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    The CD8� T cell response to an acute systemic 
infection entails vigorous expansion of antigen-
specifi c cells, followed by a contraction phase in 
which 90 – 95% of the cells die by apoptosis. The 
cells remaining after the contraction phase be-
come memory T cells, which possess properties 
distinct from the naive population, such as rapid 
acquisition of eff ector function on reencounter 
with pathogen. Accumulating evidence suggests 
that naive CD8� T cells are programmed to be-
come memory cells in the early phase of the 
CD8� T cell response, when appropriate signals 
from the TCR, co-stimulatory molecules, and 
cytokines associated with infl ammation are 
thought to be required ( 1, 2 ). 

 IL-2, which is produced by activated T cells, 
is one of the cytokines involved in the CD8� T 
cell response. IL-2 induces intracellular signals 
through the IL-2 receptor complex, consisting 
of CD25 (IL-2R � ), CD122 (IL-2/IL-15R � ), 

and CD132 (common  �  chain). Stimulation of 
the receptor complex by IL-2 induces several 
signal transduction pathways, including the acti-
vation of STAT5 ( 3 ). Recent studies have dem-
onstrated that IL-2 supports the maintenance of 
Foxp3� CD4� regulatory T cells, which bear 
the IL-2R �  chain (CD25) ( 4 – 6 ). The require-
ment for IL-2 signals to maintain regulatory T 
cells limits the use of cytokine or cytokine re-
ceptor knockout mice to study other in vivo roles 
of IL-2. Instead, the eff ect of IL-2 signals on 
CD8� T cells during an immune response has 
been investigated by creating situations in which 
CD25, CD122, or IL-2 are selectively defi cient 
in CD8� T cells. These studies revealed a mod-
est role for IL-2 in the primary expansion and 
diff erentiation of CTL ( 7 – 12 ), whereas IL-2 
appears to support expansion of primary CTL 
in nonlymphoid organs ( 13 ). Very recently, 
another role for IL-2 signals in antigen-stimu-
lated CD8� T cells was revealed using mixed 
BM chimeric mice containing both wild-type 
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 An optimal CD8� T cell response requires signals from the T cell receptor (TCR), co-stimu-

latory molecules, and cytokines. In most cases, the relative contribution of these signals to 

CD8� T cell proliferation, accumulation, effector function, and differentiation to memory is 

unknown. Recent work (Boyman, O., M. Kovar, M.P. Rubinstein, C.D. Surh, and J. Sprent. 

2006.  Science . 311:1924 – 1927; Kamimura, D., Y. Sawa, M. Sato, E. Agung, T. Hirano, and 

M. Murakami. 2006.  J. Immunol.  177:306 – 314) has shown that anti – interleukin (IL) 2 

monoclonal antibodies that are neutralizing in vitro enhance the potency of IL-2 in vivo. 

We investigated the role of IL-2 signals in driving CD8� T cell proliferation in the absence 

of TCR stimulation by foreign antigen. IL-2 signals induced rapid activation of signal 

transducer and activator of transcription 5 in all CD8� T cells, both naive and memory 

phenotype, and promoted the differentiation of naive CD8� T cells into effector cells. 

IL-2 – anti – IL-2 complexes induced proliferation of naive CD8� T cells in an environment 

with limited access to self – major histocompatibility complex (MHC) and when competition 

for self-MHC ligands was severe. After transfer into wild-type animals, IL-2 – activated CD8� 

T cells attained and maintained a central memory phenotype and protected against lethal 

bacterial infection. IL-2 – anti – IL-2 complex – driven memory-like CD8� T cells had incom-

plete cellular fi tness compared with antigen-driven memory cells regarding homeostatic 

turnover and cytokine production. These results suggest that intense IL-2 signals, with 

limited contribution from the TCR, program the differentiation of protective memory-like 

CD8� cells but are insuffi cient to guarantee overall cellular fi tness. 
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In addition, after treatment with IL-2 – anti – IL-2 com-
plexes,  almost the entire CD8� population adopts a CD44 hi  
CD122 hi  phenotype (unpublished data) ( 14 ). We therefore 
asked whether CD44 lo  naive CD8� T cells could respond to 
IL-2 – anti – IL-2 complexes injected in vivo. IL-2 signal trans-
duction is known to involve the activation of STAT5, which 
is important for the biological activity of IL-2 ( 3, 4 ). There-
fore, we used the phosphorylation status of STAT5 as a read-
out of induction of an IL-2 signal in vivo. C57BL/6 (B6) 
mice were given a single injection of IL-2 – anti – IL-2 com-
plexes, and at the indicated time points, splenocytes were 
fi xed without restimulation in vitro, and activated (tyrosine-
phosphorylated) STAT5 was detected by fl ow cytometry. As 
shown in  Fig. 1 , CD44 hi  memory-phenotype CD8� T cells 
responded rapidly after the treatment: the phosphorylation of 
STAT5 was induced in �50% of the population at 15 min 
and increased to �90% by 60 min.  Surprisingly, the rapid ac-
tivation of STAT5 was also observed in CD44 lo  naive CD8� 
T cells with slightly delayed kinetics. At 60 min, �80% of the 
CD44 lo  naive CD8� population contained the activated form 
of STAT5. NK cells (NK1.1� TCR �  NEG ) also showed STAT5 
activation, whereas B cells (B220� TCR �  NEG ) showed no de-
tectable activation of STAT5 at 60 min (unpublished data). 
The rapid activation of STAT5 suggests that CD44 lo  naive 
CD8� T cells, as well as memory-phenotype CD8� T cells, 
receive signals directly from IL-2 – anti – IL-2 complexes. 

 IL-2 – anti – IL-2 complexes induce proliferation of naive 

CD8� T cells 

 These results prompted us to examine the physiological con-
sequence of treating naive CD8� T cells with IL-2 signals 
in vivo. Congenically marked CD44 lo  CD122 lo  naive OT-I 
cells were isolated, labeled with CFSE, and transferred into 
nonirradiated syngeneic B6 mice (Fig. S1 A, available at 
http://www.jem.org/cgi/content/full/jem.20070543/DC1). 
After treatment of the host animals with IL-2 – anti – IL-2 com-
plexes, the naive OT-I cells divided extensively ( Fig. 2 A ) 
and accumulated ( Fig. 2 B ) in the absence of any other 
stimulation.  The expansion of naive OT-I cells was almost 
equivalent to that of the host CD8� T cell population ( Fig. 2 B ). 
Surface markers associated with activation/memory, including 

and CD25�/� cells. In these mice a complete compartment of 
regulatory T cells is reconstituted, and the mice remain healthy 
( 11, 12 ). Upon acute infection, eff ector and memory CD8� T 
cells lacking CD25 were generated and normally maintained, 
but their secondary expansion after pathogen rechallenge was 
severely compromised compared with that of CD25-suffi  cient 
memory cells ( 11, 12 ). Intriguingly, replenishment of IL-2 
signals to CD25�/� CD8� T cells during the primary infec-
tion, but not during the secondary challenge, restored their 
ability to expand in a recall response ( 11 ). This result clearly 
indicates a programming eff ect of IL-2 signaling during the 
primary response in driving the complete diff erentiation of 
memory CD8� T cells. 

 Recent data suggest that the anti – IL-2 mAb S4B6, which 
has been widely used as a neutralizing antibody in vitro, en-
hances the bioactivity of IL-2 in vivo ( 14, 15 ). Administra-
tion of rIL-2 mixed with the anti – IL-2 mAb (IL-2 – anti – IL-2 
complexes) or the concurrent treatment with plasmid DNA 
expressing mouse IL-2 and the antibody substantially and 
preferentially increased the proliferation of CD44 hi  CD122 hi  
memory-phenotype CD8� T cells and NK cells ( 14, 15 ). In-
jection of anti – IL-2 mAb alone had a similar eff ect because 
of the capture of endogenously secreted IL-2 by the mAb, 
although the effi  cacy of this treatment is much weaker than 
the cotreatment with IL-2 – anti – IL-2 complexes ( 14, 15 ). The 
precise mechanism of the enhanced potency of the immune 
complex remains unclear, although the presentation of 
IL-2 – anti – IL-2 complexes via the Fc portion of the mAb has 
been suggested ( 14 ). 

 We report that the administration of IL-2 – anti – IL-2 
complexes stimulated all CD8� T cells, both naive and mem-
ory phenotype, in vivo. The naive CD8� T cells proliferated, 
became eff ector cells, and diff erentiated to memory-pheno-
type cells capable of providing protection against pathogen 
challenge. Remarkably, proliferation of naive CD8� T cells 
by treatment with IL-2 – anti – IL-2 complexes was induced in 
the absence of foreign antigen and when competition for self-
MHC class I ligands was intense. Because most experimental 
systems used for the study of CD8� T cell responses are asso-
ciated with strong TCR stimulation, our approach using 
IL-2 – anti – IL-2 complexes allowed us to dissect and examine the 
relative contribution of IL-2 and antigen signals to CD8� T cell 
responses, revealing that intense IL-2 signals coupled with 
weak TCR ligation have the potential to program the diff eren-
tiation of protective memory-like CD8� T cells in vivo. 

  RESULTS  

 IL-2 – anti – IL-2 complexes activate STAT5 in all CD8� T cells 

 CD44 hi  CD122 hi  memory-phenotype CD8+ T cells and NK 
cells express high levels of CD122 (IL-2/IL-15R � ), providing 
an explanation for the preferential expansion of these popula-
tions after treatment with complexes of rIL-2 and anti – IL-2 
mAb (IL-2 – anti – IL-2 complexes) ( 14, 15 ). However, CD44 lo  
naive CD8� T cells also express detectable levels of CD122, 
intermediate between those of memory-phenotype CD8� 
T cells and naive CD4� T cells (unpublished data) ( 16 ). 

 Figure 1.   IL-2 – anti – IL-2 complex treatment induces rapid activa-

tion of STAT5 in naive CD8� T cells. Mice were given a single injection 

of IL-2 – anti – IL-2 complexes. At the indicated time points, splenocytes 

were fi xed and permeabilized for intracellular staining of the tyrosine-

phosphorylated form of STAT5. Mice for the zero time point received no 

injection. The data are gated on the CD8� population, and the numbers 

represent the percentage of gated cells in each quadrant.   
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CD27, CD44, and CD122, were up-regulated on OT-I cells 
that received IL-2 signals, whereas CD62L and CD127 levels 
remained unchanged as compared with OT-I cells in animals 
receiving control injections ( Fig. 2 C ). This phenotype re-
sembles a central memory phenotype ( 17 ). IL-2 – anti – IL-2 
complex – mediated proliferation in a lympho-replete envi-
ronment was not unique to OT-I cells or mediated by a sec-
ond TCR possibly expressed on TCR-transgenic cells, because 
other naive TCR-transgenic CD8� T cells (from P14 or V � 5 
TCR-transgenic mice) and OT-I cells on a RAG-1  − / −   back-
ground also proliferated (Fig. S2). In contrast, proliferation of 
naive polyclonal CD8� T cells was not as vigorous (unpub-
lished data), as previously reported ( 14 ). Functionally, OT-I 
cells that had received IL-2 signals were able to produce IFN- �  
after a 4-h stimulation with their cognate peptide in vitro ( Fig. 
2 D ) and killed target cells in an antigen-specifi c manner in 
vivo ( Fig. 2 E ), both of which are typical characteristics of 
eff ector cells. These results indicate that signals provided by 
IL-2 – anti – IL-2 complexes induce the proliferation and activa-
tion of naive antigen-specifi c CD8� T cells in nonlymphopenic 
environments without cognate antigen stimulation. 

 Fc �  receptors are dispensable for the action of IL-2 – anti –

 IL-2 complexes 

 Why IL-2 – anti – IL-2 complexes are so potent in vivo is still 
unclear. One possible mechanism that has been proposed 
is the presentation of IL-2 – anti – IL-2 complexes by Fc� 
receptor – bearing cells to cells expressing CD122/CD132 ( 14 ). 
Thus, IL-2 complexed to F(ab � ) 2  fragments of the anti – IL-2 
mAb had only a modest eff ect in vivo ( 14 ). To investigate the 
role of Fc� receptors, mice defi cient in both FcR� chain and 
Fc�RII (FcR��/�Fc�RII�/�) were used. Because the FcR� 
chain is necessary for surface expression of the activating IgG 
Fc receptors, including Fc�RI, III, and IV, whereas the 
 inhibitory receptor Fc�RII does not share the FcR� chain 
( 18, 19 ), FcR��/�Fc�RII�/� mice should be devoid of 
known functional Fc� receptors on hematopoietic cells. In 
fact, Fc�RII and Fc�RIII expression was undetectable on B 
cells from FcR��/�Fc�RII�/� mice by staining with anti-
CD16/32 (Fc�RIII/II) mAb (Fig. S3 A, available at http://
www.jem.org/cgi/content/full/jem.20070543/DC1). In ad-
dition, anti-CD3 – induced cytokine release in vivo, which 
requires presentation and cross-linking via Fc� receptors 
(20, 21), was severely impaired in FcR��/�Fc�RII�/� mice, 
indicating a gross functional defect of Fc� receptors in these 
mice (Fig. S3 B). Because FcR��/�Fc�RII�/� mice are on a 
mixed genetic background, we tested the effi  cacy of IL-2 –
 anti – IL-2 complexes by sampling PBLs before and after treat-
ment rather than using an adoptive transfer system. Both 
control and FcR��/�Fc�RII�/� mice displayed a similar small 
population of CD44 hi  CD122 hi  memory-phenotype CD8+ T 
cells before treatment ( Fig. 3 A ).  By day 5 after treatment with 

 Figure 2.   IL-2 – anti – IL-2 complexes induce proliferation of naive 

antigen-specifi c CD8� T cells. 0.5 	 10 6  purifi ed CD44 lo  CD122 lo  naive 

OT-I cells were transferred into nonirradiated mice on day  − 1. The mice 

were given IL-2 – anti – IL-2 complexes or control (rat IgG) on days 0 and 2, 

and the assays were performed on day 6. (A) Proliferation of donor cells 

was evaluated by CFSE dilution. (B) Absolute number of donor cells (left) 

and host CD8� T cells (right) in the spleen. The data represent the mean � 

SEM ( n  
 3). ***, P � 0.001 versus rat IgG treatment. (C) Phenotypic 

changes of the donor cells. Rat IgG and IL-2 – anti – IL-2 complex treatment 

are indicated with open and shaded histograms, respectively. (D) IFN- �  

production by donor OT-I cells was assessed after 4 h of stimulation in 

vitro. Numbers represent the percentage of gated OT-I cells making IFN- � . 

(E) Equal numbers (1.1 	 10 6  cells) of naive OT-I cells and IL-2 – anti – IL-2 

complex – activated OT-I cells were transferred to naive animals. An in vivo 

CTL assay with OVA peptide – pulsed (CFSE hi ) and control (CFSE lo ) targets 

was performed the next day. The killing activity was examined 20 h later. 

Numbers represent the percentage of CFSE hi  and CFSE lo  targets remaining. 

The donor cells (A – D) and target cells (E) were distinguished from host 

populations by congenic markers.   
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reconstituted with syngeneic BM. As shown in  Fig. 4 A , 
naive OT-I cells underwent three to four divisions in le-
thally irradiated WT hosts after rat IgG treatment, because of 
lymphopenia-induced HP.  Proliferation was delayed in MHC 
class Ia – defi cient hosts, confi rming that HP of naive CD8� 
T cells is MHC class I – dependent ( 22 – 24 ). In contrast, IL-2 sig-
nals provided by injected IL-2 – anti – IL-2 complexes stimulated 
extensive division of naive OT-I cells in the MHC class Ia –
 defi cient and  – suffi  cient host animals. The recovery of donor 
OT-I cells in the spleen after the complex treatment was also 
similar in both groups ( Fig. 4 B ). 

 These results suggest a minimal requirement for TCR li-
gation by self-MHC for the proliferation of naive CD8� T cells 
stimulated by IL-2 – anti – IL-2 complexes, but it does not rule 
out the possibility of stimulation by MHC class I molecules 
on the donor cells themselves or by irradiation-induced cyto-
kines. In this regard, a recent report has strongly suggested the 
requirement for TCR recognition of self-MHC ligands to 
observe the accumulation of IL-2 – driven CD8� cells ( 26 ). 
We took a second approach to examine the dependency on 
TCR stimulation based on the fi nding that adoptively trans-
ferred TCR-transgenic CD8� T cells do not undergo HP in 
hosts with the identical TCR clonotype because of clonal 
competition for MHC class I/peptide ligands ( 27, 28 ). Ac-
cordingly, naive OT-I cells were labeled with CFSE and 
transferred into nonirradiated OT-I/RAG-1�/� hosts. As shown 
in  Fig. 4 C , signals provided by IL-2 – anti – IL-2 complexes 
induced several divisions of naive OT-I cells even in this envi-
ronment, where competition for self-MHC ligands is intense. 

IL-2 – anti – IL-2 complexes, CD44 hi  CD122 hi  memory-
phenotype CD8+ T cells increased dramatically in control and 
FcR��/�Fc�RII�/� mice ( Fig. 3 A ). Total numbers of PBLs 
increased signifi cantly after treatment in both strains and cor-
related with vigorous expansion of CD8+ T cells and NK cells 
( Fig. 3 B ). These results suggest that Fc� receptor – mediated 
presentation is dispensable for the action of IL-2 – anti – IL-2 
complexes in vivo. 

 IL-2 – anti – IL-2 complexes stimulate naive CD8� T cells 

with limited TCR stimulation by self-ligands 

 IL-2 signals induced the proliferation of naive TCR-trans-
genic CD8+ T cells in a complete lymphoid compartment and 
in the absence of cognate antigen stimulation ( Fig. 2 A  and 
Fig. S2). However, it was possible that TCR stimulation by 
self-ligands had an important role, as is the case for homeo-
static proliferation (HP) of naive CD8+ T cells in a lympho-
penic environment ( 22 – 24 ). To explore the dependency on 
MHC class I ligands, we chose MHC class I K b�/� D b�/�  mice 
as host animals, because the homeostasis of IgG is impaired in 
� 2  microglobulin – defi cient mice ( 25 ), which might aff ect the 
half-life of IL-2 – anti – IL-2 complexes. Because CD8� T cells 
transferred into MHC class Ia – defi cient mice were almost 
completely rejected after IL-2 – anti – IL-2 complex treatment 
(unpublished data), MHC class Ia – defi cient mice were irradi-
ated with 10 Gy and transplanted with syngeneic BM cells to 
prevent rejection. Irradiated, BM-reconstituted mice were 
injected with CFSE-labeled naive OT-I cells and IL-2 – anti –
 IL-2 complexes. As controls, B6 mice were also irradiated and 

 Figure 3.   Fc� receptors are dispensable for the action of IL-2 – anti – IL-2 complexes. B6 mice and FcR��/�Fc�RII�/� mice were treated with IL-2 – 

anti – IL-2 complexes on days 0 and 2. The mice were bled before starting the treatment (pretreatment) and on day 5. (A) Phenotype of the CD8� T cell 

population of the same animal in each group is shown. The data are gated on CD3� CD8� cells. Numbers represent the percentage of gated cells within 

the box. (B) Absolute numbers of total leukocytes, CD8� T cells (CD3� CD8�), and NK cells (NK1.1� CD3 NEG ) in the peripheral blood before and after (day 5) 

the treatment. Each column represents the mean � SEM ( n  
 3). *, P � 0.05; or **, P � 0.01 versus pretreatment.   
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OT-I cells into B6 recipients, followed by immunization with 
 Listeria monocytogenes  – expressing soluble OVA (LM-OVA; 
Fig. S1 C). More than 75 d after transfer of the IL-2 – anti – IL-2 
complex – driven or antigen-driven memory cells, the OT-I 
cells accounted for  � 3% of the CD8� population in the spleen 
( Fig. 5 ).  At this point, the antigen-driven memory OT-I cells 
were CD44 hi  CD122 hi  and contained CD62L hi  central and 
CD62L lo  eff ector memory subsets. In contrast, all of the IL-2 –
 anti – IL-2 complex – driven cells had the phenotype of central 
memory cells. These results suggest that naive CD8� T cells 
activated by IL-2 – anti – IL-2 complex treatment revert to stable 
central memory-phenotype cells. 

 IL-2 – anti – IL-2 complex memory CD8� T cells protect 

against bacterial infection 

 Functional memory CD8� T cells rapidly expand in num-
bers and eff ectively control a challenge with pathogen ( 1, 2 ). 
We therefore assessed the ability of IL-2 – anti – IL-2 complex 
memory OT-I cells to mount a protective recall response to 
a lethal dose of LM-OVA. Mice bearing IL-2 – anti – IL-2 
complex memory OT-I/RAG-1�/� cells (91 d after transfer) 
were infected with a lethal dose of LM-OVA. As shown in 
 Fig. 6 (A and B) , IL-2 – anti – IL-2 complex memory OT-I/
RAG-1�/� cells expanded over 30-fold within 3 d after the 
LM-OVA challenge.  To examine the protective ability of 
IL-2 – driven memory cells, a control group of mice received 
1.5 	 10 6  untreated OT-I/RAG-1�/� cells to constitute a 
population of these cells at an equivalent level to that of mice 
containing IL-2 – anti – IL-2 complex memory OT-I/RAG-
1�/� cells (132 d after transfer). Before challenge with LM-
OVA, the OT-I donor cell populations in peripheral blood 
were 1.3 � 0.11% and 1 � 0.04% of CD8� T cells in control 
and IL-2 – anti – IL-2 complex memory groups, respectively. 
At 3 d after challenge, mice containing IL-2 – anti – IL-2 com-
plex memory OT-I/RAG-1�/� cells were able to signifi cantly 
decrease LM-OVA burden in both the spleen and liver com-
pared with mice containing untreated OT-I/RAG-1�/� cells 
and mice without cell transfer ( Fig. 6 C ). Furthermore, adop-
tive transfer of IL-2 – anti – IL-2 complex memory OT-I cells 
provided signifi cant protection to naive animals, whereas an 
equal number of naive OT-I cells did not (Fig. S4, available at 
http://www.jem.org/cgi/content/full/jem.20070543/DC1). 
These results demonstrate that IL-2 – anti – IL-2 complex – driven 
memory CD8� T cells are able to mount a rapid and robust 
response to antigen challenge and aff ord protection. 

 IL-2 – anti – IL-2 complex memory CD8� T cells display 

incomplete cellular fi tness 

 We further characterized IL-2 – anti – IL-2 complex memory 
OT-I cells, and compared them to LM-OVA memory OT-I 
cells and with spontaneously arising memory-phenotype 
CD8� T cells. Memory CD8� T cells proliferate slowly to 
maintain a stable pool ( 6, 24 ), and this homeostatic turnover 
can be measured by the uptake of BrdU. LM-OVA anti-
gen-driven memory OT-I cells displayed a rate of homeo-
static turnover that was similar to that of memory-phenotype 

This result suggested that robust expansion of naive CD8� T 
cells in response to potent IL-2 signals requires only minimal 
TCR stimulation. 

 IL-2 – anti – IL-2 complexes generate memory cells 

with a central memory phenotype 

 We next addressed whether naive CD8� T cells activated by 
IL-2 – anti – IL-2 complexes could diff erentiate to memory cells. 
OT-I mice were injected with IL-2 – anti – IL-2 complexes, re-
sulting in the conversion of almost all the CD8� T cells to a 
CD44 hi  CD122 hi  activated phenotype (Fig. S1 B). 15 	 10 6  
IL-2 – activated OT-I cells were then transferred at day 12 to 
normal B6 hosts. At 1 d after transfer, the OT-I cells exhibited 
rapid IFN-� production in response to peptide stimulation 
in vitro (unpublished data). For comparison, conventional, 
antigen-driven OT-I cells were generated by transfer of 10 4  naive 

 Figure 4.   IL-2 – anti – IL-2 complexes stimulate naive CD8� T cells 

with limited TCR stimulation. Host mice that received CFSE-labeled naive 

OT-I cells 1 d earlier were treated with IL-2 – anti – IL-2 complexes on days 0 

and 2. CFSE levels of donor cells from the spleen were examined on day 6. 

The data are gated on CD3� CD8� congenically marked donor cells. (A) WT 

and MHC class I K b�/� Db�/� mice that were irradiated with 10 Gy and 

transplanted with syngeneic BM cells were used as host animals. (B) Abso-

lute number of OT-I cells recovered from the spleen of animals in A is shown. 

The data represent the mean + SEM ( n  
 2). ***, P � 0.001 versus rat IgG 

treatment. (C) Nonirradiated OT-I/RAG-1�/� mice were used as hosts.   
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  DISCUSSION  

 The recent realization that complexing IL-2 with anti – IL-2 
mAbs leads to a dramatic increase in the potency of signaling 
via the intermediate affi  nity CD122/CD132 receptor in vivo 
( 14, 15 ) allowed us to examine the consequences of such sig-
nals to CD8� T cells in normal, nonlymphopenic animals in 
the absence of foreign antigen stimulation. Injected IL-2 –
 anti – IL-2 complexes caused the rapid activation of STAT5 in 
naive as well as memory-phenotype CD8� T cells ( Fig. 1 ). 
This was the case even though CD122 levels are much higher 
on memory than on naive CD8� T cells (unpublished data) ( 16 ) 
and the IL-2 – anti – IL-2 complex signaling depends on CD122 
( 29 ). Under such conditions, potent IL-2 signals stimulated 
naive CD8� T cells to proliferate and diff erentiate into func-
tional memory cells. Such IL-2 – anti – IL-2 complex – driven 
memory cells had a conventional central memory phenotype 
( Fig. 5 ) and were able to control a bacterial challenge in both 
lymphoid and nonlymphoid organs ( Fig. 6 C  and Fig. S4). The 
downstream molecular basis for the IL-2 – anti – IL-2 complex –
 driven programming of memory CD8� T cells awaits further 
investigation. Target genes of STAT5, an important compo-
nent of IL-2 signaling ( 3, 4 ), are likely to be a key component 
of this process, because overexpression of STAT5 in T cells 
results in the selective expansion of memory-phenotype CD8� 
T cells ( 30, 31 ). 

 Although IL-2 – anti – IL-2 complex – generated memory 
CD8� T cells were able to expand, accumulate, and provide 
protection after challenge with a high dose  Listeria  infection 
( Fig. 6  and Fig. S4), we found that they diff ered from conven-
tional antigen-driven memory cells. In comparison with con-
ventional memory cells, they had a slower rate of homeostatic 
turnover and reduced cytokine production after short-term 
restimulation ( Fig. 7 ). This slow turnover may result in dis-
appearance of the complex-driven memory cells in the long 
term, although a clear correlation between the reduced BrdU 
uptake and loss of donor cells was not consistently observed 
up to 80 d after transfer (unpublished data). The turnover of 

CD8� T cells in the same mouse ( Fig. 7 A ).  In contrast, al-
though IL-2 – anti – IL-2 complex memory OT-I cells also 
exhibited homeostatic turnover, the rate was signifi cantly less 
than that of antigen-driven memory cells or CD44 hi  CD122 hi  
memory-phenotype CD8� T cells in the same mouse ( Fig. 7, 
A and B ). 

 Another cardinal feature of memory CD8� T cells is the 
rapid production of cytokines after reencounter with antigen 
( 1, 2 ). Splenocytes containing IL-2 – anti – IL-2 complex mem-
ory OT-I cells or LM-OVA memory OT-I cells were stimu-
lated with OVA peptide or PMA plus ionomycin for 4 h in 
vitro, and cytokine production was assessed by fl ow cytometry. 
Upon antigenic stimulation, almost all (�95%) antigen-driven 
memory cells produced IFN-�; most of the IFN- �  – producing 
population also produced TNF-�, and  � 40% of them were 
IL-2 positive ( Fig. 7 C ). In comparison, a reduced fraction of 
memory cells generated by IL-2 – anti – IL-2 complexes were 
positive for the cytokines tested ( Fig. 7 C ). In addition, the 
amounts of IFN-�, TNF-�, and IL-2 produced on a per-cell 
basis, as judged by the mean fl uorescence intensity, were 
also decreased in IL-2 – anti – IL-2 complex memory OT-I 
cells compared with antigen-driven memory cells ( Fig. 7 D ). 
Diff erences in cytokine production were evident when IL-2 
complex – driven or antigen-driven memory cells were stimu-
lated with PMA plus ionomycin ( Figs. 7, E and F ), implying 
that alterations in signal transduction proximal to the TCR do 
not account for the changes. The cytokine production levels of 
IL-2 – anti – IL-2 complex memory OT-I cells resembled those 
of the host memory-phenotype CD8� T cells upon PMA/
ionomycin stimulation, although a marked diff erence was ob-
served in IFN-� levels ( Fig. 7 F ). Similar results were obtained 
when activated OT-I cells were prepared from OT-I/RAG-
1�/� mice that had been treated with IL-2 – anti – IL-2 com-
plexes ( Fig. 7 B  and not depicted). These results suggest that 
strong IL-2 signals coupled with weak TCR signals are not 
suffi  cient to guarantee the overall cellular fi tness of memory 
CD8� T cells. 

 Figure 5.   IL-2 – anti – IL-2 complexes generate memory cells with a central memory phenotype. Memory OT-I cells generated by LM-OVA infection 

(75 d after infection; population A), IL-2 – anti – IL-2 complex memory OT-I cells (12 d of treatment plus 76 d after transfer; population B), and host 

CD8� T cells (population C) were examined for the expression of cell-surface markers. Contour plots are gated on CD8� cells. Numbers represent the 

percentage of CD8� cells within the box.   



JEM VOL. 204, August 6, 2007 

ARTICLE

1809

interesting to note that naive CD8� T cells that receive strong 
TCR signals after pathogen infection, but weak or no IL-2 
signals (i.e., IL-2R �   − / −   cells), develop into memory cells that 
show normal levels of homeostatic turnover and cytokine pro-
duction but fail to accumulate in response to secondary anti-
genic challenge ( 11 ). Thus, predominant TCR signals without 
IL-2 give rise to memory CD8� T cells that fail to accumulate 
in response to a secondary challenge, whereas predominant 
IL-2 signals with weak TCR stimulation result in memory 
cells with reduced turnover and cytokine production. 

 IL-2 – anti – IL-2 complexes dramatically enhance IL-2 
activity in vivo ( 14, 15 ), but the mechanism of this enhance-
ment is still unclear. Because IL-2 – anti – IL-2 complexes lack-
ing the Fc region (i.e., IL-2 plus the F(ab � ) 2  portion of the 
anti – IL-2 mAb) had less activity than complexes with the 
whole IgG, it was suggested that Fc� receptor – positive cells 
in lymphoid organs presented the IL-2 to T cells ( 14 ). How-
ever, we show that IL-2 – anti – IL-2 complexes showed similar 
potent activity in FcR��/�Fc�RII�/� mice as in B6 control 
mice ( Fig. 3 ). It is possible that other nonclassical Fc receptor –
 like molecules ( 32 ) or leaky expression of Fc�RI without the 
FcR� subunit ( 33 ) may mediate the activity of IL-2 – anti – 
IL-2 complexes in vivo. However, FcR��/�Fc�RII−/− mice 
showed a gross functional defect in the stimulatory presenta-
tion of anti-CD3 IgG (Fig. S3 B), leading us to conclude that 
presentation of IL-2 – anti – IL-2 complexes via Fc �  receptors 
may not be responsible for the enhancing eff ect. The half-life 
of IgG in vivo is dependent on the presence of the Fc region 
( 25, 34 ), and this may explain the weak activity of IL-2 – anti –
 IL-2 immune complexes lacking Fc. Moreover, there are 
many studies documenting the fact that the in vivo half-life of 
various cytokines is prolonged by the formation of immune 
complexes. These include human IL-2 – anti – IL-2 ( 35 ), IL-4 –
 anti – IL-4 ( 36 ), IL-6 – anti – IL-6 ( 37 ), and soluble IL-15 – IL-
15R�-Fc ( 38 ) complexes. Therefore, we favor the idea that 
IL-2 – anti – IL-2 complexes extend the half-life of IL-2 in vivo 
by preventing renal excretion, the major pathway of IL-2 clear-
ance in mice ( 39 ). 

 Other recent reports have demonstrated the development 
of memory CD8� T cells from naive cells without cognate 
antigen stimulation. Stimulation of naive CD8� T cells with sol-
uble IL-15 – IL-15R �  complexes, which act as superagonists ( 40, 
41 ), induced proliferation and converted the cells to memory-
phenotype CD8� T cells ( 38 ). Because both soluble IL-15 – IL-
15R �  complexes and IL-2 – anti – IL-2 immune complexes signal 
through the CD122/CD132 receptor complex on CD8� T 
cells ( 6, 42 ), these two types of complex may result in similar 
consequences, although the function of the memory-pheno-
type CD8� T cells generated by soluble IL-15 – IL-15R �  com-
plexes was not addressed in detail ( 38 ). In another report, 
Hamilton et al. demonstrated that lymphopenia-induced HP 
resulted in the generation of protective memory-like CD8� T 
cells ( 43 ). Similar to IL-2 – anti – IL-2 complex – mediated prolif-
eration, HP is induced in the absence of cognate antigen ( 22 –
 24 ), and similar phenotypic changes occur after proliferation 
induced by IL-2 signals ( Fig. 2 C and Fig. 5 ) and by HP ( 43 ). 

memory CD8� T cells is regulated by cytokines such as IL-7 
and IL-15 ( 6 ). The expression levels of the receptors for 
these cytokines, namely CD127 (IL-7R�) and CD122 (IL-2/
IL-15R�) and CD132, did not noticeably diff er between 
complex-driven memory cells, antigen-driven memory cells, 
and memory-phenotype cells ( Fig. 5  and not depicted). In 
addition, treatment with PMA plus ionomycin did not over-
ride the defect in cytokine production of IL-2 – anti – IL-2 com-
plex memory CD8� T cells ( Fig. 7, E and F ), implying that the 
reduced fi tness of IL-2 – anti – IL-2 complex memory CD8� 
T cells might be caused by intracellular diff erences, such as in 
the epigenetic remodeling of genes involved in hallmark char-
acteristics of memory cells. We speculate that more potent 
signals via the TCR may be required to operate in conjunc-
tion with IL-2 signals to promote the complete programming 
of memory CD8� T cell diff erentiation. In this context, it is 

 Figure 6.   IL-2 – anti – IL-2 complex memory CD8� T cells protect 

against bacterial infection. (A) Enumeration of IL-2 – anti – IL-2 complex 

memory OT-I/RAG-1�/� cells (9 d of treatment and 91 d after transfer; 

CD45.2�) in the spleen before and 3 d after challenge with 10 5  CFU of 

LM-OVA. The data are gated on CD8� cells. Numbers represent the per-

centage of CD8� cells within the box. (B) Absolute numbers of IL-2 – anti –

 IL-2 complex memory OT-I/RAG-1�/� cells in the spleen before and after 

LM-OVA challenge. Data represent the mean + SEM ( n  
 3 – 4). ***, P � 

0.001. (c) CFU of LM-OVA in the spleen and liver at 3 d after challenge of 

mice containing equal numbers of naive OT-I/RAG-1�/� or IL-2 – anti – IL-2 

memory OT-I/RAG-1�/� cells. Data represent the mean + SEM ( n  
 4 – 6). 

***, P � 0.001 versus the OT-I/RAG-1�/� group.   
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programming memory CD8� T cell diff erentiation may reside 
within pathways common to these stimulations. 

 MATERIALS AND METHODS 
 Mice.   B6 mice were obtained from the Jackson Laboratory. B6.SJL, MHC 

class I Kb�/�D b�/� , OT-I/RAG-1�/�, and FcR��/�Fc�RII�/� mice were 

purchased from Taconic. These animals were backcrossed to a B6 genetic 

background, except for FcR��/�Fc�RII�/� mice, which were on a 129 	 B6 

mixed background. Animals were housed in specifi c pathogen-free condi-

tions in the animal facilities at the University of Washington. OT-I TCR-

transgenic mice ( 47 ) congenic for Thy1.1 and CD45.1 were bred and 

maintained in the same facilities. All experiments were performed in compliance 

HP of naive CD8� T cells in a lymphopenic environment 
requires both TCR stimulation through MHC class I – peptide 
complexes, in addition to cytokines such as IL-7 ( 22 – 24 ). Pro-
liferation of naive CD8� cells driven by IL-2 – anti – IL-2 com-
plexes in irradiated mice may also require TCR signals from 
self-MHC ligands ( 26 ). IL-7 – dependent HP is enhanced by 
IL-12, but no substantial involvement of IL-2 has been re-
ported ( 44 – 46 ). Given that stimulation by foreign antigen plus 
cytokines (such as pathogen infections), self-antigen plus IL-7 
(HP), or intense IL-2 signals (IL-2 – anti – IL-2 complexes) all give 
rise to protective memory CD8� T cells, key components of 

 Figure 7.   IL-2 – anti – IL-2 complex memory CD8� T cells display incomplete cellular fi tness. (A) Mice bearing LM-OVA antigen-driven memory 

OT-I cells at 68 d after infection or IL-2 – anti – IL-2 complex memory OT-I cells after 81 d (12 d of treatment plus 69 d after transfer) were given BrdU in 

drinking water for 7 d. BrdU incorporation by the indicated subsets of memory CD8� T cells in the spleen is shown. Numbers represent the percentage of 

gated cells that are BrdU positive. (B) BrdU-positive population of host CD44 hi  CD122 hi  CD8 +  T cells and IL-2 – anti – IL-2 complex memory OT-I/RAG-1�/� 

cells after 61 d (9 d of treatment plus 52 d after transfer). The data are the mean � SEM ( n  
 3). *, P  �  0.05. (C – F) Splenocytes containing memory OT-I 

cells generated by LM-OVA infection (62 d after infection) or IL-2 signals (12 d of treatment plus 63 d after transfer) were stimulated in vitro with OVA 

peptide (C and D) or PMA plus ionomycin (E and F). Intracellular cytokine production was examined 4 h later. Numbers in C and E represent the percent-

age of gated cells in each quadrant. (D and F) The mean fl uorescent intensity (MFI) of cytokine staining is shown (mean � SEM;  n  
 3). The MFI was 

calculated within the population positive for the respective cytokine. * and **, P � 0.05 and 0.001, respectively, versus the complex-driven memory cells; 

***, P � 0.001 versus LM-OVA memory cells.   
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provided by H. Shen (University of Pennsylvania School of Medicine, Phila-

delphia, PA) ( 51 ). LM-OVA was grown in Brain-Heart Infusion broth (BD 

Biosciences). At a midlog growth phase, culture samples were measured by 

OD and diluted in PBS for the desired titers. For preparation of LM-OVA –

 induced OT-I memory cells, mice that received 10 4  CD44 lo  CD122 lo  naive 

OT-I cells per mouse 1 or 2 d earlier were infected i.v. with 3,000 CFU of 

LM-OVA. These mice were used at least 50 d later. Engraftment of the donor 

cells at the time of assay was between 1 and 10% of total CD8� T cells. For 

lethal infection, mice were inoculated i.v. with 10 5  CFU. For protection 

assay, organ suspension was prepared in 5 ml PBS, and 10-fold serial dilutions 

were made in PBS containing 0.1% NP-40. These 100-  l dilutions were 

plated onto the Brain-Heart Infusion plates containing 5   g/ml erythromycin. 

The limit of detection was 50 CFU per organ. 

 Statistical analysis.   Data with logarithmic presentation were transformed 

to log 10  ( 43 ). Statistical diff erences between groups were examined by a paired, 

two-tailed (for  Fig. 3 B ) or an unpaired, two-tailed Student ’ s  t  test using Prism 

software (GraphPad). P � 0.05 was considered statistically signifi cant. 

 Online supplemental material.   Fig. S1 shows the experimental protocols 

used for studying IL-2 – anti – IL-2 complex – induced proliferation and for the 

generation of IL-2 – anti – IL-2 complex memory and antigen-driven memory 

cells. Fig. S2 shows the proliferation of diff erent kinds of TCR-transgenic 

CD8� T cells induced by IL-2 – anti – IL-2 complexes. Fig. S3 shows the sur-

face staining and the functional defect in FcR��/�Fc�RII�/� mice. Fig. S4 

shows the protection against bacterial challenge aff orded by an equal number 

of naive OT-I, IL-2 – anti – IL-2 complex memory OT-I, or LM-OVA – induced 

memory OT-I. Online supplemental material is available at http://www.jem

.org/cgi/content/full/jem.20070543/DC1. 
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