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Abstract: Background: Programmed death-ligand 1 (PD-L1) and programmed cell death protein
1 (PD-1) have been reported as possibly favorable prognostic factors in colorectal cancer (CRC).
However, their longitudinal effect is unknown. Methods: A pilot study was performed to investi-
gate whether baseline PD-1/PD-L1 levels are associated with further laboratory changes and/or
shorter survival. Results: A total of 506 laboratory measurements from 37 metastatic CRC pa-
tients were analyzed. The baseline plasma PD-1 and PD-L1 levels were 27.73 ± 1.20 pg/mL and
16.01 ± 1.09 pg/mL, respectively. Disease progression (p = 0.0443) and baseline high-sensitivity
C-reactive protein (p = 0.0011), aspartate transaminase (p = 0.0253), alanine transaminase (p = 0.0386),
and gamma-glutamyl transferase (p = 0.0103) were associated with higher PD-L1 levels. Based on
the baseline PD-1/PD-L1 levels, low and high PD-1/PD-L1 groups were created. Constant, patho-
logical levels of complete blood count values, high-sensitivity C-reactive protein, serum albumin,
high-density lipoprotein cholesterol, and lactate dehydrogenase were characteristic for patients with
high baseline PD-L1. High PD-L1 levels were significantly associated with increased tumor burden.
Disease-specific survival and progression-free survival were significantly shorter in patients with
high PD-L1. Conclusions: Abnormal levels of laboratory parameters and intensified tumor burden
can be expected if elevated baseline plasma PD-1/PD-L1 levels are found.
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1. Introduction

Colorectal cancer (CRC) is the third highest-incidence cancer type [1]. Almost every
second CRC patient will develop metastases (mCRC) at some point of the disease [2].
Moreover, CRC can be characterized by tumor-infiltrating lymphocytes, resistance to im-
munotherapeutic treatments, and genetic alterations leading to escaping immune surveil-
lance [3]. Programmed death-ligand 1 (PD-L1, synonyms: CD274 and B7-H1) is an immune
checkpoint molecule expressed by tumor cells that can interact with programmed cell death
protein 1 (PD-1, synonym: CD279), a receptor of T cells [3,4]. It has been previously de-
scribed that the activation of the PD-1/PD-L1 pathways can lead to an immunosuppressive,
anti-apoptotic microenvironment and help the tumor to evade anti-tumor immunity [3–5].
Besides the originally described membrane-bound forms, soluble variants of PD-L1 and
PD-1 have been also found [6]. The soluble form of PD-1 arises due to alternative splicing
(lacking exon 3), while the soluble form of PD-L1 is cleaved by a metalloproteinase from the
cell surface of dendritic cells [7]. The exact role of soluble PD-1/PD-L1 forms is unknown,
but they are mainly involved in various malignant and inflammatory diseases [8,9]. To our
current knowledge, they are involved in immune response regulation and tumor immune
escape; soluble PD-1 blocks the PD-1–PD-L1 interaction and activates CD8+ T cells, while
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soluble PD-L1 binds to PD-1 with higher affinity than the membrane-bound forms, ulti-
mately inhibiting the T cell response [10,11]. Soluble PD-1/PD-L1 is independent of the
amount expressed on membranes and has no association with sex, age, or histopathological
type [12,13]. Furthermore, the strong association between patient survival and soluble
PD-L1 levels in other malignant diseases [12–16] has led to the recommendation that the
soluble PD-L1 level can also be used as a possible prognostic marker in CRC [17]. The use-
fulness of soluble PD-1 is controversial [12–16], and to date, only the presence of increased
tissue PD-1 and/or PD-L1 is of clinical significance [10].

Although our knowledge about the relationship between CRC and soluble PD-1/PD-
L1 is constantly widening, most previous studies have investigated only the effect of
membrane-bound PD-1/PD-L1 in CRC. Very little is known about the relationship between
soluble PD-1/PD-L1 and CRC, and their everyday clinical application. Therefore, a pilot
study was carried out to investigate their routine oncology usefulness in mCRC patients.
The further aims of the study were to evaluate (1) the possible associations between plasma
PD-1/PD-L1 levels and other laboratory and clinicopathological parameters, (2) whether
baseline measurement of plasma PD-1/PD-L1 can indicate constant differences throughout
the course of the disease between patients with high and low baseline plasma PD-1/PD-L1
levels, (3) how plasma PD-L1 and/or PD-1 affects mCRC survival, and (4) whether there is
any association between tumor burden and plasma PD-L1 and/or PD-1 levels.

2. Materials and Methods

The study was approved by the Regional and Institutional Committee of Science
and Research Ethics, Semmelweis University (SE TUKEB 133/2015). It was conducted
in accordance with the Declaration of Helsinki and with the General Data Protection
Regulation issued by the European Union. Study subjects signed written informed consent
forms prior to any mCRC treatments. The manuscript was prepared and revised according
to the STROBE Statement—checklist of items [18].

2.1. Patients and Study Design

A retrospective pilot cohort study was carried out. The sample size calculation was
based on literature data, assuming large effect sizes between the various parameter compar-
isons [19]. To achieve p < 0.05 with a statistical power of at least 80%, 16 and 16 subjects for
low and high PD-1/PD-L1 groups were calculated, respectively, assuming a large effect size
(Cohen’s d ≥ 0.9). Therefore, a total of 37 stage IV mCRC patients were included prior to
any metastatic setting treatments, who attended the Cancer Center (Division of Oncology,
Department of Internal Medicine and Oncology), Semmelweis University, Budapest be-
tween 2017 and 2018. Inclusion criteria for the study were age > 18 years, diagnosis of stage
IV mCRC, and an Eastern Cooperative Oncology Group (ECOG) performance status ≤ 2.
Exclusion criteria included any previous or synchronous malignancies or any inflamma-
tory bowel, hematologic, systemic autoimmune, inadequately controlled thyroid, chronic
kidney, or mental diseases. None of the study participants received immune checkpoint
inhibitor therapy.

2.2. Clinicopathological and Laboratory Data Measurements

Disease history data, including co-morbidities, were collected. Laboratory samples
were drawn (1) at the time of study inclusion (baseline, prior to any oncological treatment
for mCRC) and (2) approximately every 4–6 weeks, if feasible. Complete blood count,
liver enzymes, creatinine level, plasma glucose, lipids, high-sensitivity C-reactive protein
(hsCRP), and CRC-related tumor markers were determined at the Central Laboratory of
Semmelweis University, Budapest, Hungary. The estimated glomerular filtration rate was
calculated using the CKD-EPI equations [20]. In addition to routine laboratory measure-
ments, plasma PD-1 and PD-L1 levels were measured at the time of the baseline visit using
the InvitrogenTM PD-1 Human ELISA (ThermoFisher Scientific, catalog number BMS2214,
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Waltham, MA, USA) and the InvitrogenTM PD-L1 Human ELISA (ThermoFisher Scientific,
catalog number BMS2212, Waltham, MA, USA) kits, respectively.

The tumor staging was given by histopathological examination of surgical primary
tumor specimens and imaging studies. The 8th version of the American Joint Committee
on Cancer (AJCC) grouping was used [21]. Tumors of the cecum, ascending colon, and
proximal two-thirds of the transverse colon were defined as right-sided, while tumors orig-
inating from the distal one-third of the transverse colon, descending colon, sigmoid colon,
and rectum were considered as left-sided [22]. Chemotherapeutic treatment of patients was
based on national and ESMO guidelines for mCRC [23]. In brief, a cytotoxic doublet with a
biological agent (bevacizumab or anti-EGFR recombinant chimeric monoclonal antibody)
was administered as the first-line and second-line treatment. Irinotecan + cetuximab and
regorafenib or trifluridine/tipiracil were administered as third-line or above. Due to the
large number of combinations, the chemotherapy was recorded as the lineage number of
the final treatment the patient received for the statistical analysis. At the time of inclusion to
the study, with the exception of KRAS and NRAS pathway analysis, molecular profiling of
the tumors was performed only on an as-needed basis as directed by respective guidelines.
Disease-specific (DSS) and progression-free (PFS) survival times were defined as follows:
The time elapsed between the inclusion to the study and mCRC-related death was used for
DSS. The time between the baseline visit and the date of any progression/death was used
as PFS. The RECIST 1.1 guideline [24] was used to define disease progression. Patients
without death/progression event(s) were right-censored. Follow-ups of patients were
terminated on 31 May 2022.

2.3. Statistical Analysis

The R for Windows statistical programming environment (version 4.2.0, R Foundation
for Statistical Computing, Vienna, Austria) was used for statistical analysis. A sample size
calculation was performed using the pwr R package (version 1.3-0). Group comparisons
and association testing between variables were performed with Welch’s test, the Wilcoxon–
Mann–Whitney U-test, Fisher’s exact test, ANOVA with Tukey’s HSD tests as a post hoc,
and Spearman’s rank-order correlation. PD-1 and PD-L1 cut-off values were determined
using a receiver operating curve (ROC) analysis (R-package pROC, version 1.18.0). The
time-dependent modeling of data was analyzed using linear mixed-effects models (R-
package nlme, version 3.1-155). “Simple” and cause-specific Cox regression survival
models were used for PFS and DSS, respectively (R-package survival, version 3.3-1). All
models analyzed were tested for multicollinearity and proportionality using generalized
variance-inflation factors and by proportional hazards tests, respectively [25,26]. A value of
p < 0.05 was considered statistically significant. The false discovery rate method [27] was
used for the multiple comparisons problem. Results were expressed as means ± standard
deviations, as the number of observations (percentage), and as a hazard ratio (HR) and 95%
confidence interval (95% CI) for continuous, count, and survival data, respectively.

3. Results
3.1. Baseline Measurements

A total of thirty-seven mCRC patients were included in this retrospective cohort
pilot study. The average pre-treatment PD-L1 and PD-1 levels of the patients were
16.01 ± 1.09 pg/mL and 27.73 ± 1.20 pg/mL, respectively. RAS, microsatellite, and BRAF
molecular profiling of patients were performed in 32, 12, and 8 of the 37 cases, respec-
tively. Thirteen RAS mutant, one microsatellite instable, and one BRAF mutant patient
were diagnosed. The clinicopathological data of the study participants are summarized in
Table 1.
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Table 1. Baseline anamnestic data of study participants (n = 37).

Clinicopathological Characteristics Average ± SD
or No. of Obs.

Age (years) 60.95 ± 10.99

Male:female ratio 24:13 (64.9%:35.1%)

Primary tumor resection 1 26 (70.3%)

AJCC staging [21] at the time of primary tumor removal surgery:

- Stage II 2 (5.4%)

- Stage III 4 (10.8%)

- Stage IV 31 (83.8%)

Regional lymph node metastasis 33 (89.2%)

Distant metastases:

- Synchronous:metachronous 31:6 (83.8%:16.2%)

- Location:

- Liver (single:multiple) 4:22 (10.8%:59.5%)

- Lung 13 (35.1%)

- Gynecological 2 (5.4%)

- Peritoneal 14 (37.8%)

- Carcinosis 10 (27.0%)

- Advanced local invasion 13 (35.1%)

- Other 12 (32.4%)

- Patients with multiple metastatic sites 25 (67.6%)

- Diameter of largest liver/lung metastasis (mm) 51.67 ± 44.66

RAS (wild:mutant) 2 19:13 (51.4%:35.1%)

Location of the tumor [22]

- Left-sided 28 (75.7%)

- Right-sided 9 (24.3%)

Final lineage of chemotherapy

- First line 14 (37.8%)

- Second line 10 (27.0%)

- Third line or above 13 (35.1%)

Medical history

- Diabetes mellitus 6 (27.0%)

- Hypertension 24 (64.9%)

- Cardiovascular disease(s), except events and hypertension 5 (13.5%)

- Major cardiovascular event(s) prior to CRC 4 (10.8%)

- Thyroid disease (in euthyroid state) 4 (10.8%)
1 Prior to the first metastatic chemotherapy session. 2 RAS analysis results were not available for 5 patients. AJCC:
American Joint Committee on Cancer; RAS: rat sarcoma virus gene; SD: standard deviation.

Significantly lower PD-L1 levels were found in those patients with metachronous
metastases (metachronous: 9.96 ± 3.17 pg/mL; synchronous: 17.23 ± 11.43 pg/mL;
p = 0.0412; Figure 1A), and in those who did not show any signs of disease progres-
sion (without progression: 10.30 ± 1.58 pg/mL; with progression: 16.70 ± 11.32 pg/mL;
p = 0.0443; Figure 1B). No connections were found between PD-L1 levels and sex, sidedness,
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chemotherapy, staging, or co-morbidities. The plasma PD-1 levels did not differ in any
of the abovementioned groupings. Correlation analyses revealed positive associations
between PD-L1 and hsCRP (Spearman’s ρ: +0.60; p = 0.0011), aspartate transaminase
(AST, Spearman’s ρ: +0.48; p = 0.0253), alanine transaminase (ALT, Spearman’s ρ: +0.45;
p = 0.0386), and gamma-glutamyl transferase (GGT, Spearman’s ρ: +0.52; p = 0.0103).
Marginally positive associations were found between PD-L1 and white blood cell (WBC,
Spearman’s ρ: +0.35), monocyte (Spearman’s ρ: +0.35), and platelet (Spearman’s ρ: +0.43;
p = 0.0556) counts. No associations were found between PD-1 and any of the laboratory
parameters.
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Figure 1. Pre-treatment measurements of plasma programmed death-ligand 1 (PD-L1) of metastatic
colorectal cancer patients with (A) synchronous (n = 31) and metachronous (n = 6) metastases, and
(B) who had disease progression (n = 33) or not (n = 4) during our observation period. Thick lines
and hollow circles represent median and outliers, respectively. * p < 0.05.

Thirty-two (86.5%) and thirty-three (89.2%) mCRC-related death and progression
events were observed, respectively. Additionally, one further but non-mCRC-related death
was registered. In univariate models, patients with higher baseline plasma PD-L1 levels
had significantly shorter DSS (HR: 1.0396; 95% CI: 1.0073–1.0730; p = 0.0160) and PFS
(HR: 1.0498; 95% CI: 1.0130–1.0880; p = 0.0074). In contrast, higher baseline plasma PD-1
levels were only associated with a marginal increase in decreased DSS (HR: 1.0269; 95%
CI: 0.9987–1.0559; p = 0.0617) and no difference was observed for PFS (HR: 1.0226; 95% CI:
0.9914–1.0550; p = 0.1580). The same results were obtained if the models were stratified by
synchronous and metachronous metastases (PD-L1 DSS: p = 0.0257; PD-L1 PFS: p = 0.0141;
PD-1 DSS: p = 0.1680; PD-1 PFS: p = 0.2690).

Similar results were found in a multivariate setting. The following parameters were
investigated in relation to patient survival: age, sex, tumor sidedness, final lineage of
chemotherapy, the presence of type 2 diabetes and/or hypertension, platelet count, and
the plasma level of PD-1 or PD-L1. PD-L1 levels marginally and significantly affected DSS
and PFS, respectively, while no effect of PD-1 on patient survival was found. In addition
to PD-1 and PD-L1, patient survival was most affected by sidedness, type 2 diabetes, and
platelet count (Table 2). The same results were obtained if the models were adjusted for
synchronous and metachronous metastases as well.
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Table 2. The p-values obtained for survival models investigating the multivariate effect of PD-1 and
PD-L1.

Parameter Disease-Specific Survival Progression-Free Survival

Age (years) 0.3825 0.3284 0.8433 0.6069
PD-1 (pg/mL) 0.2499 – 0.1652 –
PD-L1 (pg/mL) – 0.0932 – 0.0215
Sex (male vs. female) 0.3173 0.1289 0.1953 0.0598
Sidedness (left-sided vs. right-sided) 0.1544 0.3149 0.3324 0.4389
Lineage of chemotherapy
- First-line vs. second-line 0.5425 0.6244 0.4332 0.3344
- First-line vs. third-line or above 0.4964 0.4270 0.3320 0.3635
Type 2 diabetes mellitus (none vs. present) 0.1435 0.0601 0.7066 0.2831
Hypertension (none vs. present) 0.4842 0.5690 0.4708 0.6070
Platelet count (109/L) 0.0210 0.0954 0.0074 0.0699

PD-1: plasma programmed cell death protein 1; PD-L1: programmed death-ligand 1.

3.2. Investigating the Association between Plasma PD-1/PD-L1 Level and Tumor Burden

To investigate the effect of tumor burden on the plasma levels of PD-1 and PD-L1, the
two parameters were first compared based on the presence of various metastasis sites and
between RAS wild and mutant cases. As presented above, the timing of the metastasis
occurrence was significantly associated with plasma PD-L1 levels (p = 0.0412; Figure 1A),
but not with PD-1 (p = 0.4569). The presence of hepatic metastases was associated with
significantly higher plasma PD-L1 levels (p = 0.0499; Figure 2A) and with marginally higher
PD-1 levels (p = 0.0618; Figure 2B). In contrast, if a patient had lung metastases, both PD-L1
(Figure 2C) and PD-1 (Figure 2D) were lower, but a significant difference was only observed
in the case of PD-L1 (p = 0.0209). No difference was found for peritoneal metastases (PD-1:
p = 0.4985; PD-L1: p = 0.1100) and other metastasis locations (PD-1: p = 0.3282; PD-L1:
p = 0.5953), for patients with carcinosis (PD-1: p = 0.3329; PD-L1: p = 0.5580), or for patients
with advanced local invasion (PD-1: p = 0.4778; PD-L1: p = 0.3973). Patients with multiple
metastases in at least at two locations had marginally higher plasma PD-1 levels (metastasis
at one site: 22.89 ± 9.44 pg/mL; metastases at ≥two locations: 30.06 ± 12.55 pg/mL;
p = 0.0630), but the same PD-L1 (p = 0.5602). Moreover, neither RAS mutations (PD-1:
p = 0.7255; PD-L1: p = 0.7689) nor inoperable primary tumors (PD-1: p = 0.2289; PD-L1:
p = 0.9723) affected the PD-1/PD-L1 levels of patients. A strong association was found
between plasma PD-L1 levels and the diameter of the largest hepatic/lung metastases
(Spearman’s ρ: +0.51; explanatory power of the model (adjusted R2): 24.68%; p = 0.0059;
Figure 3).

The effect of tumor burden on patient survival was analyzed using both univariate
and multivariate models. Stratified univariate models revealed that PD-L1 had a strong
effect on DSS and PFS as well, regardless of the location of metastases, RAS mutations, or
whether the tumor was operable/inoperable. In contrast, PD-1 had basically no effect on
PFS, but if the model was adjusted for the presence of hepatic metastases, the presence of
carcinosis peritonei, or whether the tumor was operable/inoperable, higher PD-1 levels
indicated inferior survival outcomes of mCRC patients (Table 3).

Multivariate survival analyses showed that, similarly to that of previously described
results, higher PD-L1 levels were associated with shorter survival times of patients, while
no such effect could be justified for plasma PD-1 levels. The strongest effect on survival
was found for peritoneal metastases and for metastasis locations other than the peritoneum,
liver, lung, or ovarium. DSS was also significantly affected if the tumor was inoperable
with HRs between two and three compared to those patients who underwent primary
tumor removal surgery (Table 3).
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J. Clin. Med. 2022, 11, x FOR PEER REVIEW 7 of 20 
 

 

 

Figure 2. Baseline PD-1 and PD-L1 measurements of study participants grouped by the presence of 

hepatic (A,B) and lung (C,D) metastases. Thick lines and hollow circles represent medians and out-

liers, respectively. PD-1: plasma programmed cell death protein 1; PD-L1: programmed death-lig-

and 1. * p < 0.05. With hepatic metastases: n = 26; without hepatic metastases: n = 11; with lung 

metastases: n = 13; without lung metastases: n = 24. 

 

Figure 3. A strong association was found between plasma PD-L1 levels and the diameter of the 

largest hepatic/lung metastases (p = 0.0059). PD-L1: programmed death-ligand 1. 

  

Figure 3. A strong association was found between plasma PD-L1 levels and the diameter of the
largest hepatic/lung metastases (p = 0.0059). PD-L1: programmed death-ligand 1.
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Table 3. The p-values obtained for survival models investigating the effect of tumor burden on PD-1
and PD-L1.

Parameter

Disease-Specific
Survival

Progression-Free
Survival

Stratified Univariate Model p-Values:

PD-1 PD-L1 PD-1 PD-L1
Location of metastases:
- Liver (none vs. present) 0.0331 0.0211 0.3240 0.0253
- Lung (none vs. present) 0.0651 0.0461 0.1710 0.0063
- Peritoneal (none vs. present) 0.1242 0.0154 0.4060 0.0163
- Other location (none vs. present) 0.4353 0.0076 0.8480 0.0539
- Carcinosis 0.0344 0.0033 0.1670 0.0047
- Advanced local invasion 0.1280 0.0096 0.4040 0.0329
Patients with multiple metastatic sites (no vs. yes) 0.3431 0.0011 0.7450 0.0020
Primary tumor resection (no vs. yes) 0.0224 0.0932 0.0625 0.0041
RAS (wild vs. mutant) 0.2800 0.0803 0.5350 0.0050

Multivariate Model p-Values:
PD-1 (pg/mL) 0.1731 – 0.4018 –
PD-L1 (pg/mL) – 0.0987 – 0.0058
Location of metastases:
- Liver (none vs. present) 0.9128 0.4816 0.2072 0.7377
- Lung (none vs. present) 0.1594 0.2623 0.9651 0.7952
- Peritoneal (none vs. present) 0.0081 0.0077 0.0077 0.0111
- Other location (none vs. present) 0.0146 0.0050 0.0312 0.0085
- Advanced local invasion 0.6798 0.8232 0.6379 0.3933
Primary tumor resection (no vs. yes) 0.0101 0.0488 0.1605 0.1825
RAS (wild vs. mutant) 0.9388 0.6880 0.3124 0.3753

PD-1: plasma programmed cell death protein 1; PD-L1: programmed death-ligand 1. RAS: rat sarcoma virus gene.

3.3. Comparison of Low and High PD-1/PD-L1 Subgroups

Based on the differences in PD-1 and PD-L1 levels between the different subgroups
detailed above, we hypothesized that the study population might be divided into high
and low plasma level groups. Therefore, we performed ROC analyses to obtain optimal
cut-off values. Although most of the ROC curves had lower area-under-the-curve values
(<75%), most of the models predicted cut-off points within the same range. The values of
26 pg/mL and 13 pg/mL became the cut-off values for PD-1 and PD-L1, respectively. Both
values coincided with both the median of the obtained cut off values and roughly with the
median values of the measured PD-1 and PD-L1 levels. A total of 19, 18, 18, and 19 patients
were assigned to the PD-L1 < 13 pg/mL, PD-L1 > 13 pg/mL, PD-1 < 26 pg/mL, and PD-1 >
26 pg/mL groups, respectively.

3.3.1. Baseline Measurements

Both laboratory and clinicopathological features of the groups were compared. Clin-
ically worse values were characteristic for the patients with PD-L1 levels > 13 pg/mL.
Namely, the hsCRP levels were significantly higher (p = 0.0478), while the WBC, monocyte
count, platelet count, AST, ALT, GGT, lactate dehydrogenase (LDH), and carcinoembryonic
antigen levels were clinically higher, and the serum albumin levels were clinically lower
(Table 4). Lower PD-1 levels were associated with lower hematocrit, hemoglobin, and
plasma glucose levels within the normal range (Table 5). There was no difference in the
clinicopathological parameters for either the PD-L1 or PD-1 subgroups.

A total of 15 (78.9%), 17 (94.4%), 15 (83.3%), and 17 (89.5%) mCRC-related death events
and 15 (78.9%), 18 (100%), 15 (83.3%), and 18 (94.7.0%) progression events occurred within
the PD-L1 < 13 pg/mL, PD-L1 > 13 pg/mL, PD-1 < 26 pg/mL, and PD-1 > 26 pg/mL
groups, respectively. Shorter DSS times were approximately two times more likely to occur
in the PD-L1 > 13 ng/mL group (HR: 1.9830; 95% CI: 1.0120–3.8850; p = 0.0462; Figure 4A);
furthermore, belonging to the PD-L1 > 13 pg/mL group was associated with a 2.40-fold
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probability of shorter PFS times (HR: 2.4027; 95% CI: 1.2080–4.7800; p = 0.0125; Figure 4B).
No difference could be demonstrated between the PD-1 groups, either for DSS (p = 0.8330,
Figure 4C) or for PFS (p = 0.7300; Figure 4D). No additional information could be obtained
via multivariate survival models beyond those described in Table 2.

Table 4. Comparison of age and laboratory measurements of study participants with plasma PD-L1
levels under or over 13 pg/mL.

Parameter <13 pg/mL
(n = 19)

>13 pg/mL
(n = 18)

Crude
p-Value

Adjusted
p-Value

Age (years) 60.47 ± 12.70 61.45 ± 9.20 0.0000
PD-1 (pg/mL) 25.12 ± 6.99 30.49 ± 15.40 0.6388
PD-L1 (pg/mL) 8.77 ± 3.04 23.65 ± 10.97 –
White blood cell count (109/L) 6.85 ± 196 9.24 ± 3.65 0.0322 0.1329
Lymphocyte count (109/L) 1.52 ± 0.51 1.81 ± 0.59 0.4380
Monocyte count (109/L) 0.57 ± 0.15 0.77 ± 0.30 0.0432 0.1383
Red blood cell count (1012/L) 4.66 ± 0.44 4.67 ± 0.59 0.4380
Hemoglobin (g/L) 134.79 ± 18.72 124.00 ± 17.89 0.3151
Hematocrit (L/L) 0.40 ± 0.05 0.37 ± 0.05 0.0887 0.2027
Mean corpuscular volume (fL) 86.43 ± 6.48 83.98 ± 6.46 0.4380
Mean corpuscular hemoglobin (pg) 28.93 ± 2.83 27.84 ± 2.99 0.4380
Mean corpuscular hemoglobin concentration (g/L) 334.17 ± 10.49 330.86 ± 14.07 0.5216
Red blood cell distribution width (%) 14.91 ± 2.54 16.01 ± 2.82 0.4737
Platelet count (109/L) 257.05 ± 76.71 368.39 ± 163.97 0.0217 0.1257
Aspartate transaminase (U/L) 26.37 ± 10.28 65.50 ± 93.05 0.0225 0.1257
Alanine transaminase (U/L) 26.79 ± 17.16 44.94 ± 34.98 0.0635 0.1694
Gamma-glutamyl transferase (U/L) 72.79 ± 82.78 225.83 ± 243.04 0.0143 0.1257
Lactate dehydrogenase (U/L) 219.37 ± 66.61 943.22 ± 1517.84 0.0374 0.1329
Alkaline phosphatase (U/L) 110.68 ± 34.22 256.73 ± 245.55 0.4380
Plasma glucose (mmol/L) 5.30 ± 0.82 5.21 ± 0.95 0.6717
Creatinine (µmol/L) 68.26 ± 12.50 64.28 ± 18.12 0.4483
Estimated glomerular filtration rate

(
mL

min·1.73 m2

)
94.01 ± 13.76 96.32 ± 17.59 0.4880

Total cholesterol (mmol/L) 5.32 ± 1.07 5.99 ± 2.05 0.4882
High-density lipoprotein cholesterol (mmol/L) 1.42 ± 0.35 1.23 ± 0.31 0.3151
Low-density lipoprotein cholesterol (mmol/L) 3.25 ± 0.76 3.90 ± 1.43 0.0780 0.1919
Triglycerides (mmol/L) 1.62 ± 0.77 1.56 ± 0.46 1.0000
Total protein (g/L) 73.28 ± 4.21 72.88 ± 6.21 0.9075
Albumin (g/L) 44.69 ± 2.75 40.83 ± 4.16 0.0138 0.1257
High-sensitivity C-reactive protein (mg/L) 7.01 ± 8.56 42.89 ± 57.19 0.0015 0.0478
Thyroid stimulating hormone (mU/L) 1.18 ± 0.87 1.88 ± 2.25 0.4882
Carcinoembryonic antigen (ng/mL) 458.10 ± 1916.54 220.39 ± 425.38 0.0373 0.1329
Carbohydrate antigen 19-9 (U/mL) 266.59 ± 682.01 1602.17 ± 4813.00 0.4882

PD-1: plasma programmed cell death protein 1; PD-L1: programmed death-ligand 1.

3.3.2. Longitudinal Analysis

A total of 506 visits were recorded for the 37 study participants: on average, 13.68 ± 7.94
visits per patient. To determine the changes in laboratory parameters with the course of
mCRC, natural cubic-spline-adjusted mixed-effects linear models were created. The fixed
effect of the model was either the PD-L1 or the PD-1 low/high group, while the random
effects were the patients’ IDs. Measurements were not available for every visit in the case
of LDH (367 of the 506 measurements were available, 72.52%) and high-density lipoprotein
(HDL) cholesterol (236 of the 506 measurements were available, 46.64%). The LDH and
HDL cholesterol values in the data set were missing at random. The model predictions for
these two parameters had to be cut at an earlier observation time due to a lower number of
data points at later visits.
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Table 5. Comparison of age and laboratory measurements for study participants with plasma PD-1
levels under or over 26 pg/mL.

Parameter <26 pg/mL
(n = 18)

>26 pg/mL
(n = 19)

Crude
p-Value

Adjusted
p-Value

Age (years) 59.88 ± 11.72 61.96 ± 10.48 0.8812
PD-1 (pg/mL) 19.31 ± 5.21 35.71 ± 11.13 –
PD-L1 (pg/mL) 16.39 ± 11.54 15.64 ± 10.51 0.8812
White blood cell count (109/L) 8.16 ± 3.80 7.87 ± 2.39 0.8812
Lymphocyte count (109/L) 1.60 ± 0.53 1.72 ± 0.59 0.8812
Monocyte count (109/L) 0.72 ± 0.26 0.61 ± 0.23 0.5203
Red blood cell count (1012/L) 4.41 ± 0.58 4.72 ± 0.42 0.4799
Hemoglobin (g/L) 124.61 ± 19.69 134.21 ± 17.29 0.5203
Hematocrit (L/L) 0.37 ± 0.05 0.40 ± 0.04 0.5203
Mean corpuscular volume (fL) 84.76 ± 6.54 85.68 ± 6.61 0.8793
Mean corpuscular hemoglobin (pg) 28.29 ± 2.89 28.50 ± 3.03 0.8812
Mean corpuscular hemoglobin concentration (g/L) 333.27 ± 12.84 331.88 ± 12.08 0.8812
Red blood cell distribution width (%) 15.41 ± 3.00 15.48 ± 2.63 0.8812
Platelet count (109/L) 342.50 ± 176.18 281.58 ± 80.13 0.8793
Aspartate transaminase (U/L) 59.72 ± 93.02 31.84 ± 22.31 0.0463 0.4242
Alanine transaminase (U/L) 43.00 ± 31.76 28.63 ± 23.68 0.5203
Gamma-glutamyl transferase (U/L) 144.83 ± 149.40 149.53 ± 231.46 0.8793
Lactate dehydrogenase (U/L) 724.50 ± 1415.71 426.58 ± 714.76 0.8793
Alkaline phosphatase (U/L) 200.12 ± 215.17 150.12 ± 132.75 0.8793
Plasma glucose (mmol/L) 4.97 ± 0.79 5.55 ± 0.86 0.4799
Creatinine (µmol/L) 66.83 ± 17.47 65.84 ± 13.63 0.8812
Estimated glomerular filtration rate

(
mL

min·1.73 m2

)
96.10 ± 17.15 94.21 ± 14.31 0.8793

Total cholesterol (mmol/L) 5.38 ± 1.23 5.90 ± 1.94 0.8735
High-density lipoprotein cholesterol (mmol/L) 1.29 ± 0.35 1.37 ± 0.34 0.8793
Low-density lipoprotein cholesterol (mmol/L) 3.46 ± 1.05 3.68 ± 1.28 0.8793
Triglycerides (mmol/L) 1.47 ± 0.58 1.71 ± 0.66 0.8735
Total protein (g/L) 71.53 ± 6.07 74.57 ± 3.83 0.0499 0.4242
Albumin (g/L) 41.44 ± 3.68 44.12 ± 3.88 0.0417 0.4242
High-sensitivity C-reactive protein (mg/L) 33.49 ± 58.18 15.92 ± 21.63 0.8793
Thyroid stimulating hormone (mU/L) 1.83 ± 2.27 1.23 ± 0.85 0.8793
Carcinoembryonic antigen (ng/mL) 555.18 ± 1961.43 140.93 ± 389.14 0.8812
Carbohydrate antigen 19-9 (U/mL) 1440.29 ± 4841.00 419.94 ± 768.91 0.9757

PD-1: plasma programmed cell death protein 1; PD-L1: programmed death-ligand 1.

First, the two PD-L1 groups were compared. Patients within the PD-L1 > 13 ng/mL
group had consistently higher WBC (p = 0.0267; Figure 5A), monocyte (p = 0.0206; Figure 5B),
lymphocyte (p = 0.0317; Figure 5C), and platelet (p = 0.0021; Figure 5D) counts. The mean
corpuscular hemoglobin levels (p = 0.0374; Figure 5E), mean corpuscular hemoglobin
concentration (p = 0.0355; Figure 5F), mean corpuscular volume (p = 0.0707; Figure 5G),
albumin levels (p = 0.0181; Figure 5L), and HDL cholesterol levels (p = 0.0593; Figure 5N)
were consistently lower in the PD-L1 > 13 ng/mL group throughout the observation time.
Furthermore, the red blood cell distribution width (p = 0.0022; Figure 5H), hsCRP levels
(p = 0.0132; Figure 5K), and LDH levels (p = 0.0123; Figure 5M) were significantly higher.
Except for a short increase with a peak level around the second year of our observation, the
hemoglobin (p = 0.0569; Figure 5I) and hematocrit (p = 0.0711; Figure 5J) values were lower
in those patients with a higher baseline plasma PD-L1 level. In general, the direction of all
longitudinal changes was towards the clinically worse state (Figure 5).

Second, the same comparisons were performed between the two PD-1 groups as well.
In contrast to the PD-L1 groups, where an elevated platelet count was more common with
higher PD-L1 levels, patients of the PD-1 > 26 pg/mL group had significantly lower platelet
counts during the study compared to those patients with a lower baseline plasma PD-1 level
(p = 0.0061; Figure 6). No further differences were found between the two PD-1 groups.
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protein 1; PD-L1: programmed death-ligand 1.
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Figure 5. Longitudinal changes in the various laboratory measurements throughout the study within
the PD-L1 < 13 ng/mL (blue) and PD-L1 > 13 ng/mL (magenta) groups. Significantly higher (A) white
blood cell, (B) monocyte, (C) lymphocyte, and (D) platelet counts, as well as higher (H) red blood
cell distribution width, (K) high-sensitivity C-reactive protein levels, and (M) lactate dehydrogenase
levels were found in the PD-L1 > 13 ng/mL group. Higher (E) mean corpuscular hemoglobin levels,
(F) mean corpuscular hemoglobin concentration, (G) mean corpuscular volume, (I) hemoglobin levels,
(J) hematocrit levels (L) serum albumin levels, and (N) high-density lipoprotein (HDL) cholesterol
levels were characteristic for the PD-L1 < 13 ng/mL group. PD-L1: programmed death-ligand 1.
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(blue) and PD-1 > 26 ng/mL (magenta) groups. PD-1: plasma programmed cell death protein 1.

4. Discussion

Both PD-1 and PD-L1 have membrane-bound and soluble forms [6]. The latter ones
arise due to alternative splicing and cleavage by metalloproteinases [7]. The overexpression
of PD-L1 and CD80/CD86 on tumor cells, which can respectively bind to PD-1 and cytotoxic
T lymphocyte antigen 4 (CTLA4), results in the inhibition of T cell activation. Furthermore,
recent research has also described a significant interaction between the PD-1/PD-L1 axis
and the EGFR pathway [28]. These mechanisms ultimately help the tumor to escape anti-
tumor immunity [3–5,28–31]. Therefore, monoclonal antibodies have been developed to
antagonize this inhibitory signaling, and in the last decade, several randomized clinical
trials have investigated the efficacy and safety of immune checkpoint inhibitors, including
anti-PD-1 and anti-PD-L1 drugs [29–34]. The most immunological response is expected in
those (metastatic) CRC patients who have tumors with deficient mismatch-repair and/or
high levels of microsatellite instability [29,35,36]. Most studies have reported promising
results: a significantly improved overall survival and PFS, better response to treatment, and
a higher occurrence of partial and complete responses have been found in those patients
for whom almost no responses were observed previously [30,32].

Although the literature about PD-1/PD-L1 and cancer is extremely broad, the majority
of studies have investigated the membrane-bound forms only. Studies investigating the
soluble forms have reported that both proteins might be used as independent prognostic
factors for patient survival [12–16]. Significantly higher soluble PD-L1 is known to occur in
cholangiocellular carcinoma (CCC) patients with progressive disease, compared to those
with stable disease [37]. Moreover, CCC patients with higher baseline soluble PD-L1
levels had shorter survival times [37,38]. Similar findings could have been observed for
melanoma [39], gastric [40], hepatocellular [41,42], urothelial [15], renal [16,43], ovarian [44],
and lung cancers [12,14,39,45]: baseline soluble PD-L1 measurements can serve as a good
prognostic marker for patient survival and increasing levels are associated with progressive
disease. Soluble PD-1 may serve as a good prognostic factor in gastric, lung, and bladder
cancers [46].

In contrast, only a limited number of studies have investigated soluble PD-1/PD-L1
in CRC. Compared to control subjects, both protein levels were significantly lower in
CRC patients, but with a large SD [47], and significant alterations can be found in various
colitis forms as well [48]. Higher circulating PD-L1 levels have been found to be asso-
ciated with a higher degree of tumor differentiation [49]. CD3+ and CD8+ T cell counts
are negatively correlated with PD-L1 and PD-1 [50], and a positive association between
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PD-L1 and the neutrophil-to-lymphocyte ratio has been also reported [51]. Furthermore,
basically all studies investigating soluble PD-L1 in CRC have reported it as a good prog-
nostic marker [13,17,50,52], even for early-stage CRC [17], while soluble PD-1 seems to be
independent from CRC survival to date [13]. In our study, we further strengthened these
observations. The baseline plasma PD-L1 levels of mCRC patients were found to be good
prognostic markers both for DSS and PFS: higher plasma PD-L1 levels were significantly
associated with shorter survival. However, no such strong relations could be justified in
the case of plasma PD-1 levels. The latter observation was supplemented by the fact that
PD-1 could be also confirmed as a weaker, but significant, effector of patient survival if the
survival models were adjusted for tumor burden. To our knowledge, we are the first to
describe this relationship between PD-1 and tumor burden in the case of CRC.

Studying PD-1/PD-L1 during the course of the disease is a less-documented area. To
date, three studies have investigated the longitudinal changes of soluble PD-L1 and/or
PD-1 during CRC: no changes in PD-1 levels were observed between the measurements
before and after neoadjuvant chemoradiotherapy, while PD-L1 increased significantly [13].
In another study [52], PD-L1 elevation had been described for progressive disease, but not
for stable disease/a partial response to the treatment. Furthermore, the resection of col-
orectal liver metastases can also reduce PD-L1 levels, while recurrence and/or progression
following hepatectomy reintroduces the increase in PD-L1 levels [50]. Although our study
also contained a longitudinal analysis of various laboratory parameters, the retrospective
design and the fact that the additional blood samples were taken only at baseline prevented
us from analyzing PD-1/PD-L1 changes during the course of the disease. Instead, we
could only sub-group our study population into low and high PD-L1 and PD-1 groups
based on their baseline measurement values, and the following novel results were found:
High PD-L1 levels predicted consistently higher WBC, monocyte, lymphocyte, and platelet
counts, red blood cell distribution width, hsCRP levels, and LDH levels throughout our
observation period. Mean corpuscular hemoglobin levels, mean corpuscular hemoglobin
concentration, mean corpuscular volume, serum albumin levels, HDL cholesterol levels,
hemoglobin levels, and hematocrit levels were consistently lower in patients with a higher
baseline PD-L1 level. Higher PD-1 levels showed a strong connection only with lower
platelet counts.

As shown above, soluble PD-L1 is strongly associated with progressive disease and tumor
burden, both in CRC [13,17,49,50,52] and in other malignant diseases [12,14–16,37,38,41–46].
Although there are numerous studies investigating membrane-bound PD-1/PD-L1 in
various metastatic cancers [53,54], the soluble form has been less examined [55]. In general,
most studies have found higher serum levels if metastases were present [55–60]. Most of
our results, such as the finding that patients with hepatic metastases had higher plasma PD-
1/PD-L1 levels, are in line with previous literature, but the observation that patients with
metastases in the lung had lower plasma PD-L1 levels has not been described anywhere so
far. A previous animal study has shown that bispecific antibodies against gp52 and CD3
can inhibit lung metastasis growth [61]. Furthermore, Kleef et al. [62] presented a case
report previously, where a low-dose immune checkpoint blockade treatment (nivolumab
and ipilimumab) with concurrent hyperthermia resulted in major remission of the patient’s
pulmonary metastases. Although the soluble forms were not investigated, controversial
expression results have been found in other cancers as well. While no difference in the
different metastatic sites of non-small cell lung carcinomas has been found [63], a lower
PD-L1 expression has been described in skin, liver, and bone metastases of triple-negative
breast cancer; however, the same expression levels have been found for lung, soft tissue, and
lymph node metastases [64]. Similarly, the lung and lymph-node metastases of renal cell
carcinoma express PD-L1 and PD-1 in larger quantities [65]. Therefore, further examination
of these observations is needed.

We hypothesize that our longitudinal observations between laboratory parameters
and plasma PD-L1 are related to disease progression and to the higher tumor burden as
well, with high probability. It is known that numerous laboratory results change for the
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clinically worse as the disease progresses [66–69]. Ninety percent of the study populations
showed signs of progressive disease throughout our observation, and the direction of
longitudinal change in the parameters detailed in the Results section was towards the
clinically worse conditions; e.g., it is known that increasing platelet count [70] or decreasing
serum albumin [71] levels are poor prognostic signs and are related to an increased tumor
burden. The observation that plasma PD-1 was associated with lower platelet counts
needs further analysis. To our knowledge, no previous study investigated the potential
mechanism linking PD-1/PD-L1, metastases, and other laboratory parameters together,
if any. Furthermore, longitudinal changes of various laboratory parameters in relation to
high and low PD-1/PD-L1 groups have not been investigated before, but some limited
single-time findings are available. In primary and secondary brain tumors, a negative
correlation has been described between soluble PD-L1 and hsCRP, neutrophil counts, and
other systemic inflammation markers such as CD3+ and CD8+ T cell counts [72]. Platelets
have been identified as a possible source of soluble PD-L1 in various tumors [73,74], and
platelet-originated PD-L1 was positively correlated with hsCRP, LDH and, as expected,
platelet counts [73]. Platelets have a significant role in CRC as well; they are known to be
involved in metastasis formation, and a platelet-inducing mechanism of the tumor itself,
known as paraneoplastic thrombocytosis, is also known [74]. Metastases, progression,
and increased tumor burden can also affect the extent of paraneoplastic thrombocytosis,
ultimately increasing the platelet count in those conditions [75,76]. The similarity between
the present results, the known effects of paraneoplastic thrombocytosis, and the observation
that to a certain extent soluble PD-L1 might originate from platelets [73,74] suggests the
hypothesis that there might be a connection between these seemingly different mechanisms,
which may be due to a more advanced tumor disease/more severe metastatic disease.
Compared to healthy cells, it is known that the tumor/metastasis cells express various
proteins and cell markers in a different pattern, which is also associated with disease
stage and progression status [77]. To answer the question of whether a direct relationship
between tumor cells, metastases, platelets, and PD-1/PD-L1 really exists, more mechanistic
studies are needed.

Limitations of the Study

The present study has several limiting factors. First, the retrospective design of the
study prevented us from properly investigating various clinical and histopathological
parameters, including BRAF, MSI, PD-1 (CD279), PD-L1 (CD274), and the immunological
profiling of the tumor. The examination of the latter was hampered by the fact that a
significant proportion of patients had already died, and due to local regulations, the
patient’s additional consent would be required to examine additional biomarkers. Second,
the sample size was relatively small, which in combination with the retrospective design
resulted in a greater heterogeneity. Third, plasma PD-1 and PD-L1 were measured only at
the baseline visit. Fourth, some of the clinical parameters were not available for all study
visits; e.g., LDH and HDL cholesterol measurements were missing, and their longitudinal
predictions had to be adjusted compared to the other parameters. The observation that
PD-L1 levels were lower in patients with lung metastases needs further investigation to
determine whether it was an artifact due to the small size and heterogeneity of the sample,
or whether some confounder may have been behind this mechanism that we could not
investigate in the present study. Lastly, only CRC patients with metastases (synchronous or
metachronous) were included in the study; therefore, no information about lower-stage
patients could be investigated.

5. Conclusions

Summarizing the results of the current study, our results further strengthened the
concept that soluble PD-L1 is a good prognostic marker in CRC, while soluble PD-1 displays
no such effect. Similar to previous reports, no differences in clinicopathological parameters
could be justified. The novel finding of our study was that the elevated baseline plasma
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PD-1/PD-L1 levels may predict not just a poorer survival, but also clinically worse levels
of laboratory parameters for mCRC patients. The differences related to the baseline plasma
PD-1/PD-L1 levels persisted throughout the course of the disease. A strong relationship
was found between plasma PD-1/PD-L1 levels and a higher metastatic tumor burden. Our
findings suggest that the measurement of plasma PD-1/PD-L1 may be useful for proactive
CRC/mCRC treatment planning. Further testing of this hypothesis is needed.
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