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Abstract

Background: The incidence of colorectal cancer (CRC) among patients <50 years of
age has increased dramatically over the last decades. At the same time, the growing
proportion of obese children and adolescents and the increasing proportion of young
and obese patients with CRC suggests an association between metabolic dysfunction
and carcinogenesis. Tumor-associated macrophages (TAMs) are able to orchestrate
tumor promoting and suppressing mechanisms in CRC. The aim of this review was
to discuss the different roles of TAMs in CRC and their phenotype-specific meta-
bolic pathways to identify potential new targets for CRC treatment.

Methods: A literature search was performed using PubMed, Cochrane and Embase
to identify studies on TAMs and their metabolism in CRC. The following search
terms were used in various combinations: (obesity OR adiposity OR obese) AND
(macrophage OR polarization OR macrophage metabolism) AND ((colon cancer*)
OR (colon carcinoma) OR (colonic tumor*) OR (colonic neoplasm[MeSH]) OR (rec-
tal cancer*®) OR (rectal carcinoma) OR (rectal tumor*) OR (rectal neoplasm[MeSH])
OR (colorectal cancer*) OR (colorectal carcinoma) OR (colorectal tumor*) OR
(colorectal neoplasm[MeSH])). Studies including data on the phenotype and me-
tabolism of TAMs in CRC were analyzed.

Results: Evidence for the prognostic utility of macrophage markers in CRC is cur-
rently evolving, with a particular role of stage-dependent cellular metabolism profiles
of TAMs. Itaconate is one of the metabolites produced by proinflammatory subtypes
of TAMs and it is known to have tumor promoting effects. Metabolic pathways that
are involved in macrophage activation and reprogramming play a role in a chronic
inflammatory setting, consequently affecting the onset and development of CRC.
Conclusions: Tumor-promoting metabolites, such as itaconate, are directly regulat-
ing these mechanisms, thereby triggering carcinogenesis. Metabolic reprogramming
in TAMs can build a bridge between metabolic dysfunction and the onset and pro-
gression of CRC through inflammatory pathways, particularly in younger patients

with early-onset CRC.
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1 | INTRODUCTION

Colorectal cancer (CRC) is one of the most common causes
of cancer-related death in the USA and its incidence among
young adults has increased over the last several decades.(1-4)
Simultaneously, the proportion of overweight and obese chil-
dren and adolescents is rising, suggesting an association be-
tween metabolic dysfunction and carcinogenic mechanisms.
(4-7) A direct association between obesity and early-onset
CRC was found among young women as part of the The
Nurses' Health Study I1.(4) Comparing obese and non-obese
individuals among different cancer types, CRC was the only
type of cancer that showed an increase in young adults with
obesity undergoing CRC resections.(8)

Most cases of CRC are either sporadic in etiology, based
on a somatic mutation involving Adenomatous polyposis coli
gene (APC) function, or less often hereditary, as in hereditary
nonpolyposis colorectal cancer (HNPCC) or familial adeno-
matous polyposis (FAP).(9,10) HNPCC is the most common
cause of hereditary CRC.(11) While the proportion of other
hereditary cancer syndromes in patients with early-onset CRC
is widely unknown, HNPCC represents 4%-13.5% of cancers
in patients with early-onset CRC.(11) Only a small percent-
age of CRC is actually associated with inflammatory bowel
disease such as ulcerative colitis or Crohn's disease.(12,13)
Compared to 0.4% of patients with a late onset of CRC, young
patients with CRC showed an increased prevalence of inflam-
matory bowel disease in 3% of cases.(14) There is, however,
strong evidence that anti-inflammatory medication can re-
duce the risk of CRC, even in the absence of an underlying
inflammatory bowel disease.(15,16) Furthermore, low-dose
aspirin therapy is associated with a reduced risk of advanced
stage disease, which might indicate that anti-inflammatory
medication also suppresses CRC progression.(17) This sug-
gests that inflammatory processes may have a greater role in
the onset and development of CRC than previously assumed.

As essential components of the immune inflammatory
response, macrophages are able to orchestrate inflammatory
mechanisms and therefore tumorigenesis. The tumor micro-
environment (TME) is a dynamic environment surrounding
the tumor and a critical part of these regulatory processes.
Tumor cells, immune cells and the blood and lymphatic
vascular networks interact with stromal cells and their ex-
tracellular matrix, coordinating cancer establishment, tumor
growth and metastasis.(18) Current evidence shows that
tumor-associated macrophages (TAMSs) play a central role
in the dynamic processes within the TME, contributing to
tumor promoting effects as well as contributing to tumor

suppressing mechanisms in CRC.(18) Various functions re-
quire dynamic switching between different TAM phenotypes.
These phenotypes depend upon specific metabolic pathways
within TAMs, which provide a source for functional me-
tabolites and facilitate phenotype-specific inflammatory or
anti-inflammatory activities during cancer development.
(19,20) The impact of cell interactions within the TME on
a patient's outcome, including risk of CRC recurrence or ef-
fectiveness of cytoreductive chemotherapy, radiotherapy, or
immunotherapy, is poorly understood.

The aim of this review was to highlight current publi-
cations and trendsetting approaches regarding metabolic
dysfunction and TAMs in CRC, and to discuss their pheno-
type-specific metabolic pathways in order to identify patho-
genetic mechanisms as potential new targets for early-onset
CRC treatment.

2 | SYSTEMIC METABOLIC
DYSFUNCTION AND ITS LINK TO
COLORECTAL CANCER

The incidence of overweight and obesity in the general popu-
lation is increasing worldwide with a remarkable rising trend
in children and young adolescents.(21) Simultaneously, an
increase in CRC rates among younger adults <50 years of
age is reported.(1,2,4) Regular screening for CRC is rec-
ommended by the U.S. Preventive Services Task Force
(USPSTF) beginning at age 50.(22) Due to the large-scale
screening programs in these patients >50 years of age with
removal of precancerous polyps during colonoscopy and ear-
lier detection of CRC, the incidence and mortality of CRC
has declined.(23,24) The increasing number of colon cancer
cases among younger adults has, however, led to the rec-
ommendation of an earlier start of regular screening by the
American Cancer Society (ACS) in 2018, beginning at age
45.(25) The parallel increase in the incidence of obesity in
the young and early-onset CRC indicates that obesity-related
inflammatory mechanisms may play a greater role in the de-
velopment of CRC than assumed.

Overweight and obesity are defined as an abnormal fat ac-
cumulation with a respective Body Mass Index (BMI) of >25
and >30 kg/m” by the World Health Organization (WHO).
(21) Obesity is an established risk factor for type 2 diabetes
mellitus and its associated complications.(26) The underly-
ing metabolic dysfunction is due to chronic systemic inflam-
mation that can lead to insulin-resistance.(27) During the last
three decades, epidemiological data and several cohort and
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case-control studies have shown an association between obe-
sity and CRC.(28-30) The simultaneously rising incidence of
obesity and CRC in patients younger than 50 years of age
indicates a particular contributing role of metabolic dysfunc-
tion in the development early-onset CRC.(4) Liu et al pro-
spectively analyzed a patient cohort of more than 85 000
women aged 25 to 42 years, that were part of the The Nurses'
Health Study II.(4) An association between obesity and ear-
ly-onset CRC was found among this patient collective. The
recent analysis of Hussan et al showed an increasing trend
in CRC among young patients with obesity, that could not
be demonstrated in other types of gastrointestinal cancer.(8)
Focusing on the age of diagnosis in patients with CRC, an
increased cancer risk was shown after a diagnosis of type 2
diabetes, especially in men younger than 55 years.(31)

A recent study on the molecular characteristics of ear-
ly-onset CRC showed that inflammatory mechanisms, such
as deregulated redox homeostasis as one of the hallmarks of
CRC in young patients, play a distinct role.(32) The major
pathways that are involved in these mechanisms are altered
Nuclear factor erythroid 2-related factor 2 (NRF)-mediated
oxidative stress response, glutathione metabolism, and the
chemokine (C-X-C motif) ligand 12 - C-X-C motif chemok-
ine receptor 4 (CXCL12-CXCR4) signaling axis.(32) These
findings suggest that metabolic dysfunction and obesity rep-
resent an important contributing factor in CRC development
in young patients.

A chronic inflammatory environment is caused by the
proinflammatory endocrine activity of adipose tissue, af-
fecting energy homeostasis and glucose metabolism.(33)
Inflammatory macrophages can accumulate within adipose
tissue in obese patients and trigger inflammation, which
leads to systemic metabolic dysfunction, including insulin
resistance.(34) The presence of macrophages is a hallmark
of proinflammatory adipose tissue. They form crown-like
structures in subcutaneous and visceral fat deposits.(34)
Furthermore, adipose tissue-derived inflammatory mediators
have been shown to induce macrophage polarization toward a
proinflammatory phenotype in an in vitro model.(35) In other
obesity-related comorbidities, such as nonalcoholic fatty liver
disease (NFLD) or steatohepatitis (NASH), inflamed adipose
tissue has been associated with activation of liver macrophages
as a determinant for liver fibrosis.(36) Proinflammatory mac-
rophage polarization in tissue macrophages can provide a link
between the proinflammatory systemic state in obesity and a
chronic inflammatory environment in colon tissue, which in
turn can trigger carcinogenic mechanisms in colon epithelium
through inflammatory stress.

Itaconate is a macrophage-specific metabolite, which is pro-
duced in proinflammatory macrophages, and which is known
to have tumor promoting effects.(37) TAMs in tumor-bearing
mice as well as monocytes isolated from patients with ovarian
cancer showed increased itaconate production.(37)
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Identifying the role of macrophage metabolism and
itaconate in a chronic inflammatory state due to metabolic
dysfunction and obesity, could lead to innovative approaches
to screening diagnosis and treatment of CRC.

2.1 | Chronic Inflammation in
colorectal cancer

Chronic inflammation is closely linked to two systems of the
human body that have major roles for survival: the immune
system with the ability to fight infection and the metabolic
system that can provide stored energy during a period of low
nutrition.(27) Immunity and metabolism are therefore in a
continuous state of interplay through inflammatory pathways.
Both systems share several mediators, including hormones,
cytokines, transcription factors, signaling proteins, and li-
pids. A chronic inflammatory state functions as a stressor
and promotes tissue damage that can lead to neoplasia. Once
a genetic mutation leads to oncogene activation, inflamma-
tion will contribute to cell proliferation, tumor establish-
ment, growth, and metastasis. CRC is a cancer type known
to be closely associated with chronic inflammation. Even
though less than 2% of CRC is colitis-associated, sporadic
CRC shows similar mutations in genes and signaling path-
ways, such as the Wnt/p-catenin pathway, K-Ras or B-Raf
activation, adenomatous polyposis coli (APC) inactivation,
transforming growth factor(TGF)-f, P53, and the DNA mis-
match repair (MMR) proteins.(38-41) The pathogenesis of
both CRC types differs in the histological sequence that is
followed during development of neoplasia and the initiation
of cancer formation.

Numerous clinical and epidemiological studies have
shown that the use of aspirin or nonsteroidal anti-inflamma-
tory drugs (NSAIDs) is associated with a reduced risk of CRC
or recurrent adenomatous polyps as well as decreased CRC
mortality.(17,42-46) Furthermore, low-dose aspirin therapy
seems to slow progression of a tumor that is already estab-
lished. A recent cohort study of more than 300 000 patients in
the United Kingdom demonstrated that new use of low dose
aspirin was associated with a reduced risk of advanced stage
CRC (Duke's B-D) at diagnosis.(17) In 2015, the USPSTF
started recommending low-dose aspirin for chemoprevention
of CRC in patients with increased cardiovascular risk aged
50-59 years.(47)

Independent of its pathogenesis, CRC is infiltrated by im-
mune cells such as macrophages, neutrophils or lymphocytes,
that induce and maintain cancer-related inflammation.(48)

In colon adenomas, the precursor lesions of sporadic
CRC, TAMs with low major histocompatibility complex
class 2 (MHC II) expression were observed, and the density
of these macrophages correlates with tumor progression.
(49) This suggests that mechanisms within the TME lead



SCHEURLEN ET AL.

6682 .
—I—Wl EY—Cancer Medicine _

to macrophage polarization toward an anti-inflammatory
phenotype during the development of cancer. Furthermore,
high-grade adenomas have been shown to consist of a higher
fraction of anti-inflammatory macrophages than low-grade
adenomas.(50) This leads to the conclusion that macrophages
of an anti-inflammatory type seem to have a role in malignant
transformation of colorectal adenomas toward CRC.

The link between immunity and cancer through inflamma-
tion was observed as early as the 19th century by the German
pathologist Rudolf Virchow, when he described white blood
cells as part of the tumor mass. In 1986, the American pathol-
ogist Harold Dvorak investigated angiogenesis within tumors,
considered these mechanisms similar to those in wounds and
depicted tumors as ‘wounds that do not heal’.(51) Inflammatory
tissue injury causes chemotactic signaling that attracts immune
cells to repair damage, and TAMs are the major cell type or-
chestrating the pathways within the TME, to either promote
or suppress tumor development in CRC.(52) These opposing
functions of TAMs are characterized by a respective dominat-
ing metabolic pathway of the macrophage that can be affected
by extracellular signals within the tumor environment. This po-
larization into different functional subsets can be affected by
proinflammatory cytokines,(53,54) leading to the conclusion,
that there is a direct connection between metabolism, inflamma-
tion and macrophage differentiation affecting tumor behavior.

Itaconate is a metabolite within inflammatory macrophages,
and a regulator of cellular metabolism as well. It regulates gly-
colysis and leads to succinate accumulation through inhibition
of succinate dehydrogenase.(55) This can lead to decreased
production of reactive oxygen species (ROS) and altered ac-
tivation of numerous transcription factors, such as nuclear fac-
tor kappa-light-chain-enhancer of activated B cells (NF-kB),
hypoxia-inducible factor loo (HIFla), signal transducer and
activator of transcription 3 (STAT3), and activator protein 1
(AP-1).(37,55) NRF2 is a superordinate regulator of these an-
ti-inflammatory functions, that is affected by itaconate.(55)

In anti-inflammatory macrophages, itaconate can further
boost anti-inflammatory functions.(55) Since anti-inflamma-
tory macrophages play a role in tumor progression in CRC,
this suggests that itaconate affects CRC growth.

3 | TUMOR-ASSOCIATED
MACROPHAGES IN COLORECTAL
CANCER—BASICS FROM THE
BENCH

The ability of macrophages to adapt to various environments
and to provide a wide variety of functions in tissue is due
to dynamic adjustments of their cellular metabolism. These
metabolic pathways can be affected by the particular TME
inducing the metabolic reprogramming, which in turn leads
to different cell phenotypes.

3.1 | Cellular metabolism and different
phenotypes of tumor-associated macrophages

Metabolic reprogramming can occur as a result of differ-
ent stimuli on TAMs, for example, mediators secreted by
cancer cells, signals from cells within the tumor microenvi-
ronment, self-secretion or indirect stimuli such as hypoxia.
Although switching between phenotypes is a continuous
transition with intermediate types present, two main mac-
rophage phenotypes have been described: an M1-subtype
with primarily inflammatory functions and an M2-subtype,
with predominantly anti-inflammatory and immunosup-
pressive activity (Figure 1). This simplified classification is
an attempt to distinguish between subsets of macrophages
that have a primarily—but not exclusively—inflamma-
tory or anti-inflammatory function. The ‘waterfall model’
illustrates specific characteristics of TAMs during their
development from a monocyte to an anti-inflammatory
macrophage subtype.(56) During this process, monocytes
that initially present markers, such as C-C chemokine
receptor type 2 (CCR2) and lymphocyte antigen 6 complex
(Ly6C), undergo functional and therefore phenotypical
changes, losing Ly6C, and gaining MHC II expression.(56)
This demonstrates the continuous transition of monocytes
and macrophages with overlapping cell surface markers
during all stages of development.

Depending upon their phenotype, macrophages prefer
specific metabolic pathways for their energy homeostasis.
The characteristic metabolic profiles of inflammatory and
anti-inflammatory macrophages lead to distinct phenotypes
with respect to cellular metabolism, which can be studied
instead of targeting cell surface markers (Table 1). While
aerobic glycolysis is the main pathway in proinflammatory
macrophages receiving M1 stimuli, anti-inflammatory M2
macrophages are characterized by slower rates of aerobic
glycolysis and primarily fatty acid oxidation.(57,58) The
classically activated inflammatory M1 macrophages show
induction of glycolysis through the AKT/mTOR/HIF path-
way.(37) Aerobic glycolysis is an inefficient pathway with a
high rate of glucose consumption, but it is essential for rapid
energy production and biosynthesis. M1 macrophages utilize
this pathway for host-defense against pathogens, including the
production of ROS to kill bacteria or tumor cells. A slower
rate of aerobic glycolysis within M2 macrophages is neces-
sary for the production of cytokines.(58) In contrast to M1
macrophages, the M2 subset macrophages show increased
oxidative phosphorylation (OXPHOS).(37) As shown in he-
patocellular carcinoma, cancer cells can promote glycolysis
in M2 macrophages through soluble mediators, increasing
the gene expression of the glycolytic enzyme PFKFB3.(59)
Therefore, glycolysis plays a role in both macrophage pheno-
types, but the respective energy production focuses on differ-
ent glycolysis-associated pathways.
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Metabolic pathways in proinflammatory and anti-inflammatory phenotypes of tumor-associated macrophages. Simplified model

showing the dominating metabolic pathways in both extremes of phenotypes in tumor-associated macrophages. As macrophages can switch

between proinflammatory and anti-inflammatory phenotypes continuously by changing their cellular metabolism, metabolic pathways can overlap

between both types. Proinflammatory macrophages focus on aerobic glycolysis, truncated tricarboxylic acid cycle (TCA cycle) and fatty acid

synthesis for energy homeostasis of the cell. Anti-inflammatory macrophages use the TCA cycle, oxidative phosphorylation and p-oxidation as

their major energy sources. ROS: reactive oxygen species; TCA cycle: tricarboxylic acid cycle

TABLE 1
characteristics depending on their

Human macrophage

) . Phenotype
metabolic phenotype (inflammatory versus

anti-inflammatory) Cell surface

markers

Factors inducing
differentiation

Metabolic
pathways

Secreted factors

Proinflammatory (M1-like subtype)
CDllc, CD16, CD80, CD86, MHC 11

IFN-y, TNF, LPS, ATP

Aerobic glycolysis, truncated TCA
cycle (Itaconate production), fatty
acid synthesis

IL-1p, IL-6, IL-8, IL-12, IL-23, 1L-27,
TNF-a, CXCL1, CXCL9, CXCL10,
CXCLI11, CCL2, CCL5, RNI, ROI,
COX2

Anti-inflammatory (M2-like
subtype)

CD163, CD206, CD209

IL-4, IL-10, IL-13, TGF-p

B-oxidation, oxidative TCA
cycle

IL-10, IL-13, IL-1RA, TGF-f,
CCL17, CCL18, CCL22,
CCL24, Argl, COX1, VEGF,
PDGF

Note: The listed cell surface markers, factors and metabolic pathways are not exclusively present in only
one of these macrophage phenotypes. Since macrophages can switch between phenotypes showing fluent
transitions, these characteristics might overlap. However, the characteristics that are shown in this table are
more likely to be present in the respective phenotype.

Abbreviations: Argl: arginase 1; ATP: adenosine thiotriphosphate; CCL: CC-chemokine ligand; CD: cluster
of differentiation; COX: cyclooxygenase; CXCL: chemokine (C-X-C motif) ligand; IFN: interferone; IL:
interleukin; LPS: lipopolysaccharides; MHC II: major histocompatibility complex class 2; PDGF: platelet-
derived growth factor; RNI: reactive nitrogen intermediates; ROI: reactive oxygen intermediates; TCA cycle:
tricarboxylic acid cycle; TGF: transforming growth factor; TNF: tumor-necrosis factor; VEGF: vascular

endothelial growth factor.

3.2 | The dual role of tumor-associated
macrophages in colorectal cancer

In contrast to other solid human cancers, TAMs in colo-
rectal cancer seem to have the ability to both support and
suppress tumor growth. Tumor-promoting mechanisms are
known to result from an interplay between cancer cells, the

tumor microenvironment and TAMs. It is hypothesized, that
tumor initiation is fostered by mutagenic mechanisms from
a chronic inflammatory environment in the subepithelial
stroma.(60) Proinflammatory M1 macrophages that produce
reactive oxygen and nitrogen species, are able to potentiate
this effect, triggering oncogenic mutations in the adjacent ep-
ithelial layer (Figure 2). Once neoplasia is initiated, the tumor
recruits additional bone marrow-derived monocytes from the
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bloodstream and stimulates myelopoiesis by releasing growth
factors and chemotactic signals such as CC-chemokine li-
gands 2 and 5 (CCL2, CCLS), vascular endothelial growth
factor (VEGF) and transforming growth factor beta (TGF-f).
(60-62) In adipose tissue, a similar mechanism is described,
where CCL2 expression leads to increased macrophage in-
filtration and inflammation, which in turn is associated with
insulin resistance.(63) Macrophage colony stimulating fac-
tor-1 (M-CSF or CSF-1) has been shown to be produced by
colon cancer cells in order to attract and ‘re-educate’ mac-
rophages.(62) During the early stages of tumor development,
neoplastic cells seem to first attract monocytes and ensure
their maturation to macrophages within the TME. After their
differentiation to TAMs, cancer cells take these macrophages
hostage by manipulating their metabolism through multiple
signaling pathways and use these TAMs to support further
tumor growth and progression. Overexpression of the chem-
oattractant CCL2 has been associated with advanced tumor
stages, metastatic disease and poor prognosis in CRC.(64,65)
Furthermore, CRC cells produce lactic acid as a by-product
of predominantly aerobic glycolysis.(66) Proliferating can-
cer cells switch their metabolism toward aerobic glycolysis,
which is known as the ‘Warburg effect’. Irrespective of the
availability of oxygen, they metabolize glucose to lactate,
which is also secreted to induce VEGF and arginase 1 (ARGI)
expression in TAMs.(66) VEGF expression in macrophages
was shown to be upregulated by a pathway described in hy-
poxia, even under normoxic conditions.(66) This mechanism
leads to macrophage recruitment and polarization toward the
tumor promoting M2 macrophage phenotype and is there-
fore associated with metabolic reprogramming in TAM:s.
Another key mechanism for the alternative activation of

A
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tissue macrophages is the peroxisome proliferator activated
receptor-y (PPARY) pathway.(67) In animal studies, the
disruption of this pathway also was associated with diet-
induced obesity, insulin resistance, and glucose intolerance.
(67) PPARYy deficiency can also lead to increased itaconate
production, which suggests that itaconate acts as an alterna-
tive regulator of M2-like polarization.(55)

Furthermore, signal transducer and activator of transcrip-
tion 3 (STAT3) activation leads to M2 polarization of mac-
rophages.(68) This pathway can be induced by glucagon-like
peptide 1 (GLP-1), a postprandially secreted hormone that
improves insulin resistance.(68) TAMs also promote tumor
development by inducing interleukin 10 (IL-10) production
in CRC cells through a STAT3 pathway(69,70) and produce
cytokines such as VEGF to induce tumor angiogenesis and
tumor growth.(71)

3.3 | Tumor-associated macrophages as
prognostic predictors in colorectal cancer

The density of recruited macrophages and their metabolic
phenotype were found to be associated with different clini-
cal outcomes in CRC patients. Despite the heterogeneity
among study methods used to investigate the degree of
TAM infiltration, a high TAM density within the primary
tumor is associated with an improved prognosis in CRC pa-
tients.(72) In other solid tumors, such as gastric, urogenital
and head and neck cancers, a high TAM density is accom-
panied by worse overall survival.(72) A higher degree of
infiltrating macrophages in the invasive front of CRC, in
particular those with an M1 phenotype, is associated with
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Macrophage,
anti-inflammatory phenotype
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FIGURE 2 Tumor-associated macrophages (TAMs) in chronic inflammation and colorectal cancer (CRC) development. (A) Tissue-resident

macrophages with a proinflammatory phenotype might be able to trigger the onset of CRC in the presence of a mutagenic activation of oncogenes

in colon epithelial cells due to inflammatory stress and itaconate production. (B) During early cancer development colon cancer cells produce

chemokines (CCL2) to attract bone marrow-derived monocytes and induce macrophage differentiation releasing cytokines and growth factors such
as IL-6, IL-10, TGF-f, and M-CSF (CSF-1). (C) Colon cancer cells release mediators such as lactate to induce TAM polarization into an anti-
inflammatory phenotype. Reprogrammed macrophages show an increased expression of vascular endothelial growth factor (VEGF) and Arginase

1 (Arg 1), promoting angiogenesis and tumor growth. Furthermore, anti-inflammatory TAMs promote tumor development by inducing IL-10

production in colon cancer cells. ROS: reactive oxygen species; IL: interleukin; TGF: transforming growth factor; M-CSF: Macrophage colony-

stimulating factor
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a better prognosis in a stage-dependent manner.(73,74)
Furthermore, it is inversely correlated to lymph node and
liver metastases.(75,76) While M2 macrophages seem to
be more prevalent in stage II CRC, M1 macrophages are
predominant in less invasive T1 tumors.(77) This indicates
that M1 macrophages are primarily responsible for tumor
initiation because of inflammatory mechanisms increasing
oncogenic potential. Further in the course of the tumor,
cancer cells recruit additional bone marrow-derived blood
monocytes and reprogram their metabolism to induce M2-
polarization.(60)

Investigating the different functions and phenotypes of
TAMs during tumor development, which in turn promote
and suppress tumor growth, is the basis for developing new
diagnostic and therapeutic targets, especially in early-onset
CRC. The specific role of itaconate, that can regulate macro-
phage polarization in tumors, is currently unknown in CRC.
Table 2 provides an overview of current studies investigating
TAM phenotypes and therefore indirectly TAM metabolism
in CRC.

4 | PERSPECTIVES FOR
TARGETING TUMOR-ASSOCIATED
MACROPHAGES IN CLINICAL
PRACTICE

4.1 | Tumor-associated macrophages as
diagnostic markers

TAMs have the potential to be used as diagnostic and prog-
nostic markers in CRC and possibly as therapeutic targets.
Previous studies have shown that circulating TAMs and
the chemokines that they produce could serve as markers
in cancer diagnosis.(78-80) Current research has focused
on the identification of circulating TAMs in blood samples
by profiling their cell surface markers in different types of
cancer as a basis for developing a noninvasive screening
tool. Relevant markers are cluster of differentiation (CD)
14, CD163, CD68 or hypoxia-inducible factor 2o (HIF-2a).
(78-80) A combination of analyzes of cell surface markers,
cytokines secreted by TAMs and soluble factors produced
by other cells within the TME could be useful to determine
specific cell expression profiles in CRC. Serum levels of
neutrophil elastase within the TME have been shown to play
a potential role as a diagnostic biomarker in CRC.(81) While
serum matrix metalloproteinase-9 (MMP-9) was not consid-
ered to be an appropriate screening parameter for CRC,(82)
tissue inhibitor of metalloproteinase-1 (TIMP-1) seems to
have a potential diagnostic value.(83) Targeting related fac-
tors that are expressed by TAMs or neighboring cells within
the TME and circulatory markers may further contribute to
the overall diagnostic capacity.
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4.2 | Tumor-associated macrophages as
prognostic markers

Evidence for prognostic utility of markers in CRC, with a
particular role of TAM phenotypes in different tumor stages,
is currently evolving. The findings with respect to the as-
sociation between specific TAM phenotypes and prognosis
are inconclusive, suggesting a different role of TAMs during
tumor progression. This could also be caused by the fact, that
not only the total cell count of either M1 or M2 macrophages
seems to be relevant for tumor progression, but also the dis-
tribution of these cells within the tumor environment.(73) A
low density of TAMs in general, as investigated by CD68+
cell infiltration in tumor tissue, was associated with worse
outcome in patients with different stages of CRC.(84) A high
proportion of CD163+4+ macrophages was associated with
lower tumor grade and less lymph node metastasis.(85) Other
studies report advanced tumor stages and worse prognosis
positively correlating with high TAM density.(77) An inves-
tigation of the prognostic effect of TAMs in patients with
CRC undergoing postoperative chemotherapy recently re-
vealed, that the CD206/CD68 ratio of TAMs can predict high
risk of recurrence in patients with stage II colon cancer.(86)
As adjuvant chemotherapy is not routinely recommended in
these patients, identifying those patients with poor progno-
sis is leading to targeted and more accurate administration
of chemotherapy. The presence of a high density of TAMs
in primary tumor tissue and metastatic lymph nodes of stage
IIT CRC can identify patients that benefit from 5-fluorouracil.
(87) In-vitro results indicating synergistic effects of TAMs
and fluoropyrimidines have, however, yet to be proven in an
in-vivo setting.(87)

Since different TAM phenotypes are associated with
tumor behavior, the metabolic reprogramming of TAMs
to an ‘antitumor’ phenotype is a major aim of ongoing re-
search. In TAMs, the NF-xB pathway is the main pathway
for polarization into an antitumor phenotype. This path-
way is affected by Toll-like receptors, Dectin-1 receptors
and SIGN-related 1 receptors.(88,89) Activation of these
receptors causes an adaptive immune response enhancing
phagocytosis and the release of inflammatory cytokines,
such as tumor-necrosis factor o (TNFa), IL-2, IL-10, and
IL-12.(89) The yeast-derived polysaccharide p-glucan can
act on these membrane receptors, thereby inducing macro-
phage polarization into a proinflammatory anticancer phe-
notype.(89) Apart from NF-kB, other transcription factors
can also be regulated to induce M1-like polarization or to
inhibit M2 polarization in macrophages, such as interfer-
on-regulatory factor (IRF), STAT protein, HIFa and sev-
eral microRNAs.(54)

Pathways that are known to be involved in macrophage
activation and reprogramming in the acute immune re-
sponse could also play a role in a chronic inflammatory
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setting, consequently affecting the onset and development
of CRC. Identifying inflammatory mediators in obesity that
support the polarization of tumor-promoting macrophages
could not only help identify patients at high risk of CRC
due to metabolic dysfunction, but also serve as a basis for
targeting these mediators in patients with obesity or type 2
diabetes mellitus. The effects of obesity and its associated
inflammatory stressors on macrophage polarization,

TAM metabolism and therefore tumor behavior in patients
with CRC, need further elucidation.

5 | CONCLUSIONS
Tumor-promoting inflammation is one of the hallmarks of can-
cer and TAMs are able to orchestrate these mechanisms based
on their cellular metabolism. Interactions between TAMs,
tumor cells and other components within the TME regulate
cancer establishment, tumor growth and metastasis. CRC is
closely related to chronic tissue inflammation. Metabolic dys-
function in patients with obesity has the potential to induce
reprogramming in TAMs through inflammatory mechanisms.
The macrophage metabolite itaconate is produced during
TAM polarization and it is known to have tumor promoting ef-
fects. Investigating the role of itaconate and other metabolites
in TAMs can elucidate processes specific for the onset and
progression of CRC on the basis of inflammatory pathways,
particularly in early-onset CRC. There is a potential to detect
new diagnostic and prognostic targets for the improvement of
neoadjuvant and/or adjuvant therapies in CRC.
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