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Abstract: We study the dynamical invariant for dissipative three coupled oscillators mainly from
the quantum mechanical point of view. It is known that there are many advantages of the invariant
quantity in elucidating mechanical properties of the system. We use such a property of the invariant
operator in quantizing the system in this work. To this end, we first transform the invariant operator to
a simple one by using a unitary operator in order that we can easily manage it. The invariant operator
is further simplified through its diagonalization via three-dimensional rotations parameterized by
three Euler angles. The coupling terms in the quantum invariant are eventually eliminated thanks to
such a diagonalization. As a consequence, transformed quantum invariant is represented in terms
of three independent simple harmonic oscillators which have unit masses. Starting from the wave
functions in the transformed system, we have derived the full wave functions in the original system
with the help of the unitary operators.

Keywords: coupled oscillators; unitary transformation; matrix of diagonalization; invariant theory

1. Introduction

Description and interpretation of coupled systems are of particular interest in physics
because the interaction caused by coupling is responsible for novel quantum effects such
as entanglement [1,2] and quadrature squeezing [3]. Coupled oscillatory quantum mo-
tions are found in almost all areas of physical sciences, ranging from nanotechnology to
biology [4–8]. Coupled oscillatory systems can be used as a model to describe the inter-
actions between atoms in a one-dimensional crystal with spring-like forces under white
noise excitations [9,10]. In this regard, oscillatory motions of three masses coupled by
four springs were studied analytically by Ndikilar et al. [9]. The dynamics of mixedness
and entanglement for three coupled oscillators with arbitrary time-dependent frequencies
and coupling parameters has also been investigated [11]. Entanglement and its control
in coupled quantum oscillators are crucial for the process of information in quantum
cryptography, quantum teleportation, and quantum computing [12].

In particular, coupled oscillator model for nano-optomechanical systems is impor-
tant because many novel state-of-the-art techniques can be realized by utilizing it. For
instance, couplings of photonic systems with mechanical resonators provide fundamental
platform for quantum technologies, such as slow/fast-light generation [13], cooling of
nanomechanical resonators [14,15], frequency conversion [16,17], and phononic-structure
preparation [18]. You can see an example of nano-optomechanical three coupled oscillators
from Figure 1.
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Figure 1. Schematic of a kind of nano-optomechanical three coupled oscillators on which our
work can be applied potentially. ω1 and ω2 are frequencies associated with optical modes in cavities,
whereas ω3 is a frequency of a mechanical oscillation for a flexible nano membrane. This figure shows
the interaction of cavity fields with the nano-mechanical oscillator via the force of radiation pressure.

In this contribution, we will study quantum dynamical invariant for dissipative three
coupled oscillators based on exact quantum description of the system. Such invariant can be
used in analyzing various mechanical properties of the coupled oscillatory systems [19,20].
For example, quantum mechanics of optomechanical systems can be unfolded by means of
the theory of dynamical invariants [20].

There are several methods to calculate dynamical invariants based on algebraic ap-
proaches [21–27]. In the classical case, the Lutzky’s approach [23,24], which relies on the
Noether’s theorem is applicable. Some years ago, Bertin et al. developed a new way to
calculate dynamical invariants [25], which utilizes the combinations of the classical equa-
tions of motion. We also note that there are Lewis-Riesenfeld method for time-dependent
Hamiltonian systems [26,27]. In particular, the last method can be flexibly used in both
classical and quantum systems. Many research papers were devoted to the construction
and applications of dynamical invariants in nonconservative systems [28–30]. The method
of invariants was also used in the study of three coupled oscillators [31–33].

Our paper is structured as follows: In Section 2, we will represent the method for
treating three coupled oscillators from preliminary level of mechanics. The results of this
work and the related discussion will be placed in Section 3. The classical and quantum
invariant quantities for the three coupled oscillators will be derived based on the fundamen-
tal Hamiltonian dynamics. The quantum invariant operator will be simplified by a unitary
transformation together with a diagonalization through a rotational unitary transformation
parameterized by Euler angles. Then, we evaluate the eigenvalues and eigenfunctions
of the original invariant operator by taking advantage of the simple expression of the
diagonalized invariant operator. We will also derive solutions of the Schrödinger equation
of the oscillatory systems using their close relationship with the eigenstates of the invariant
operator. Finally, we will conclude our research in Section 4 with some remarks.

2. Methods

We start our study by briefly representing how to describe the dynamics of a sim-
ple dissipative mechanical oscillatory system. For the linearly damped motion of a 1D
oscillatory system subjected to a force field V(X), the Newton’s equation can be written as

mẌ + γẊ = −~∇V(X). (1)

The Lagrangian that produces this motion is of the form

L = exp(δt)
(

1
2

mẊ2 −V(X)

)
, δ =

γ

m
, (2)
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where δ is the damping coefficient. From the well-known relation between the Lagrangian
and the Hamiltonian, we can easily have the corresponding Hamiltonian such that

H =
P2

2m
exp(−δt) + V(X) exp(δt). (3)

This is the famous Caldirola–Kanai model [34,35], which celebrates 80 years now. This
Hamiltonian is dependent on time due to the damping of the system, even if the mass is
independent of time.

The above simple mechanical description can be readily extended to coupled oscil-
lators. We consider a system of dissipative three coupled oscillators which have differ-
ent effective masses (m1, m2, m3), where they are parameterized by the three coordinates
(X1, X2, X3) [36]. The Hamiltonian of this system can be represented as

H(t) =
1
2

3

∑
i=1

[
P2

i
eδtmi

+ eδtkiX2
i

]

+
1
2

eδt
[
k12(X1 − X2)

2 + k13(X1 − X3)
2 + k23(X2 − X3)

2
]
, (4)

where the parameters ki(i = 1, 2, 3), k12, k13, and k23 are constants; the convention for the
lower subscript i (including j and k) given here will be applied throughout the paper. The
Hamiltonian in Equation (4) is actually a generalization of 1D single mechanical system
expressed by Equation (3). We assumed that damping coefficients for the three oscillators
are the same as each other for simplicity; this means that

γ1/m1 = γ2/m2 = γ3/m3 ≡ δ. (5)

Let us denote the Poisson bracket for two arbitrary observables µi and νj as {µi, νj}.
Then, for canonical local coordinates, we have

{Xi, Pj} = δij,
{

Xi, Xj
}
=
{

Pi, Pj
}
= 0. (6)

From the use of the Hamilton’s equations, Ẋi = ∂H/∂Pi and Ṗi = −∂H/∂Xi, we confirm
that the classical equations of motion are given by Ẍ1

Ẍ2
Ẍ3

 =

 −δẊ1
−δẊ2
−δẊ3

+


−(k1+k12+k13)

m1
k12/m1 k13/m1

k12/m2
−(k2+k12+k23)

m2
k23/m2

k13/m3 k23/m3
−(k3+k13+k23)

m3


 X1

X2
X3

. (7)

These equations reveal that coordinates of the system are intricate due to the coupling
between mechanical oscillators. Hence, the investigation of mechanical properties of the
system is not an easy task. Nevertheless, it may be possible to overcome such a knotty
situation by finding a classical invariant quantity of the system. An invariant quantity is an
important tool for analyzing mechanical properties of dynamical systems [37–40]. Let us
assume that the formula of the invariant quantity for our system is of the form

I(t) =
1
2

3

∑
i=1

[
αi(t)P2

i + γi(t)X2
i + βi(t)Xi Pi

]
+

1
2
[η12(t)X1X2 + η13(t)X1X3 + η23(t)X2X3], (8)

where αi(t), βi(t), γi(t), and ηij(t) are real differentiable functions of time, of which formu-
lae will be evaluated later on.

In fact, the search for such an invariant (a constant of motion) is somewhat difficult for
a complicated system. To obtain the invariant quantity by determining the time functions
in Equation (8), we use the Liouville’s theorem which is that the phase-space distribution
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function is constant along the trajectories of the dynamical systems. Via the analysis of the
invariant quantity based on this theorem, we can confirm the time evolution of a given
dynamical system. Usually, there exist constants of motion in addition to the energy for an
integrable dynamical system. These constants for a time-dependent Hamiltonian system
do not commute with the Hamiltonian under the Poisson bracket.

3. Results and Discussion
3.1. Classical Analysis

If we insert Equation (8) with Equation (4) into the Liouville equation

dI
dt

=
∂I
∂t

+
3

∑
i=1

[
∂I

∂Xi

∂H
∂Pi
− ∂I

∂Pi

∂H
∂Xi

]
= 0, (9)

we obtain the coupled differential equations for αi(t), βi(t), γi(t), and ηij(t) as

α̇i(t) =
−2βi(t)

mieδt , (10)

β̇1(t) = (k1 + k12 + k13)eδtα1(t)−
γ1(t)
m1eδt , (11)

β̇2(t) = (k2 + k12 + k23)eδtα2(t)−
γ2(t)
m2eδt , (12)

β̇3(t) = (k3 + k13 + k23)eδtα3(t)−
γ3(t)
m3eδt , (13)

γ̇1(t) = 2(k1 + k12 + k13)eδtβ1(t), (14)

γ̇2(t) = 2(k2 + k12 + k23)eδtβ2(t), (15)

γ̇3(t) = 2(k3 + k13 + k23)eδtβ3(t), (16)

η̇12(t) = −2k12(t)eδt[β1(t) + β2(t)], (17)

η̇13(t) = −2k13(t)eδt[β1(t) + β3(t)], (18)

η̇23(t) = −2k23(t)eδt[β2(t) + β3(t)]. (19)

By solving the above coupled equations, we have

αi(t) =
1

mieδt , βi(t) =
δ

2
, (20)

γ1(t) = (k1 + k12 + k13)eδt, γ2(t) = (k2 + k12 + k23)eδt, γ3(t) = (k3 + k13 + k23)eδt , (21)

η12(t) = −2k12eδt , η13(t) = −2k13eδt , η23(t) = −2k23eδt. (22)

From the substitution of these outcomes into Equation (8), we have the classical invariant
quantity as

I(t) = H(t) +
δ

2

3

∑
i=1

XiPi. (23)

This can be used in analyzing dynamical properties of the oscillatory systems.
Besides the invariant approach that we are interested here, there are other treatments

with Hamiltonian for dissipative harmonic oscillators. Bateman carried out a variational
approach for the dissipative oscillators with the Langrangian that gives suitable equations
of motion of the system [41]. Lemos made the Hamiltonian of the dissipative system
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simpler through a canonical transformation based on the Hamilton–Jacobi method [42].
Later on, McDonald also proposed another linear (canonical) transformation of position and
momentum variables for the damped oscillator, which holds the Liouville’s theorem [43].
These researches may serve as a contrast to the current treatment and would also highlight
potential novelties along this line.

In the next section, we will extend this invariant to quantum mechanics, i.e., we will
consider its counterpart quantum description in order to unfold the associated quantum
theory based on the dynamical invariant.

3.2. Quantum Analysis

Due to the analogy of quantum mechanics with the classical mechanics, we can still
use the similar notions of an observable and the associated physical state related to our
previous description of the system even in a quantum domain. By replacing the canonical
variables in the classical invariant with corresponding quantum operators, one gets the
quantum invariant operator, such that

Î(t) = Ĥ(t) +
δ

4

3

∑
i=1

(X̂i P̂i + P̂iX̂i), (24)

where the momentum coordinate is given by P̂i = −ih̄ ∂
∂Xi

. Through the re-interpretation of
the classical variables as counterpart quantum operators, Poisson brackets are replaced by
commutators [X̂i, P̂j] = ih̄δij. Then, the analog of Liouville equation in quantum mechanics
is the von Neumann one, which is of the form

dÎ(t)
dt

=
∂ Î(t)

∂t
+

1
ih̄
[ Î(t), Ĥ(t)] = 0. (25)

This can be used to elucidate the time evolution of a quantum state of the system. This
consequence stems from the fact that the canonical quantization of the system is possible on
the basis of the theorem related to the invariant operator [26,27]. However, for the practical
use of the invariant operator for such a purpose, it may be advantageous to transform it to
a simple form.

To simplify the invariant, Equation (24), we use the unitary transformation approach.
As a first step, we introduce the following transformation of it:

Î = Û−1(t) Î(t)Û(t), (26)

where the unitary operator Û(t) is given by [36]

Û(t) =

{
3

∏
i=1

exp
[

i
2h̄

(P̂iX̂i + X̂i P̂i)

(
ln
√

mi +
δ

2
t
)]}

× exp
(
− iδ

4h̄

3

∑
i=1

X̂2
i

)
. (27)

Then, after an algebraic evaluation, it is possible to get the transformed invariant as

Î =
1
2

(
P̂2

1 + P̂2
2 + P̂2

3

)
+

1
2

[
k1 + k12 + k13

m1
−
(

δ

4

)2]
X̂2

1

+
1
2

[
k2 + k12 + k23

m2
−
(

δ

4

)2]
X̂2

2 +
1
2

[
k3 + k13 + k23

m3
−
(

δ

4

)2]
X̂2

3

+
1
2

(
−2k12√

m1m2
X̂1X̂2 +

−2k13√
m1m3

X̂1X̂3 +
−2k23√

m2m3
X̂2X̂3

)
. (28)
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We can confirm that, through this transformation, the invariant operator has been simplified
in a way that its P̂2

i terms are represented in terms of the unit mass. However, the coupling
terms which involve XiXj still remain. Due to this, it is still difficult to investigate the basic
quantum features of the system in a straightforward way relying on the invariant.

In the next transformation, we will eliminate the coupling terms by diagonalizing
the invariant. To this end, we write the invariant in a matrix form by introducing vectors
X = (X1, X2, X3)

T and P = (P1, P2, P3)
T such that

Î =
1
2

3

∑
i,j=1

P̂iδij P̂j +
1
2

3

∑
i,j=1

X̂ikijX̂j, (29)

where kij are ith row and jth column elements of the matrix

k =

 v2
1

1
2 K12

1
2 K13

1
2 K12 v2

2
1
2 K23

1
2 K13

1
2 K23 v2

3

 , (30)

while the involved parameters are of the form

v1 =

√
(k1 + k12 + k13)/m1 − (δ/4)2, (31)

v2 =

√
(k2 + k12 + k23)/m2 − (δ/4)2, (32)

v3 =

√
(k3 + k13 + k23)/m3 − (δ/4)2, (33)

K12 =
−2k12√

m1m2
, K13 =

−2k13√
m1m3

, K23 =
−2k23√

m2m3
. (34)

In the next section, we will diagonalize the resultant invariant operator, Equation (29), by
eliminating the coupling terms.

3.3. Rotation Matrix and Diagonalization of Invariant Operator

The diagonalization of the invariant operator Î can be done by making use of an alge-
braic approach based on another unitary transformation that corresponds to a 3D rotation.
The unitary operator Λ̂ which will be used to perform a 3D rotation is parameterized by
three Euler angles (φ, θ, ϕ).

We consider a rotation matrix of the form

R = RX1(φ)RX2(θ)RX3(ϕ), (35)

where

RX1(φ) =

 1 0 0
0 cφ −sφ

0 sφ cφ

, RX2(θ) =

 cθ 0 sθ

0 1 0
−sθ 0 cθ

, RX3(ϕ) =

 cϕ −sϕ 0
sϕ cϕ 0
0 0 1

. (36)

In Equation (36), we have abbreviated notations as
(
cζ , sζ

)
≡ (cos ζ, sin ζ) for conve-

nience, while ζ ∈ {φ, θ, ϕ}. Note that the rotation matrix R is a real (3× 3) orthogonal
matrix where its determinant is unity; this can be expressed by an analogous unitary
operator (rotation operator) Λ̂(t) in quantum mechanics, such that

R −→ Λ̂ = exp(iφ Ĵ3) exp(iθ Ĵ2) exp(iϕ Ĵ3), (37)

where the three operators, Ĵ1, Ĵ2, and Ĵ3, are angular momentum generators which are
calculated from the definition of the angular momentum~J = ~X× ~P. Therefore, from the
infinitesimal version of Equation (37), we derive the three basic matrices
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Ĵ1 =

 0 0 0
0 0 −i
0 i 0

, Ĵ2 =

 0 0 i
0 0 0
−i 0 0

, Ĵ3 =

 0 −i 0
i 0 0
0 0 0

. (38)

These can also be expressed by a single formula

( Ĵk)ij = −ih̄εijk, (39)

where εijk is the Levi-Civita symbol, which is an antisymmetric tensor. Note that the three
matrices Ĵi satisfy the commutation relation

[ Ĵi, Ĵj] = ih̄εijk Ĵk. (40)

The switching relationship given in the above equation shows that the operators, Ĵ1, Ĵ2,
and Ĵ3, constitute the generators of a Lie algebra with the structure of constants ih̄εijk. The
associated Lie group is in fact the group of rotation SO(3), which displays the relation
between angular momentum operators and the rotation.

We will now see how to diagonalize the invariant Î by using the matrix representation
of the rotation operator. Let us start by writing the matrix k in terms of the new diago-
nal matrix

k = R diag
[
Ω2

1, Ω2
2, Ω2

3

]
R−1. (41)

Then, it is possible to verify the relation R−1kR = D, where

D = diag
[
Ω2

1, Ω2
2, Ω2

3

]
. (42)

The new frequencies Ω2
i , which represent the eigenvalues of the matrix k, are expressed

as [44]

Ω2
1 =

1
3

(
v2

1 + v2
2 + v2

3

)
+

Ω2

3
√

2
cos α, (43)

Ω2
2 =

1
3

(
v2

1 + v2
2 + v2

3

)
+

Ω2

3
√

2
cos
(

α +
2π

3

)
, (44)

Ω2
3 =

1
3

(
v2

1 + v2
2 + v2

3

)
+

Ω2

3
√

2
cos
(

α− 2π

3

)
, (45)

where

Ω2 =
[(

v2
1 −v2

2

)2
+
(

v2
1 −v2

3

)2
+
(

v2
2 −v2

3

)2
+ 3
(

K2
12 + K2

13 + K2
23

)]1/2
, (46)

α = arccos

(
A

2[B]3/2

)
, (47)

while

A = −3
(

v2
1 + v2

2

)(
v2

1 + v2
3

)(
v2

2 + v2
3

)
− 27

(
1
4

v2
1K2

23 +
1
4

v2
2 K2

13 +
1
4

v2
3 K2

12

)
+2
(

v6
1 + v6

2 + v6
3

)
+ 18

(
v2

1v2
2v2

3 +
3
8

K12K13K23

)
+9
(

v2
1 + v2

2 + v2
3

)(1
4

K2
12 +

1
4

K2
13 +

1
4

K2
23

)
, (48)

B =
1
2

[(
v2

1 −v2
2

)2
+
(

v2
1 −v2

3

)2
+
(

v2
2 −v2

3

)2]
+

3
2

(
1
4

K2
12 +

1
4

K2
13 +

1
4

K2
23

)
. (49)
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By taking into account the commutation relation [~P2, Ĵi] = 0, we can confirm that the
expressions of the old conjugate momenta P̂2

i appeared in the invariant operator Î remain
unchanged. However, the new expressions of the coordinates are given by

x1 = X1cθcφ − X2
(
sθsϕ + cθcϕsφ

)
+ X3

(
cθsφsϕ − sθsϕ

)
, (50)

x2 = X1sφ + X2cφcϕ − X3cφsϕ, (51)

x3 = X1cφsθ + X2
(
cθsϕ − sθcϕsφ

)
+ X3

(
cθcϕ + sθsϕsφ

)
. (52)

pi also take similar expressions. From an algebraic evaluation considering these relations,
we can show that Î takes the form

Î =
1
2

3

∑
i=1

(
p̂2

i + Ω2
i x̂2

i

)
. (53)

Hence, the invariant Î corresponds to a sum of three simple harmonic oscillators with unit
masses and constant frequencies. Although this simplified invariant has been obtained
under the assumption given in Equation (5), it may also be possible to find a simple form of
the invariant operator (as in Equation (53)) for the case where the damping coefficients of
the three coupled oscillators are not the same each other. Thanks to this simple formula of
the transformed invariant, the theory of invariant that we have developed is substantially
useful in analyzing the mechanical properties of the system. In subsequent sections, we
will show that quantum mechanical analysis of the system is possible by taking advantage
of the simplified invariant operator, Equation (53).

3.4. Eigenfunctions of the Invariant Operator

As previously mentioned, the invariant quantity is helpful in understanding the
quantum dynamics of the system as well as the classical dynamics. To analyze quantum
mechanical characteristics of the system, let us see the eigenvalues and eigenfunctions of
the invariant operator. In order to obtain them, we introduce creation and annihilation
operators in the diagonalized system such that

b̂i =
√

Ωi/2x̂i +
i√
2Ωi

p̂i, (54)

b̂†
i =

√
Ωi/2x̂i −

i√
2Ωi

p̂i. (55)

We easily confirm that these operators obey the usual properties of ladder operators, includ-
ing the boson canonical commutation rule [b̂i, b̂†

i ] = 1. We can also express Equation (53)
in terms of b̂i and b̂†

i as

Î =
3

∑
i=1

h̄Ωi

(
b̂†

i b̂i +
1
2

)
. (56)

Now, let us turn our attention to the invariant operator Î(t) in the original system.
The formula of Î(t) can be obtained from the inverse unitary transformation, which is

Î(t) = Û(t)ÎÛ−1(t). (57)

We confirm that the canonical variables are changed through this transformation in a
way that

X̂i −→ Û(t)X̂iÛ−1(t) =
(

mieδt
)1/2

X̂, (58)

P̂i −→ Û(t)P̂iÛ−1(t) =
(

mieδt
)−1/2

(
P̂i +

δ

2
mieδtX̂i

)
. (59)
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Regarding this, the invariant operator Î(t), Equation (24), can be readily evaluated to be

Î(t) =
3

∑
i=1

h̄Ωi

[
â†

i (t)âi(t) +
1
2

]
, (60)

where âi(t) and â†
i (t) are time-dependent canonical annihilation and creation operators

that are defined as

âi(t) = Û(t)b̂iÛ−1(t), (61)

â†
i (t) = Û(t)b̂†

i Û−1(t). (62)

It is possible to obtain the full expressions of âi(t) and â†
i (t) using the relations in

Equations (58) and (59): we have provided them in Appendix A for convenience.
According to conventional quantum mechanics, the number operators are given by

â†
i âi. The eigenvalue equations for them can be written in the form

â†
i âi|ni, t〉 = ni|ni, t〉, (63)

where the eigenvalues, ni, are three integer numbers. Because Equation (60) is represented
in terms of â†

i âi, the eigenstates of the invariant operator are the same as those of â†
i âi,

which are |ni, t〉. Therefore, its normalized eigenstates can be written as a product of the
three eigenfunctions of which formulae are derived from the independent zero-point states:

|n1, n2, n3, t〉 = |n1, t〉 ⊗ |n2, t〉 ⊗ |n3, t〉

=
1√

n1!n2!n3!
(â†

1)
n1(â†

2)
n2(â†

3)
n3 |0, 0, 0, t〉, (64)

whereas the corresponding eigenvalues are given by

λn1,n2,n3 =
3

∑
i=1

h̄Ωi

(
ni +

1
2

)
. (65)

On account of the normalization condition, the states in Equation (64) obey〈
n1, n2, n3, t | n′1, n′2, n′3, t

〉
= δn1,n′1

δn2,n′2
δn3,n′3

. (66)

In the configuration space, the normalized eigenstates are easily obtained by solving the
eigenvalue equation of Î and they are given by

〈X1, X2, X3|n1, n2, n3, t〉 =
3

∏
i=1

[( √
Ωimieδt/2

(πh̄)1/2ni!2ni

)1/2

Hni (Yi)

]

× exp
{
−

3

∑
i=1

[(
Ωi
2h̄

+
iδ
4h̄

) 3

∑
j=1

(
Rij
√

mjeδt/2Xj

)2
]}

, (67)

where Hn are nth order Hermite polynomials, Rij are elements of R that correspond to ith
row and jth column, and the functions Yi are represented as

Y1 =

(
Ω1eδt

h̄

)1/2[√
m1X1cθcφ −

√
m2X2

(
sθsϕ + cθcϕsφ

)
−
√

m3X3
(
sθcϕ − cθsφsϕ

)]
, (68)

Y2 =

(
Ω2eδt

h̄

)1/2[√
m1X1sφ +

√
m2X2cφcϕ −

√
m3X3cφsϕ

]
, (69)
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Y3 =

(
Ω3eδt

h̄

)1/2[√
m1X1cφsθ +

√
m2X2

(
cθsϕ − sθcϕsφ

)
+
√

m3X3
(
cθcϕ + sθsϕsφ

)]
. (70)

In the next section, we will derive Schrödinger solutions of the system by taking advantage
of the eigenstates of Î, which we have obtained here.

3.5. The Schrödinger Equation and Its Solutions

The invariant operator and its eigenstates Equation (67) are useful in analyzing the
dynamical properties of the system. We will derive the solutions of the Schrödinger
equation of the system using their close relationship with the eigenstates of the invariant
operator. If we write the time-dependent Schrödinger equation as

ih̄
∂

∂t
|ψn1,n2,n3(t)〉 = Ĥ|ψn1,n2,n3(t)〉, (71)

its solutions (wave functions) are written in the form

|ψn1,n2,n3(t)〉 = eiζn1,n2,n3 (t)|n1, n2, n3, t〉, (72)

where ζn1,n2,n3(t) are time-varying phases. From the substitution of Equation (72) into
Equation (71), we see that the phases ζn1,n2,n3(t) satisfy the equation

∂

∂t
ζn1,n2,n3(t) =

1
h̄
〈n1, n2, n3, t|

(
∂

∂t
− Ĥ

)
|n1, n2, n3, t〉. (73)

A minor evaluation for this equation leads to

ζn1,n2,n3(t) =
3

∑
i=1

Ωi

(
ni +

1
2

)
t. (74)

Finally, the wave functions in the configuration space are expressed as

〈X1, X2, X3|ψn1,n2,n3(t)〉 = 〈X1, X2, X3|n1, n2, n3, t〉

× exp
[
− i

3

∑
i=1

Ωi

(
ni +

1
2

)
t
]

, (75)

where the eigenstates 〈X1, X2, X3|n1, n2, n3, t〉 are given in Equation (67). Although the
wave functions, Equation (75), in the original system are somewhat complicated, they
are complete. These wave functions are necessary in evaluating quantum mechanical
expectation values of various observables such as position and momentum quadratures,
quantum energy, etc. The propagator, Wigner function, and entanglement of the system
can also be investigated on the basis of them.

4. Conclusions

The dynamical invariant and its diagonalization for dissipative three coupled oscil-
lators were investigated. We also treated the application of the dynamical invariant on
quantization of the system. We have constructed the classical invariant quantity at first.
Then, it was extended to a quantum one, i.e., we have obtained a rigorous form of the
quantum invariant operator using the Liouville-von Neumann equation.

By a unitary transformation, the quantum invariant was transformed to that of a sim-
ple coupled oscillatory system which has unit masses. The resultant invariant operator was
diagonalized eventually by further transformation using a rotation matrix parameterized
by the Euler angles. During the diagonalization procedure, the coupling terms X̂iX̂j was
eliminated and, as a consequence, the invariant reduced to the form of three uncoupled
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oscillators. The simplicity of the diagonalized quantum invariant is very advantageous in
utilizing it in the analysis of the dynamical properties of the system.

The eigenfunctions of the quantum invariant operator were derived in the Fock
state by solving its eigenvalue equation. By taking advantage of such eigenfunctions,
the wave functions satisfying the Schrödinger equation have been obtained as shown in
Equation (75). Such wave functions can be used to characterizing the quantum proper-
ties of various coupled oscillatory systems such as nano-optomecanical systems from a
fundamental level.

Diagonalizing the invariant operator may have the similar complexity as the diagonal-
ization of the Hamiltonian of the system. Nevertheless, the reason why we are interested
in the invariant operator and its diagonalization is that the quantum wave functions associ-
ated with a time-dependent Hamiltonian such as Equation (4) are described in terms of the
eigenstates of the invariant operator. In our case, the wave functions given in Equation (75)
are represented in terms of the eigenstates of Î given in Equation (67).

We note that the invariant formalism for dynamical systems of which Hamiltonians
depend on time admits to obtaining exact classical and quantum solutions without re-
sorting to variational techniques or other approximation manipulations. As a matter of
fact, we did not use any approximation in the derivation of (quantum) solutions from
the diagonalization of the invariant in this research. This the merit of the approach of
complicated dynamical systems based on an invariant, which distinguishes it from other
methods in this field.
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Appendix A. Annihilation and Creation Operators in the Original System

From straightforward evaluations of Equations (61) and (62) using the formulae of
b̂i(t) and b̂†

i (t) given in Equations (54) and (55), we have the expressions of the annihilation
and creation operators as

â1(t) =

(
Ω1eδt

2

)1/2

[
√

m1X1cθcφ −
√

m2X2
(
sθsϕ + cθcϕsφ

)
+
√

m3X3
(
cθsφsϕ − sθsϕ

)
]

+i
(

e−δt

2Ω1

)1/2[ 1√
m1

(
P̂1 +

δ

2
m1eδtX̂1

)
cθcφ

− 1√
m2

(
P̂2 +

δ

2
m2eδtX̂2

)(
sθsϕ + cθcϕsφ

)
+

1√
m3

(
P̂3 +

δ

2
m3eδtX̂3

)(
cθsφsϕ − sθsϕ

)]
, (A1)
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â†
1(t) =

(
Ω1eδt

2

)1/2

[
√

m1X1cθcφ −
√

m2X2
(
sθsϕ + cθcϕsφ

)
+
√

m3X3
(
cθsφsϕ − sθsϕ

)
]

−i
(

e−δt

2Ω1

)1/2[ 1√
m1

(
P̂1 +

δ

2
m1eδtX̂1

)
cθcφ

− 1√
m2

(
P̂2 +

δ

2
m2eδtX̂2

)(
sθsϕ + cθcϕsφ

)
+

1√
m3

(
P̂3 +

δ

2
m3eδtX̂3

)(
cθsφsϕ − sθsϕ

)]
, (A2)

â2(t) =

(
Ω2eδt

2

)1/2[√
m1X1sφ +

√
m2X2cφcϕ −

√
m3X3cφsϕ

]
+i
(

e−δt

2Ω2

)1/2[ 1√
m1

(
P̂1 +

δ

2
m1eδtX̂1

)
sφ

+
1√
m2

(
P̂2 +

δ

2
m2eδtX̂2

)
cφcϕ

− 1√
m3

(
P̂3 +

δ

2
m3eδtX̂3

)
cφsϕ

]
, (A3)

â†
2(t) =

(
Ω2eδt

2

)1/2[√
m1X1sφ +

√
m2X2cφcϕ −

√
m3X3cφsϕ

]
−i
(

e−δt

2Ω2

)1/2[ 1√
m1

(
P̂1 +

δ

2
m1eδtX̂1

)
sφ

+
1√
m2

(
P̂2 +

δ

2
m2eδtX̂2

)
cφcϕ

− 1√
m3

(
P̂3 +

δ

2
m3eδtX̂3

)
cφsϕ

]
, (A4)

â3(t) =

(
Ω3eδt

2

)1/2

[
√

m1X1cφsθ +
√

m2X2
(
cθsϕ − sθcϕsφ

)
+
√

m3X3
(
cθcϕ + sθsϕsφ

)
]

+i
(

e−δt

2Ω3

)1/2[ 1√
m1

(
P̂1 +

δ

2
m1eδtX̂1

)
cφsθ

+
1√
m2

(
P̂2 +

δ

2
m2eδtX̂2

)(
cθsϕ − sθcϕsφ

)
+

1√
m3

(
P̂3 +

δ

2
m3eδtX̂3

)(
cθcϕ + sθsϕsφ

)]
, (A5)

â†
3(t) =

(
Ω3eδt

2

)1/2

[
√

m1X1cφsθ +
√

m2X2
(
cθsϕ − sθcϕsφ

)
+
√

m3X3
(
cθcϕ + sθsϕsφ

)
]

−i
(

e−δt

2Ω3

)1/2[ 1√
m1

(
P̂1 +

δ

2
m1eδtX̂1

)
cφsθ

+
1√
m2

(
P̂2 +

δ

2
m2eδtX̂2

)(
cθsϕ − sθcϕsφ

)
+

1√
m3

(
P̂3 +

δ

2
m3eδtX̂3

)(
cθcϕ + sθsϕsφ

)]
. (A6)
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