TripleTOF Analysis
Purified extracts (after Ziptip) were analysed by LC-MS/MS on a Shimadzu Prominance Nano
HPLC (Japan) coupled to a Triple Tof 5600 mass spectrometer (ABSCIEX, Canada) equipped
with a nano electrospray ion source. The protocol has been detailed elsewhere [25]. Briefly,
approximately 6 μL of each extract was injected and de-salted on the trap column before enter-
ing a nano HPLC column (Agilent Technologies, Australia) for mass spectrometry analysis.
The mass spectrometer acquired 500 ms full scan TOF-MS data followed by 20 by 50 ms full
scan product ion data. Full scan TOFMS data was acquired over the mass range 350–1800 and
for product ion MS/MS 100–1800. Ions observed in the TOF-MS scan exceeding a threshold of
100 counts and a charge state of +2 to +5 were set to trigger the acquisition of product ion. The
data were acquired and processed using Analyst TF 1.5.1 software (ABSCIEX, Canada).

Protein identification
The S.mansoni protein sequence database (ASM23792v2.27) was downloaded from the Schis-
tosoma mansoni database of EnsemblMetazoa website (http://metazoa.ensembl.org/
Schistosoma_mansoni/Info/Index), with a total number of 11,774 sequences. To improve pro-
tein identification and coverage, four search engines were comparatively used to analyse the
mass spectrometric data, including PEAKS (Bioinformatics Solutions Inc., Waterloo, ON, Can-
ada, version 7.0), X! Tandem [26] (version 2009.04.01), MS Amanda [27] (version 1.0.0.5242)
and OMSSA [28] (version 2.1.7). A composite target−decoy database was built with the for-
ward and reverse sequences for calculating the false discovery rate.

All searches used the following search parameters: precursor ion mass tolerance, 0.1 Da;
fragment ion mass tolerance, 0.1 Da; fully tryptic enzyme specificity; two missed cleavage; the
number of unique peptide �1; monoisotopic precursor mass (PEAKS and OMSSA); monoiso-
topic fragment ion mass (OMSSA); a fixed modification of cysteine carbamidomethylation;
and variable modifications included methionine oxidation, conversion of glutamine and glu-
tamic acid to pyroglutamic acid, and deamidation of asparagine. For PEAKS, de novo sequenc-
ing, database search and characterising unspecific post-translational modifications (PTMs)
were used to maximise the identifications; false discovery rate (FDR) was set to� 1%, and the
individual peptide ion score [-10�Log(p)] was calculated accordingly, where p is the probability
that the observed match is a random event. An additional parameter unique to OMSSA was
used that requires that one of a variable number of the most intense fragment ions match those
of the theoretical peptide; in this case the parameter was set to 5. For other three engines except
PEAKS, the confidence was set to greater than 95%.

Gene ontology, KEGG pathway and prediction of secreted proteins
Identified proteins were firstly subject to BLASTp and tBLASTn using non-redundant protein
sequences and nucleotide collection of NCBI, respectively. Then, BLAST results were com-
bined and imported to BLAST2GO[29] (version 3.1), to perform gene ontology (GO) and
KEGG pathway analysis. Fisher’s exact test was carried out to evaluate the enrichment of GO
terms in miracidium proteome (test dataset) against the annotation of all S.mansoni proteins
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(reference dataset). The significant GO terms with p<0.01 were considered as over-repre-
sented, and FDRs were calculated from p-values using the Benjamini-Hochberg procedure
[30].

Protein N-terminal signal sequences were predicted using the SignalP 4.1 [31] and Predisi
[32], with the transmembrane domains predicted by TMHMM [33]. For SignalP predictions,
positive identifications were made when both neural network and hidden Markov model algo-
rithms gave coincident estimations; D-cutoff values were set to 0.34 (to increase sensitivity) for
both SignalP-noTM and TM networks. Herein, a protein was designated as secreted, only
when it met the criteria of both SignalP and Predisi, and did not have a transmembrane
domain predicted by TMHMM.

Identification of neuropeptide genes
To identify target sequences, previously identified platyhelminth (flatworm) neuropeptide
genes were used as query (BLASTn and BLASTp) against the S.mansoni genome that was
imported into the CLC genomics workbench (version 7.0.3). Six target neuropeptide genes
were compared to known platyhelminth neuropeptides using multi-sequence alignments con-
structed in the Molecular Evolutionary Genetics Analysis (MEGA) software version 6.0.5 [34].
Similar homology comparisons were utilized through the NCBI database (http://blast.ncbi.
nlm.nih.gov/Blast.cgi) using BLASTp and BLASTx searches. Sequence presentation and shad-
ing of multiple sequence alignments was performed using the LaTEX TEXshade package [35].
Relative gene expression of target neuropeptide genes between cercariae, 3S, 24S and adult
schistosomes (as relative normalized reads) were obtained from SchistoDB [36] (http://
SchistoDB.net) for S.mansoni.

To identify neuropeptide gene expression in miracidia, total RNAs were prepared from the
2 h post-hatch larvae using TRIzol reagent (Invitrogen), following the manufacturer’s protocol.
Purity and quantity was measured using a UV spectrophotometer (NanoDrop ND-1000) at
260 and 280 nm. First-strand cDNA was generated from miracidia total RNA using random
hexamer primers and the Superscript Preamplification System for First-strand Synthesis (Invi-
trogen). RT-PCR was performed using primers designed on CLC genomic workbench (version
7.0.3) (Table 1), with actin used as a positive control, inclusive of amplification without cDNA
as negative control. Samples were heated at 94°C (2 min), amplified for 35 cycles (repetition of
30 s at 95°C, 30s at 50°C and 1 min at 72°C) and extended at 72°C (5 min). Samples were sepa-
rated on agarose gel (2%, ethidium bromide) for visualisation.

Results

S.mansonimiracidia proteomic analysis and protein identification
The overall experimental procedure to map and annotate miracidia proteins encoded by the S.
mansoni genome is outlined in Fig 1A. Miracidia proteins were extensively fractionated by 1D
SDS-PAGE, followed by in-gel digestion. All samples were subjected to high-accuracy mass
spectrometry, and the raw data were rigorously analysed using available informatics tools.
Based on the genome of S.mansoni published in 2009, it was estimated that there are at least
11,809 genes (encoding 13,197 transcripts in mixed-sex cercariae), of which certain features
were described, including unusual intron size distribution and new families of micro-exon
genes that undergo frequent alternative splicing [1]. The protein database in our study con-
tained 11,774 different sequences, from which we have identified a total of 1,910 S.mansoni
proteins integrating the results of four search engines with high confidence (one or more
unique peptides with an FDR less than 1%) in miracidia (S1 Table). The numbers of proteins
identified by four search engines are compared in Fig 1B. Overall, there are 643 proteins
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mutually identified by all engines; PEAKS have 420 sequences uniquely identified, compared
to 70, 66 and 36 by MS Amanda, X! Tandem and OMSSA. There are a number of proteins are
crossed identified among different engines. This offers the highest number of proteins identi-
fied from miracidia, providing ~16.2% of the total proteins predicted from the S.mansoni
genome (11,774 entries, Jul. 2015). As it has been reported that around 6000–7000 genes are
expressed in each S.mansoni stage [37], then the number of proteins we have identified may
cover approximately 32–45% of those expressed proteins.

Gene ontology analysis
The distributions of the GO term (the second level) of proteins identified for the three catego-
ries of biological process, molecular function and cellular component are shown in Fig 2A,
while the distributions of the GO term at all levels of the LC-MS/MS identified proteins for the
same three categories are recorded in S2 Table. There is also a large category comprised of pro-
teins without any GO term prediction (15.4%, Table 2), including 41 novel proteins (no
BLAST result meeting the eValue cutoff). Cellular and metabolic processes are the two most
highly represented biological process terms in the S.mansonimiracidium proteome, each con-
taining over 800 proteins. There was also a high presence of miracidial proteins implicated for
roles in basic regulation and responses specifically relevant to single organisms, as well as for
responding to stimuli, probably a requirement for movement post-hatch, seeking out a host
snail and host penetration. Approximately 198 proteins are associated with signalling and cell-
cell signalling, respectively (S2 Table); these are characteristic components of those systems
requiring multicellular processes and communication.

GO of proteins related to molecular function show that the majority of proteins identified
in this study are involved in binding (61.3%) and catalytic activity (42.0%) (Fig 2A). Within
the binding group, organic cyclic compound binding (34.3%), ion binding (32.4%), and protein
binding (29.4%)and are the top three categories. Meanwhile, within the catalytic activity group,

Table 1. Primers used for RT-PCR of neuropeptide genes.

Gene Sequence 5’ to 3’

GFVRIamide

Forward: AAACAGTGATGGCTTACCAA

Reverse: TGAAACAACTGACTACCGAA

RGMIamide

Forward: CTACAACAACAATCACCCAC

Reverse: TAAACCACTTCCTGCAAAAC

PWamide

Forward: TTTCCCACCATCATCATC

Reverse: CTTACATTTCACCTTCAGTC

RLamide

Forward: ATCACCAACCAACATCATAG

Reverse: AGTTCAGCAACATTATCACC

Neuropeptide F (NPF)

Forward: TCCATTTCCTTCTCTTCTCTCT

Reverse: TCTCCTGACGTTGTTCTACT

Actin

Forward: CTCTCACTCAATCACTAACTC

Reverse: ACATAGCTGGCACATTAAAC

doi:10.1371/journal.pone.0147247.t001
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hydrolase activity (20.3%) and transferase activity (13.3%) are the two categories containing
largest number of sequences (S2 Table). Most hydrolase activity-type and transferase activity-
type proteins participate in the catalysis of glycosylation hydrolysis, as well as in transferring
phosphorus-containing and glycosyl groups. Miracidium proteins with GO under the cellular
component category included those with cell (46.5%), organelle (33.9%), macromolecular

Fig 1. (A) Overall workflow for S.mansoni egg isolation, protein extraction and identification frommiracidia.Miracidium proteins were extensively
fractionated followed by identification with high-accuracy nano-LC TripleTOFMS. (B) Protein identification results of different search engines (see Methods
for search parameter settings).

doi:10.1371/journal.pone.0147247.g001
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Fig 2. Gene ontology annotation of miracidia proteins. The bar chart (A) describes the GO distribution of GO term on level 2 from the proteome. When
one protein was known to be localised in more than one cellular compartment, all of the localisations were counted non-exclusively. (B) All identified miracidia
proteins were compared with the whole protein database of S.mansoni. Significantly over-represented GO terms (p<0.01) are shown. The number of
proteins and their levels of significance are also shown. (C) GO terms of biological process and molecular function over-represented in miracidia compared to
the whole S.mansoni proteins, in terms of the ratio of protein numbers.

doi:10.1371/journal.pone.0147247.g002

Table 2. Categories of proteins identified from S.mansonimiracidia, annotations with/without GO
terms, predicted as secreted proteins and receptors

Sequence number Miracidia

Identified, in total 1910

With GO term(s) 1616

Without GO term(s) 250

Secreted 75

Receptors 37

doi:10.1371/journal.pone.0147247.t002

Proteomic Analysis of the SchistosomamansoniMiracidium

PLOSONE | DOI:10.1371/journal.pone.0147247 January 22, 2016 8 / 22



complex (22.4%), membrane (19.1%), membrane-enclosed lumen (7.2%), extracellular region
(2.8%), cell junction (1.4%), synapse (1.4%) and extracellular matrix (0.1%) activity. In addi-
tion, there are 294 proteins that do not match to any GO category (S2 Table).

The fisher’s exact test of the GO is displayed in Fig 2B, with enriched terms listed in S3
Table. It can be seen that the processes of carbohydrate breakdown (p = 3.18E-10) are signifi-
cant in miracidia 2h post-hatch. Specific events such as protein folding (p = 1.10E-9) and
nucleosome assembly (p = 2.07E-8) are also enriched. These processes are important for energy
production, protein functionalisation and DNA replication. We also found significant overrep-
resentation of proteins in ATP synthesis coupled proton transport. In terms of molecular func-
tion, statistical analysis shows a very significant enrichment of ATP/GTP binding and ATPase/
GTPase activity. In comparison to the pooled S.mansoni database, we found a high ratio of the
proteins involved in cell projection, intracellular protein transport, macromolecule catabolism,
microtubule-based movement and cytoskeleton organisation, cell division, nucleocytoplasmic
transport and protein polymerisation (Fig 2C). The under-represented molecular function in
miracidia included G-protein coupled receptor activity and sequence-specific DNA binding
transcription factor activities (S3 Table).

KEGG pathway analysis
Using the KEGG pathway database, the S.mansonimiracidium proteins identified can be clas-
sified into 95 pathways (S1 Fig and S2 Table), the top 25 of which are shown in Fig 3. Purine
metabolism is the top pathway represented, followed by the protein processing pathway of bio-
synthesis of antibiotics, which includes 70 sequences. There are also a significant number of
proteins present that relate to pathways involved in energy procurement, e.g., 31 sequences
playing roles in glycolysis/gluconeogenesis, oxidative phosphorylation and pyrimidine metabo-
lism, respectively. Besides, a number of proteins relate to sugar metabolism, including the
metabolism of fructose and mannose (13 seqs), starch and sucrose metabolism (13), amino and
nucleotide sugar (13), and galactose (12) (Fig 3). In addition, proteins were identified that are
associated with inositol phosphate metabolism and the citrate cycle (TCA cycle), which could
play crucial roles in a diverse number of cellular functions, such as cell growth, apoptosis, cell
migration, endocytosis, and cell differentiation [38]. The TCA cycle is the final pathway of
metabolism of three nutrients—carbohydrates, lipids, and amino acids, so the presence of these

Fig 3. KEGG analysis of miracidium proteins showing the top 25 highly represented KEGG pathways
(see S2 Table for the list of all KEGG pathways identified).

doi:10.1371/journal.pone.0147247.g003
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pathway proteins may be attributed to the process of nutrient synthesis and storage in
miracidia.

In addition, 15 proteins can be attributed to glutathione metabolism. Glutathione (GSH)
works as an antioxidant molecule in plants, animals, fungi and some bacteria and archaea, pre-
venting damage to important cellular components [39]. A similar role is likely for this group of
proteins in the miracidium. So far, several glutathione metabolism relevant proteins have been
considered as antischistosomal drug candidates, such as thioredoxin glutathione reductase
(TGR) [40,41] and glutathione-S-transferase [42], both of which were identified in this study.

Secreted proteins in S.mansonimiracidia
Of the 1,910 miracidium proteins identified, 75 are predicted by SignalP, Predisi and TMHMM
to be secreted (Table 3 and S2 Table). Secreted proteins may be involved in a variety of physio-
logical processes in the miracidium, including cell signalling and cell-cell communication. We
identified various members of the venom allergen-like (VAL) protein family (Table 4), and VAL
2, 3, 9, 26, 27 and 28 are predicted to be secretory.

Table 3. List of identified secreted proteins with -10*Log(P)�50 from S.mansonimiracidia (see S2 Table for the full list).

Sequence name Sequence description -10*Log(P) #Peptides Mass (kDa)

Smp_049550.1:pep 78 kda glucose-regulated protein 335.14 31 71.2

Smp_179250.1:pep alpha-galactosidase, alpha-n-acetylgalactosaminidase 275.55 25 47.8

Smp_079770.1:pep protein disulfide isomerase-associated 3 precursor 251.47 15 54.4

Smp_056760.1:pep protein disulfide-isomerase 207.21 14 54.2

Smp_030300.4:pep endoplasmin 183.37 20 239.5

Smp_089670.1:pep alpha-2-macroglobulin-like protein 1 181.61 13 229.9

Smp_021730.2:pep cytochrome c oxidase subunit Vb: cox4 171.7 9 25.1

Smp_150240.1:pep secretory glycoprotein k5 precursor 168.2 7 31.2

Smp_098420.1:pep hypothetical protein (function unknown) 159.57 8 36.5

Smp_112110.1:pep interleukin-4-inducing protein precursor 155.09 4 15.4

Smp_154290.1:pep glipr1-like protein 1 precursor 152.75 7 20.7

Smp_143150.1:pep elongation factor 2 151.28 10 60.7

Smp_020340.1:pep lysosomal alpha-glucosidase 137.23 7 101.6

Smp_032670.2:pep egg protein c122-like 137.1 4 17.2

Smp_030370.1:pep calreticulin 132.13 7 45.4

Smp_172110.1:pep protein disulfide-isomerase 120.47 3 40.2

Smp_017730.1:pep GPI anchored surface glycoprotein 117.25 6 186.5

Smp_180530.2:pep phosphoglucomutase 114.35 3 62.7

Smp_160560.1:pep iron dependent peroxidase 113.15 5 79.5

Smp_145300.1:pep peptidylglycine alpha-hydroxylating monooxygenase 110.24 2 25.4

Smp_199860.1:pep 6-phosphogluconate decarboxylating 109.65 3 17.6

Smp_155890.1:pep alkaline phosphatase 90.67 4 46.3

Smp_089640.2:pep succinate dehydrogenase 86.78 4 32.3

Smp_159800.1:pep hypotheticial protein (function unknown) 78.58 1 9.1

Smp_000260.1:pep proactivator polypeptide 78.41 1 104.7

Smp_005710.1:pep egg protein cp391s-like 76.57 3 41.7

Smp_056200.1:pep isocitrate dehydrogenase 65.77 2 43.5

Smp_088720.1:pep nadh:ubiquinone oxidoreductase complex I
intermediate-associated protein-containing protein

63 3 27.4

Smp_179560.1:pep multiple inositol polyphosphate phosphatase 54.7 2 59.2

doi:10.1371/journal.pone.0147247.t003

Proteomic Analysis of the SchistosomamansoniMiracidium

PLOSONE | DOI:10.1371/journal.pone.0147247 January 22, 2016 10 / 22



Receptors and neuropeptides in S.mansonimiracidia
Approximately 43 receptors and receptor-associated proteins were identified and annotated in
the proteome analysis, as shown in S2 Table, represented by ionotropic, G-protein coupled,
kinase-related and nuclear receptors. Most of these receptors have low sequence coverage sup-
ported by LCMS spectra, which could be attributed to the limitation of protein extraction
method in purifying membrane proteins. The mitochondrial import receptors (TOM34 and
40) were most abundant.

Neuropeptide and neurotransmitter receptors were also found, including an acetylcholine
receptor subunit α-2 and 4 that belongs to a superfamily of ligand-gated ion channels, allowing
for the flow of sodium and potassium across the plasma membrane in response to ligands such
as acetylcholine and nicotine. Also an FMRFamide receptor was found by X! Tandem (S2
Table).

No neuropeptides were identified from the proteome analysis, however, neuropeptide pre-
cursor genes were obtained from public databases for several platyhelminth species, and then
used as a query to perform in silico BLASTp search of the S.mansoni genome, from which 5 S.
mansoni neurohormone genes were identified. Translated sequences encoded RGMIamide,
GFVRIamide, PWamide, RLamide and Neuropeptide F (NPF) neuropeptides (Fig 4 and
Table 5). Compared with S. japonicum and S. haematobium homologs, there appears to be
high amino acid identity. Our RT-PCR determined that all five S.mansoni neurohormone
genes were expressed at the 2h post-hatch stage. Besides the miracidia stage, GGVRI, RGMI,
PWamide and NPF gene transcripts have been identified in other life-stages, including cercar-
iae, somule and adult worms (Table 5 and S2 Fig).

Discussion
In this study, to provide a comprehensive overview of the miracidia proteome, we combined
the results of four search engines to assess the MS/MS spectral data. The outcome indicated
distinct variations in protein identification dependent on the search engine (see Fig 1B), which
could be attributed to differences in search algorithms and associated parameter settings [43].
This is supported by a recent benchmark study that used a pool of 20,103 synthetic peptides to
evaluate peptide-spectrum matches (PSMs) using two different LCMS systems followed by the
analysis with 1,800 different search engine and parameter set combinations [43]. That study
found that the choice of parameter settings had a large influence on the identification perfor-
mance of the search engine. Thus, we recognise that the downstream statistical analysis we
used to filter PSMs could potentially generate true/false positives or negatives, as different
search engines provide various fractions of correct and incorrect PSM-assignments, numbers
and types of correct assignments.

Table 4. Venom allergen-like (VAL) proteins identified by from S.mansonimiracidia (also see S1 Table for more details).

Accession -10*Log(P)/Confidence Coverage (%) #Peptides Mass (kDa) Description

Smp_120670.1:pep 153.53 25 7 16.4 VAL5

Smp_154290.1:pep 152.75 35 7 20.7 VAL27

Smp_176160.1:pep 151.87 34 7 20.6 VAL26

Smp_154260.1:pep 151.87 34 7 20.6 VAL28

Smp_176180.1:pep 105.61 25 7 21.0 VAL9

Smp_179480.1:pep 88.87 15 4 31.2 VAL5

Smp_070250.1:pep 73.94 10 3 31.2 VAL15

Smp_002630.1:pep 21.22 4 1 26.6 VAL2

Smp_078490.1:pep 96.89 (X! Tandem) 7 1 24.6 VAL14

doi:10.1371/journal.pone.0147247.t004
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Numerous de novo only peptides (peptide sequences that don’t have any match against the
database in use) resulted from de novo sequenced peptide segment from the MS/MS data have
been provided in this work. For example, PEAKS engine derived a total of 3,790 de novo only
peptides with high average local confidence greater than 80% (S1 Table), which could be attrib-
uted to: i) the incompleteness of the protein database due to the highly repetitive S.mansoni

Fig 4. Characterisation of neuropeptides within Schistosomemansonimiracidia. Shown is S.mansoni annotated precursor neuropeptides, including
signal peptide (yellow), cleavage sites (red), glycine for amidation (green) and bioactive peptide (light blue). Also, comparison with S. japonicum and S.
haematobium precursor protein homologs. Dark blue shading indicates amino acid conservation.

doi:10.1371/journal.pone.0147247.g004
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genome, ii) short/alternative open reading frame (s/altORF) encoded peptides that were over-
looked during genome annotation, and iii) contaminating mouse liver tissue attached to the
isolated S.mansoni eggs that could have further attached to hatched miracidium. Herein, we
provide the sequences of de novo only peptides as a data source for future investigation of pos-
sibilities i) and ii). Particularly for ii), the existence of s/altORF encoded peptides has been
widely described in viruses [44,45,46,47] and increasingly found in humans with potential
functions [48,49,50,51,52,53], including targets of anti-tumor responses in several type of can-
cers [50].

The enrichment analysis emphasises the importance of proteins playing roles in energy pro-
duction, transportation and conversion in miracidia (Fig 2). It is possible that the overrepre-
sentation of proteins in energy-related processes is due to the active development and more
importantly host-seeking movement of miracidium. Thus, the signalling blockade of the key
proteins on these pathways might inhibit its maturation and interfere with the snail infection.
The biosynthesis of antibiotics is the KEGG pathway with large number of proteins in miracid-
ium (70 relevant proteins with 49 enzymes), which approximately include 50% of sequences on
this pathways identified from entire S.mansoni proteome [1], suggesting a complex defence
mechanism existing in it despite the small body size.

Amongst the 1,910 miracidium proteins identified, the most abundant proteins were house-
keeping/motor proteins (tubulin, actin, myosin etc) and enzymes (reductases, transferases,
proteases and peptidases) (S2 Table). A putative rootletin protein and ciliary outer arm dynein
are present at relatively high abundance, which likely originates from the miracidia cilia. A
number of putative glycoproteins with high abundance were also identified, including both
secreted and non-secreted proteins; these include secretory glycoprotein k5 precursor, nuclear
pore membrane glycoprotein, GPI-anchored surface glycoprotein, and so forth.

One of well represented protein identified by LC-MS/MS is the S.mansoni protein 40 (Smp-
40), also known as heat shock protein-HSP20, which is in accordance with a recent report
showing that this protein can contributes to 15% of the soluble proteins of miracidia [13].
Smp-40 is one of a number of previously identified soluble egg antigens (SEA) and soluble
worm antigen proteins (SWAP) [54], that has been investigated for its role in blastogenic reac-
tions and granuloma responses, and as serodiagnostic target. As a member of the small heat
shock protein (sHSP) family, it helps to capture unfolded proteins that form stable complexes
[55], resulting in efficient disaggregation of the protein aggregates. The amphitropic sHSPs
have been shown to associate with membranes, despite the lack of transmembrane domains or
signal sequences. Proteins homologous to Smp-40 have previously been identified in S. japoni-
cum [56], as well as the tapeworms Taenia saginata [57] and Echinococcus multilocularis [58],
and the lung fluke Paragonimus westermani [59]. In addition to HSP20, HSP16, 27 and 40

Table 5. Summary of S.mansoni neuropeptide genes identified in this study.

Name Full length (aa)a Signal (aa)b Mass (kDa)c Miracidia Cercariae Adult

GFVRIamide 115 28 13.2 Yes Yes Yes

RGMIamide 99 26 11.5 Yes Yes Yes

Pwamide 111 30 12.7 Yes Yes Yes

Rlamide 80 23 9.3 Yes Yes No

Neuropeptide F 147 37 17.6 Yes Yes Yes

a size in amino acids of precursor neurohormone
b predicted length of signal sequence based on SignalP
c full-length precursor

doi:10.1371/journal.pone.0147247.t005
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were also identified in this study. A set of sHSPs are highly upregulated in the ‘dauer’ larvae of
Caenorhabditis elegans [60], which is a stage induced by unfavourable growth conditions. The
dauer state is resistant to environmental stresses by significantly reducing metabolic activity,
yet a functional chemosensory system and rapid responsive movement can be maintained
[61,62,63]. Miracidia face similar physiological stresses after hatching and during host-finding;
thus, the abundance of sHSP could offer the miracidium protection against stress. Moreover, it
has been suggested that the sHSPs work in an ATP-independent manner [64,65], ensuring that
glucose reserves are not overused.

A 78 kda glucose-regulated protein (GRP78) was also identified with high abundance,
which is a member of the heat shock protein 70 (HSP70) multigene family (Table 3). This find-
ing extends upon a previously reported study which found that chaperones are the most abun-
dant proteins in the S.mansoni egg [13]. The expression of HSP70 has been noticed
throughout the development of egg, which suggests its multi-functional roles, including protein
maturation in the reticulum of embryogenic processes [66] and in mitochondrial biogenesis
[67]. GRP78 is involved in the folding of nascent proteins within the endoplasmic reticulum
and the translocation of secretory proteins [68], thus it could play a similar role in stabilising
macromolecular structure for miracidium proteins destined for secretion. The GRP78 itself has
also been found to be released from cells and into the peripheral circulation [69]. We also iden-
tified the predicted secreted protein alkaline phosphatase in the miracidia proteome (see
Table 3). Alkaline phosphatase in S.mansoni sporocysts has been speculated to function in
nutrient uptake and might serve as a marker of infection of B. glabrata snails [70].

Two mucin-like proteins were identified, with N-terminal domains containing a variable
number of tandem repeats. Polymorphic Mucins (SmPoMucs) act as key strain markers since
they vary between the strains of S.mansoni known to infect B. glabrata [71]. Their proposed
function is to interact with the host snails Fibrinogen Related Proteins (FREPs) [72], and other
proteins associated with the secondary immune response of the snail [73,74]. Of note, it has
been observed that the SmPoMuc genes are only expressed in stages that interact with the host
snail [17] and that each individual miracidium shows significant sequence differences [75].

The secreted glycoprotein kappa-5 (k5) was first characterised as an immunogenic egg gly-
coprotein from S.mansoni, and is probably a key mediator of host-parasite interactions since it
triggers a pronounced IgE response in the human host [76]. Similarly, its role as an authentic
granuloma-inducing component in snail hosts is worthy of study, and to compare with its sim-
ilar function in the mammalian host [77]. The secreted calreticulin-like protein is a Ca2+ bind-
ing/storage protein, which is highly conserved, being found in a number of different animal
taxa. It has recently been considered as a novel antigen for the detection of anti-S.mansoni
antibodies as it possesses the advantage of cheaper and easier production compared with the
soluble egg antigen that is traditionally used [78].

Previously, four VAL protein members have been found by the transcriptomic analysis of
different life stages of S.mansoni [37], and later a further 24 members were discovered [79].
Although the biological function of VAL proteins still remains elusive, it has been proposed
that may play an important role in the host-parasite interaction [80]. Gene expression of some
VAL proteins (VAL6 and 7) is restricted to the oral and ventral suckers of adult worms and in
the oesophageal gland [81], while VAL 2, 3, 5 and 9 have inflammation-inducing properties
[16]. The VAL 9 protein has additionally been found in soluble egg products and miracidia/
sporocysts, and is potentially involved in tissue reorganisation/extracellular matrix remodelling
[82].

We found a GPI-anchored surface glycoprotein within the miracidia proteome, however, its
role in miracidia remains unclear. The GPI-anchored surface glycoproteins are also found in
adult S.mansoni, localised to the outer surface [83,84]. A saposin protein was identified,
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displaying the characteristic six conservative cysteines that form three disulphide bridges, pre-
viously reported within the gastrodermis of S.mansoni adult and cercariae [85]. Saposins exist
widely in most animals; their function varies but seems to relate to interactions with lipids. In
Clonorchis sinensis, it has been shown to lyse ingested host cells for nutritional purposes [86],
while in the case of Fasciola hepatica, it works externally to the parasite as a secreted product
[87], thus implicating it in a feeding role.

The interleukin-4-inducing protein precursor was first identified with high expression in
the eggs of S.mansoni, where it can stimulate the mammalian host to rapidly release large
amounts of interleukin-4 (IL-4) [88]. IL-4 is a key promoter of a Th2 response, via an IgE-
dependent but non-antigen-specific mechanism. We found that this protein is present in abun-
dance in miracidia (Table 3), which contrasts a report that this protein is produced exclusively
by the eggs [89]. As a secreted glycoprotein, it could play a similar role in the body of the inter-
mediate snail host.

Cathepsins D and L were also identified in our miracidia proteome. It has been suggested,
from an evolutionary perspective, that cathepsins D and L are two key proteases (others include
cathepsins B, C and legumain) that allow for efficient digestion in early metazoans. In addition,
studies of parasitic helminths have suggested that these proteases function as digestive enzymes
in vertebrates earlier than the evolution of the pancreas and the serine [90]. The aspartic prote-
ase cathepsin D has been found in the schistosome gut as an apical enzyme in digesting hemo-
globin released from ingested erythrocytes [91]. The reduction of cathepsin D transcripts leads
to significant development retardation in vitro, aspartic protease enzyme activity suppression
and the malfunction of the digestion of host hemoglobins in the gut of schistosome adults [92].
Vaccination of sheep and cattle with purified F. hepatica cathepsin L elicits protection (50–
73%) and anti-fecundity effects against challenge infection [93]. Thus, these two proteases
might play certain roles in miracidia metabolism, for example, at post-infection they may regu-
late the digestion of host snail’s haemoglobin [94].

The identification of abundant mitochondrial import receptors may correlate with the high
energy requirement for miracidium growth, development and extensive host-seeking activity
within the first 5–6 h post-hatch. TOM34 was found to act as an important component of the
translocation machinery of the outer mitochondrial membrane [95], while TOM40 forms
hydrophilic channel for the transport of preproteins [96]. The presence of epidermal growth
factor, netrin and ribosome receptors in miracidia additionally supports the requirement for
active growth. Human low-density lipoprotein (LDL) binds to the surface of schistosomula
adult and cercariae via LDL receptor [97]; the identification of LDL receptor in miracidium
indicates a similar scenario might take place between miracidium and host snail.

Neuropeptides are used by neurons to communicate with cells. Despite little understanding
of their role in schistosome miracidia, we expected that they would be important as key endog-
enous mediators during host-seeking behaviours, required for locomotion, sensory responses
and basic catabolism of endogenous glycogen stores. In this study, although no neuropeptides
were identified from the miracidia proteome analysis, 5 neurohormone genes were identified
by RT-PCR. Of the 5 neurohormones, NPF has been the most extensively studied across the
phylum Platyhelminthes. The neuropeptide Y superfamily has important functions in both
vertebrate and invertebrate taxa with two distinguishable types of peptides, neuropeptide F-like
(NPF), most notably found in invertebrates, and NPY-like peptides found typically in verte-
brate species [98]. However, analysis of recent planarian genomes has shown that a specific
family of NPY (specifically NPY-1,4,9) genes could encode for both NPY-like and NPF-like
neuropeptides, suggesting an evolutionary relationship between vertebrate NPY and inverte-
brate NPF peptides [98]. Neuropeptide F within invertebrates has been linked to feeding, vari-
ous locomotion roles, reproduction and stress responses [99]. In adult worms of S.mansoni
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NPF functions in modulation of sensory systems, motor function, reproduction, and feeding
[100]. However, as the two latter functions can be excluded from miracidium, with neither the
need to feed, nor reproduce, it can be predicted to play roles in locomotion and in varying sen-
sory modulation [100].

A report has indicated possible inter-species differences in the functions of GFVRIamide,
which fall into the broad I/Lamide family, due to the apparent lack of conservation and differ-
ence in expression [101]. Recently described, the novel GFVRIamide has been linked to poten-
tial neuromuscular and interneuronal communication roles in the adult worm, suggesting a
putative role also in the miracidium [101]. RLamide and RGMIamide are newly described
novel peptides that fall into the same I/Lamide family, and along with the PWamides all have
unknown phenotypical expression across the phylum Platyhelminthes. A high level of inter-
species conservation, which was seen within the multi sequence alignment, suggests potential
putative roles for these neuropeptides, with neuropeptides such as NPF, having similar and
consistent functions across invertebrate species. However, obtaining a next-generation tran-
scriptome is recommended so as to identify further novel neuropeptides and associated recep-
tors, where functions of expressed and novel neuropeptides can be determined using gene
knockout techniques. Species conserved neuropeptide receptor systems make for potential
novel drug targets, and further exploration of the function of these receptors systems at the
miracidial level is recommended, with future studies to elicit the expression of each neuropep-
tide throughout the miracidium life-span to analyse neuropeptide expression patterns.

Conclusions
Our study has revealed the proteome of the S.mansonimiracidium, uncovering important
molecules in biological pathways that play key roles, such as in glutathione metabolism, phe-
nylalanine metabolism, phenylpropanoid biosynthesis and the TCA cycle. The biological pro-
cesses related to energy regulation are highly enriched at this stage, with a large ratio of
proteins having functions of ATP/GTP relevance; in addition, the enrichment of protein fold-
ing/polymerisation and microtubule-related processes further indicates the active development
of miracidia. It has highlighted the principal secreted proteins the miracidium releases, some of
which are possibly involved in environment adaption, host seeking and invasion, including
sHSP, HSP70, mucins, VALs, interleukin 4, GPI-anchored glycoproteins and others; in addi-
tion, identified receptors also suggest that active biological processes occur in miracidia, includ-
ing immune response, phosphorylation and epithelial cell growth. The neuropeptides,
including RGMIamide, GFVRIamide, PWamide, RLamide and NPF, were identified through
gene expression analysis. These are highly conserved between schistosome species.
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