
XSim version 2: simulation of modern breeding programs

Chunpeng James Chen ,1 Dorian Garrick ,2 Rohan Fernando ,3 Emre Karaman ,4 Chris Stricker,5 Michael Keehan ,2

Hao Cheng 1,*

1Department of Animal Science, University of California, Davis, CA 95616, USA,
2Massey University, Palmerston North 4442, New Zealand,
3Department of Animal Science, Iowa State University, Ames, IA 50010, USA,
4Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus 8830, Denmark,
5agn Genetics GmbH, Davos-Dorf, Graubünden 7260, Switzerland

*Corresponding author: Department of Animal Science, University of California, Davis, CA 95616, USA. Email: qtlcheng@ucdavis.edu

Abstract

Simulation can be an efficient approach to design, evaluate, and optimize breeding programs. In the era of modern agriculture, breeding
programs can benefit from a simulator that integrates various sources of big data and accommodates state-of-the-art statistical models.
The initial release of XSim, in which stochastic descendants can be efficiently simulated with a drop-down strategy, has mainly been used
to validate genomic selection results. In this article, we present XSim Version 2 that is an open-source tool and has been extensively rede-
signed with additional features to meet the needs in modern breeding programs. It seamlessly incorporates multiple statistical models for
genetic evaluations, such as GBLUP, Bayesian alphabets, and neural networks, and it can effortlessly simulate successive generations of
descendants based on complex mating schemes by the aid of its modular design. Case studies are presented to demonstrate the flexibility
of XSim Version 2 in simulating crossbreeding in animal and plant populations. Modern biotechnology, including double haploids and em-
bryo transfer, can all be simultaneously integrated into the mating plans that drive the simulation. From a computing perspective, XSim
Version 2 is implemented in Julia, which is a computer language that retains the readability of scripting languages (e.g. R and Python) with-
out sacrificing much computational speed compared to compiled languages (e.g. C). This makes XSim Version 2 a simulation tool that is
relatively easy for both champions and community members to maintain, modify, or extend in order to improve their breeding programs.
Functions and operators are overloaded for a better user interface so they may concatenate, subset, summarize, and organize simulated
populations at each breeding step. With the strong and foreseeable demands in the community, XSim Version 2 will serve as a modern
simulator bridging the gaps between theories and experiments with its flexibility, extensibility, and friendly interface.

Keywords: simulation; breeding programs; genetic evaluation

Introduction
Computer simulation is an efficient approach to design, evaluate,
and optimize breeding programs. Simulation usually acts as a
bridge between theories and experiments to provide development
and preliminary validation of theories as well as planning guide-
lines on empirical experiments. Instead of risking years real
world effort, new breeding strategies supported by quantitative
genetics theories can mostly be evaluated in a day through simu-
lations with proper assumptions and an appropriate tool.

Integration of various sources of big data including pheno-
typic, pedigree, genomic, biological, and environmental informa-
tion for genetic improvement in modern animal and plant
agriculture requires an efficient and flexible simulator to both
simulate and compare alternative breeding programs using all
available information. Such a simulator needs to accommodate
state-of-the-art statistical models for genetic evaluation.

As an open-source tool, the initial version of XSim (Cheng et al.
2015a), in which a strategy is developed to drop-down positions
and origins of chromosomal segments rather than every allele
state, is able to efficiently simulate descendants stochastically to

sequence level resolution. It has mainly been used to validate ge-
nomic selection methods. We have extensively upgraded XSim to
incorporate a portfolio of new features to simulate modern
breeding programs. In XSim Version 2 (XSimV2), we have seam-
lessly incorporated “JWAS” (Cheng et al. 2018a) an open-source
package for genome-enabled analysis to enable multiple statisti-
cal models for genetic evaluation, including pedigree-based BLUP
(Henderson 1984), GBLUP (Habier et al. 2007; VanRaden 2008), the
Bayesian Alphabet (Meuwissen et al. 2001; Park and Casella 2008;
Kizilkaya et al. 2010; Habier et al. 2011; Erbe et al. 2012; Moser et al.
2015; Cheng et al. 2015b), the multitrait Bayesian Alphabet (Cheng
et al. 2018b; Gianola and Fernando 2020), single-step methods
(Legarra et al. 2009; Fernando et al. 2014, 2016), as well as
Bayesian neural networks (Zhao et al. 2021).

Modern breeding programs usually involve complex mating
designs, such as crossbreeding in cattle and the use of multipar-
ent populations in plants. XSimV2 is able to effortlessly mimic
these designs by allowing the creation of novel mating plans to-
gether with modern biotechnology such as using double haploids
(DHs) in plants and embryo transfer in animals. In addition,

Received: December 28, 2021. Accepted: January 06, 2022
VC The Author(s) 2022. Published by Oxford University Press on behalf of Genetics Society of America.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

G3, 2022, 12(4), jkac032

https://doi.org/10.1093/g3journal/jkac032
Advance Access Publication Date: 4 March 2022

Software and Data Resources

http://orcid.org/0000-0002-2018-0702
https://orcid.org/0000-0001-8640-5372
https://orcid.org/0000-0001-5821-099X
https://orcid.org/0000-0003-1010-683X
http://orcid.org/0000-0001-5607-7347
https://orcid.org/0000-0001-5146-7231
https://academic.oup.com/

XSimV2 can preload up-to-date information on reference
genomes for multiple major breeding species (e.g. cattle, pigs,
rice, maize) such that genomic locations and recombination hot
or cold spots can be simulated. XSimV2 is implemented in the
modern programming language Julia (Perkel 2019), which retains
the readability of dynamic languages such as R (R Core Team
2020) and Python (Van Rossum and Drake 1995) but approaches
the computing speed of compiled languages such as C
(Kernighan and Ritchie 1988). This makes XSimV2 a simulation
tool that is relatively easy for both champions and community
members to maintain, modify, or extend in order to improve their
breeding programs.

In this article, we will illustrate the latest software interface
for XSimV2 including the manner in which genomes and phe-
nomes are defined, the approach for generating founders, the
methods for choosing the type of mating, the integration of selec-
tion based on real-time genetic evaluations, and others. We dem-
onstrate the extensibility with case studies from both animal and
plant breeding. The documentation of XSimV2 can be found on
the GitHub repository (https://github.com/reworkhow/XSim.jl,
last accessed date: Feb. 22nd, 2022).

Software interface description
In this section, we first describe how the genome and phenome to
be simulated are specified. Then, we show how the founders of
the population to be simulated can be generated. Following this,
we describe how different mating schemes can be specified, in-
cluding random mating and mating based on phenotypes or ge-
netic evaluations. The descriptions below are followed by Julia
code examples (in gray boxes), where the lines beginning with “#”
are comments.

Defining the genome and phenome
A simulation is initialized by defining the genome and phenome
with the functions build_genome() and build_phenome().
Multiple parameters in build_genome() can be used to define the
genome, including numbers of chromosomes and loci, genetic
position, physical position and the minor allele frequency (MAF)
of each locus, mutation rates, and genotyping error rates.
Phenome-related parameters can be defined in the build_phe-
nome() function including positions and effects of causal variants
[quantitative traits loci (QTL)], genetic variance-covariance matri-
ces, residual variance-covariance matrices, phenotypic variance-
covariance matrices, or heritability. The genome can also be user
defined by providing a map file, in which each row represents
one locus. The valid header names include “chr,” “cM,” “bp,” and
“maf,” which refer to chromosome identification codes, positions
in centimorgans (genetic position), positions in base pairs (physi-
cal position), and MAFs, respectively:

Define a genome with a user-provided file

An example map.csv file is in the Appendix.

Header in map.csv:” chr”, ”cM”, ”bp”, and ”maf”

build_genome(”map.csv”)

Note that XSimV2 uses genetic position information to simu-
late crossover events, and thus, this information encodes recom-
bination hot or cold spots. If information on genetic positions is
not provided by the user, XSimV2 can infer genetic positions
from physical positions provided using the preloaded genetic and
physical representation of reference genomes in XSimV2 through
the species argument in build_genome(). XSimV2 preloads ge-
netic and physical maps reported in literature for multiple major

livestock and crop species, including cattle (Arias et al. 2009), pig
(Tortereau et al. 2012), rice (Kurata and Yamazaki 2006), and
maize (Portwood et al. 2019). If neither genetic positions nor stud-
ied species are provided, chromosomes are assumed to have a
length of 1 Morgan and the relationship between physical and ge-
netic positions are assumed to be linear.

Phenomics is another aspect of the simulation, and it defines
how traits are simulated in XSimV2. The allele substitution
effects of QTL can be defined by adding columns with eff_ pre-
fixes to the map files used in build_genome(). For example, when
there are two traits being simulated, columns eff_1 and eff_2 are
added to assign the QTL effects. A zero value should be assigned
for a locus that is not QTL. QTL with pleiotropic effects can also
be simulated in multitrait simulation. An example of the map file
is shown in the Appendix.

Define a phenome with heritability 0.3 by a user-

provided file

Header in map.csv: ”eff_” prefixed for marker

effects

build_phenome(”map.csv”, h2¼0.3)

Quick Start approaches are available in XSimV2 to allow users
to quickly set up their genome and phenome in order to focus on
the simulated schemes for proof of concept (more details are in
documentation). One example is for a user to define the genome
and phenome by providing number of chromosomes, number of
loci, numbers of QTL for each trait, genetic variances, and herita-
bility. Genetic positions of all loci will be uniformly distributed
along the genome. QTL effects and environmental effects will be
sampled from a standard normal distribution. These effects will
be scaled and transformed to obtain the predefined genetic vari-
ance and heritability. By default, the genetic variance vg and the
residual variance ve are assumed to be scalars in single-trait sim-
ulation and diagonal matrices in multitrait simulation.
Correlations are introduced by assigning nonzero values to the
off-diagonal elements of vg and/or ve in multitrait simulation.

The example below shows an approach to simulate two corre-
lated traits controlled by 2 and 1 QTL among 4 SNPs on 2 chromo-
somes. The traits are simulated to have heritability of 0.3 and 0.8,
respectively, with uncorrelated residual effects.

A quick start of genome with 4 loci on 2 chromosomes

build_genome(n_chr¼2,
n_loci¼2)

Phenome with 2 correlated traits of heritability

0.3 and 0.8, controlled by 2 and 1 QTL, respectively.

build_phenome([2, 1],

vg ¼ [1 .5

.5. 1],

h2 ¼ [0.3, 0.8])

Generating founders
In XSimV2, a Julia object, Cohort, was designed to represent a
group of individuals and to store their heterogeneous information
of simulated genotypes, pedigree, and breeding values. Users can
obtain the Cohort object either through the function Founders(),
which takes an integer as the input argument specifying the
number of simulated founders, or from the results of select or
mate functions, which will be described in the later sections. If a
cohort is created by Founders() without known haplotypes, the
cohort’s haplotypes are simulated by sampling haplotypes of
each locus from a Bernoulli distribution with the event probabil-
ity equals to 1 - MAF. The codes below demonstrate how to

2 | G3, 2022, Vol. 12, No. 4

https://github.com/reworkhow/XSim.jl
https://github.com/reworkhow/XSim.jl

initialize a cohort containing ten simulated founders. Note that,

as will be shown in the Case Studies section, random mating over

a number of generations may be required to generate linkage dis-

equilibrium (LD).

Generate 10 founders and get a cohort object

cohort_A ¼ Founders(10)

Alternatively, users can specify the genomes of all the found-

ers and directly control their relatedness. This requires users to

have known haplotypes or genotypes for founders, which

XSimV2 can read from a text file. The haplotypes should have

individuals recorded by row with two columns per locus, record-

ing the paternal and maternal alleles at this locus. The haplotype

is coded as 0 or 1 to represent the existence of a reference allele.

If genotypes are provided, haplotypes will be further inferred

from genotypes randomly. In the genotype file, alleles are coded

as 0, 1, and 2 to represent the allele dosage, and these values

should be arranged as individuals (rows) by loci (columns).

Missing haplotypes and genotypes can be denoted as �1 or 9.

Generate founders from a known haplotype file

An example haplotypes.csv file is in the Appendix

cohort_B ¼ Founders(”haplotypes.csv”)

Mating
Many mating schemes conceptually consist of parents that are

sampled from two cohorts (cohorts A and B). XSimV2 allows a

parent from cohort A to be mated with a specified number of

parents from cohort B. The function mate() takes cohort A and B,

which both are Cohort objects, as the first two arguments, it can

adapt to different scenarios with multiple arguments: nA com-

mon parents will be randomly selected from cohort A, and each

common parent will mate with nB_per_A individuals randomly

sampled from cohort B. Individuals will be sampled with replace-

ment from cohorts A or B depending on if the arguments

replace_A or replace_B are set to true. From a pair of parents

sampled from two cohorts, n_per_mate offspring will be repro-

duced with ratio ratio_malefemale of male over female.
For example, in the mating scheme below, we have 5 sires

from cohort A, and each sire is mated with 10 dams from cohort

B, which are sampled with replacement, to generate 1 progeny

with the 1 : 1 sex ratio.

A mating function example

args ¼ Dict(:nA ¼> 5,

:nB_per_A ¼> 10,

:replace_A ¼> false,

:replace_B ¼> true,

:n_per_mate ¼> 1,

:ratio_malefemale ¼> 1)

male, female ¼ mate(cohort_A, cohort_B; args. . .)

The default value for ratio_malefemale is false (i.e. a zero

value), and only one Cohort object will be returned if ratio_male-

female is set to false or 0. This mating function is versatile to ac-

commodate most mating schemes (e.g. random mating, diallel

crosses, and selfing) by assigning different arguments in mate().
A “random mating” scheme between two cohorts is presented

in the example below: Random mating between cohort A and B is

performed without replacement, in which 1 progeny is generated

from each mating. By default, if only the first two arguments (i.e.

cohort A and B) are included in the mate() function, the random

mating scheme described above is performed. This scheme can

also be expressed by using the overloaded operator “*” as will be

shown in the “overloaded operators and functions” subsection.

Random mating scheme

args ¼ Dict(:nA ¼> cohort_A.n,

:nB_per_A ¼> 1,

:replace_A ¼> false,

:replace_B ¼> false,

:n_per_mate ¼> 1)

offspring ¼ mate(cohort_A, cohort_B; args. . .)

Equivalent results without providing any argument

offspring ¼ mate(cohort_A, cohort_B)

Equivalent results by specifying scheme argument

offspring¼ mate(cohort_A, cohort_B, scheme¼“random”)
Equivalent results with overloaded operator ’*’

offspring ¼ cohort_A * cohort_B

In the “diallel cross” scheme, each individual from cohort A

mates with all individuals from cohort B. In the example below,

each individual from cohort A is mated to all individuals in co-

hort B with one offspring from each mating.

Diallel cross mating scheme

args ¼ Dict(:nA ¼> cohort_A.n,

:nB_per_A ¼> cohort_B.n,

:replace_A ¼> false,

:replace_B ¼> false,

:n_per_mate ¼> 1)

offspring ¼ mate(cohort_A, cohort_B; args. . .)

Equivalent results by specifying scheme argument

offspring ¼ mate(cohort_A, cohort_B,

scheme ¼ “diallel cross”)

In the “selfing” scheme, self-fertilization (selfing) is performed

if the argument scheme ¼“selfing” in mate(). For example, if one

wants to produce 10 families of 50 individuals each from selfing

of 10 individuals from cohort A, the mating scheme can be de-

fined as:

Selfing mating scheme

args ¼ Dict(:nA ¼> 10,

:replace_A ¼> false,

:n_per_mate ¼> 50,

:scheme ¼> “selfing”)

offspring ¼ mate(cohort_A; args. . .)

As an alternative to specifying the mating scheme, users can

provide a pedigree that identifies the parents for each individual.

This is done by providing a pedigree file in the mate() function.

Pedigree mating scheme

An example pedigree.csv file is in the Appendix

cohort ¼ mate(”pedigree.csv”)

This option in mate() function allows XSimV2 to simulate data

from actual pedigrees.

Selection based on real-time genetic evaluations
XSimV2 allows a cohort of individuals to be selected based on

phenotypes (i.e. mass selection) or estimated breeding values

(EBV) from real-time genetic evaluations. The selection is imple-

mented by the function select() taking a Cohort object as the first

argument, and the number of individuals to be selected from the

input cohort as the second argument. By default, mass selection

is conducted and the argument criteria ¼ “phenotypes” is used.

To estimate breeding values, a genome-enabled analysis package

“JWAS” (Cheng et al. 2018a) was incorporated into XSimV2.

C. J. Chen et al. | 3

Multiple methods are available for genetic evaluations, including
pedigree-based BLUP (Henderson 1984), GBLUP (Habier et al. 2007;

VanRaden 2008), Bayesian Alphabet (Meuwissen et al. 2001; Park

and Casella 2008; Kizilkaya et al. 2010; Habier et al. 2011; Erbe et al.

2012; Moser et al. 2015; Cheng et al. 2018b; Gianola and Fernando
2020), and single-step methods (Legarra et al. 2009; Fernando et al.

2014) for single-trait and multiple-trait analyses (Cheng et al.

2018b; Gianola and Fernando 2020), as well as Bayesian neural
networks (Zhao et al. 2021).

After EBV (or phenotypes in phenotypic selection) are

obtained, a selection index can be used to combine information

on multiple traits for selection. The argument weights can be
assigned as weights for traits in the selection index. Note that

positive or negative weights enable selection in either ascending

or descending order of EBV.
In the example below, two correlated traits are simulated to be

controlled by 10 and 20 QTL out of 50 locus on one chromosome,
respectively. Individuals are selected based on EBV. Multitrait

GBLUP is used to obtain EBV for both traits by default. The selec-

tion index weights for these two traits are set to 3.0 and �2.0. If no
weight are assigned, weights are assumed to be 1 for each trait.

Genetic evaluation

args ¼ Dict(:criteria ¼> “EBV”,

:methods ¼> “GBLUP”,

:weights ¼> [3.0, -2.0])

offspring ¼ select(cohort_A, 50; args. . .)

Breed
Here, we introduce a function breed() as a wrapper function that

combines the functions for mate() and select(). The value of
n_gens defines how many generations are simulated, and

n_select_A and n_select_B define how many descendants are se-

lected to form the cohort A and cohort B in the next generation,
respectively. For example, we can have 10 sires (cohort A) and

mate each sire with 5 dams (cohort B) for 3 generations. And in

each generation we mass select 10 male offspring as sires and all

female offspring as parents for the next generation. The code for
such a breeding scheme is given below:

Mating and selection cross 5 generations

args ¼ Dict(# mating arguments

:nA ¼> 10,

:nB_per_A ¼> 5,

:replace_A ¼> false,

:replace_B ¼> true,

:n_per_mate ¼> 1,

:ratio_malefemale ¼> 1.0,

selection arguments

:criteria ¼> “EBV”,

:methods ¼> “GBLUP”,

breeding arguments

:n_gens ¼> 3,

:n_select_A ¼> 10)

Breed cohorts based on the defined arguments

cohort_A, cohort_B¼ breed(cohort_A, cohort_B; args. . .)

The result is equivalent to the following mate-select

iterations:

for _ in 1:3

males, females¼ mate(cohort_A, cohort_B; args. . .)

cohort_A ¼ select(males, sires.n; args. . .)

cohort_B ¼ females

end

Species-specific features
Several species-specific features are included in XSimV2. Two
examples are shown in this section including DHs in plant breed-
ing and embryo transfer in animal breeding.

DHs production is an important tool in plant breeding for re-
ducing costs and speeding up the fixation of inbred lines. To gen-
erate breeding lines with high homozygosity, plant breeders may
use a number of generations of selfing, back-crossing, or advanc-
ing generations by single seed descent (SSD). Instead, the produc-
tion of DH breeding lines can derive 100% homozygous
individuals in just one generation. In XSimV2, users can call the
function get_DH() and generate DH lines as below:

The offsprings “DHs” have the same population size as

the parents “cohort”

DHs ¼ get_DH(cohort)

Ovum pick-up is a technology, where a cow is super ovulated
and then the unfertilized eggs are flushed out and in vitro fertil-
ized with potentially different sires. It can be straightforward to
implement these technologies in XSimV2 by defining cows
(dams) as cohort A, which will be treated as a common parent.
The mating scheme can be setup as:

Example to demonstrate ovum pick-up in cattle breeding

args ¼ Dict(:nA ¼> 5, # 5 dams in total

:nB_per_A ¼> 10, # mate each dam with 10

sires

:replace_A ¼> false,

:replace_B ¼> true,

:n_per_mate ¼> 1)

offspring ¼ mate(dams, sires; args. . .)

Overloaded operators and functions
In XSimV2, as cohorts are the basic unit in both of the functions
mate() and select(), we made a Cohort “object” for a collection of
individuals and overloaded multiple base operators and func-
tions in XSimV2. For example, users can simply use subset or þ
operators to get a subset of a cohort or to concatenate multiple
cohorts into one larger group. In the example below, we concate-
nate the first 5 individuals in cohort A, and all individuals in co-
hort B into one single large cohort C.

Concatenate multiple cohorts

cohort_C ¼ cohort_A[1:5] þ cohort_B

The base functions sort() and sample() are also overloaded for
Cohort. Users can sample random individuals from a cohort, or
sort individuals using similar syntax (more examples are avail-
able in the documentation).

Sample 5 individuals from a cohort without replacement

new_cohort ¼ sample(cohort_A, 5, replace ¼ false)

Sort the cohort by true breeding values (BV). “BV” is

the default value.

sort_cohort ¼ sort(cohort_A, by ¼ ”BV”)

Or sort the cohort based on their pedigree in an order from

the oldest to the youngest. Other options include esti-

mated breeding values (EBV) or phenotypes (e.g. y1).

sort_cohort ¼ sort(cohort_A, by ¼ ”pedigree”)

Case studies
Rotational cross-breeding in cattle
An example of rotational cross-breeding is shown in Fig. 1. First,
a cattle founder population is initialized, either based on real

4 | G3, 2022, Vol. 12, No. 4

haplotypes or genotypes (described in the section Generating
Founders), or simulated based on allele frequencies, assuming
linkage and Hardy–Weinberg equilibria, with random mating
over a number of generations to generate LD. For example, we
might start with a population of 1,500 individuals. We let them
randomly mate for 1,000 discrete (nonoverlapping) generations.
In order to expand the LD range, we subject the population to a
bottleneck that reduces its size to 100 individuals, and then allow
random matings for another 15 generations. This approach is
similar to that proposed in Habier et al. (2013), which was used to
simulate a similar LD pattern to that observed in real dairy cattle
(de Roos et al. 2008). By default, the mate() function can have all
individuals from the input cohort mating randomly with each
other:

Build Genome and Phenome

build_genome(”map.csv,” species ¼ “cattle”)

build_phenome(”map.csv,”

vg ¼ [1 .5;.5 1],

h2 ¼ [0.3, 0.7])

Initialize a population with 1,500 parents of linkage

and Hardy Weinberg equilibria

parents ¼ Founders(1500)

Let parents random mate with each other for 1,000

generations

for _ in 1:1000

parents ¼ mate(parents)

end

Drop the population size to 100 individuals and continue

the random mating for another 15 generations

for _ in 1:15

parents ¼ mate(parents[1:100])

end

sires_base ¼ dams_base ¼ parents

Second, the ancestors of what will become three pure breeds

(breeds A, B, and C) are generated in generation G0 from the pa-
rental population through random mating for 10 generations. In

breed A, 50 sires and 500 dams are randomly selected, and each

sire is mated with 10 dams. The ratio of male to female offspring
is 1. In both breeds B and C, 100 sires and 2000 dams are ran-

domly selected, and each sire is mated with 20 dams. Thus, three

pure breeds are simulated, where breed A represents a small pop-
ulation of 50 males and 500 females, whereas both breeds B and

C have 100 males and 2000 females.

Simulate three pure breeds

args_A ¼ Dict(# Mating

:nA ¼> 50,

:nB_per_A ¼> 10,

:n_per_mate ¼> 2,

:ratio_malefemale ¼> 1,

Selection

:criteria ¼> “random”,

Breeding

:n_gens ¼> 10,

:n_select_A ¼> 50,

:n_select_B ¼> 500)

args_BC ¼ Dict(# Mating

:nA ¼> 100,

:nB_per_A ¼> 20,

:n_per_mate ¼> 2,

:ratio_malefemale ¼> 1,

Selection

Fig. 1. Case studies of mating schemes: rotational cross-breeding in animal breeding (left), and NAM panel in plant breeding (right).

C. J. Chen et al. | 5

:criteria ¼>“random”,
Breeding

:n_gens ¼> 10,

:n_select_A ¼> 100,

:n_select_B ¼> 2000)

Breed A, B, and C

sires_A, dams_A ¼ breed(sires_base, dams_base; args_A. . .)

sires_B, dams_B¼ breed(sires_base, dams_base; args_BC. . .)

sires_C, dams_C¼ breed(sires_base, dams_base; args_BC. . .)

Third, we create first-cross-offspring, which contain 2,000
individuals, using all 100 sires from breed B and 1,000 dams from
breed C as two mating cohorts. Each sire will mate with 10 dams
and produce two offspring which leads to 1,000 male and 1,000
female offspring at generation G1. These first-cross-animals will
be sires and dams in the next generation G2. We also continue
pure-bred matings to retain subsequent generations of each of
the three breeds. In G2, we use all 50 sires from breed A and cross
each of them with 20 dams from G1. And we can generate an-
other 1,000 males and 1,000 females as parents for the next
round. In G3, all 100 sires from breed C will mate with dams from
G2 and produce another 2,000 offspring. The sire for the next gen-
eration will be back to breed B and the rotational crossbreeding
cycle continues. The described process can be adequately
expressed in XSimV2:

Rotation parameters

args_XA ¼ Dict (:nA ¼> 50,

:nB_per_A ¼> 20,

:n_per_mate ¼> 2,

:ratio_malefemale ¼> 1)

args_XBC¼ Dict(:nA ¼> 100,

:nB_per_A ¼> 10,

:n_per_mate ¼> 2,

:ratio_malefemale ¼> 1)

args_A[:n_gens] ¼ 1

args_BC[:n_gens] ¼ 1

Rotation (G1)

sires_A1, dams_A1 ¼breed(sires_A, dams_A; args_A. . .)

sires_B1, dams_B1 ¼breed(sires_B, dams_B; args_BC. . .)

sires_C1, dams_C1 ¼breed(sires_C, dams_C; args_BC. . .)

males_G1, females_G1¼mate(sires_B, dams_C;
args_XBC. . .)

Rotation (G2)

sires_A2, dams_A2¼breed(sires_A1, dams_A1; args_A. . .)

sires_B2, dams_B2¼breed(sires_B1, dams_B1; args_BC. . .)

sires_C2, dams_C2¼breed(sires_C1, dams_C1; args_BC. . .)

males_G2, females_G2¼mate(sires_A1, females_G1;
args_XA. . .)

Rotation (G3)

sires_A3, dams_A3¼breed(sires_A2, dams_A2; args_A. . .)

sires_B3, dams_B3¼breed(sires_B2, dams_B2; args_BC. . .)

sires_C3, dams_C3¼breed(sires_C2, dams_C2; args_BC. . .)

males_G3, females_G3¼mate(sires_C2, females_G2;
args_XBC. . .)

Nested association mapping from inbred plants
An example of nested association mapping is shown in Fig. 1. The
NAM design (Buckler et al. 2009) is useful in plant breeding for its
statistical power in detecting QTLs (Scott et al. 2020). The demon-
strated genotype below was collected from a real maize associa-
tion panel (Wang and Zhang 2020) and was preloaded in XSimV2.
Founders of the NAM panel are determined by 25 diversity found-
ers and 1 common parent sampled from this preloaded dataset.

Load demo data

data_map ¼ DATA(”maize_map”)

data_snp ¼ DATA(”maize_map”)

Build genome using the real data

build_genome(data_map)

Simulate a trait controlled by 30 QTLs

build_phenome(30)

Randomly sample 26 founders to become the base population

founders ¼ Cohort(data_snp,

n¼26, random¼true)
common_parents ¼ founders[1]

diverse_parents ¼ founders[2:26]

We let each founder mate with the common parent separately

to generate 25 families in the generation F1. Later, each family is

advanced by SSD to the 6th generation and derive 200 recombi-

nant inbred lines (RILs). Overall, we can have a NAM population

with 25 families containing 200 RILs each through the following

code:

Create an empty cohort to be concatenated with newly

generated offspring

F1¼Founders()
Cross each diverse parent with the common parent

for parent in diverse_parents

F1 þ¼ common_parents * parent

end

Each family produce 200 RILs to derive NAM population

args ¼ Dict(# Mating

:n_per_mate ¼> 10,

:scheme ¼>“selfing”,
Selection

:criteria ¼>“phenotypes”,
Breed

:n_gens ¼> 4,

:n_select ¼> 1)

NAM ¼ Founders()

for family in F1

F2¼mate(family, n_per_mate¼200,
scheme ¼ ”selfing”)

for seed in F2

single seed decent

NAM þ¼ breed(seed; args. . .)

end

end

Discussion
An efficient way to design, evaluate, and optimize modern breed-

ing programs with complicated mating systems and state-of-art

biotechnologies and statistical models is provided by XSimV2.

Beyond the case studies presented in this article, XSimV2 can be

flexibly extended to desired settings with the aid of its modular

construction. Core functions of mate and select cover the two

major breeding steps and can function as independent modules.

It is possible to reassemble them in arbitrary combinations and

achieve as many possible designs as each user desires. XSimV2 is

extensible to accommodate newly released technologies and sta-

tistical models.
Breeding programs of diploid species can be adequately simu-

lated in XSimV2. When the species is polyploid, users can add an

alphabet to chromosome codes (e.g. 1A, 1B, 2A, 2B,. . ., for allote-

traploid) in the map file to indicate their subgenome for

6 | G3, 2022, Vol. 12, No. 4

allopolyploid species. XSimV2 will treat chromosomes from dif-
ferent subgenomes as independent pairs of chromosomes.
Otherwise, users can always extend it to other polyploid behav-
iors with extensible development in XSimV2.

The initial version of XSim (Cheng et al. 2015a), an open-source
software tool, introduced an efficient approach to simulate
Mendelian inheritance. In this approach, a chromosome of a non-
founder was represented by a list of the starting positions and
origins of founder haplotypes. Meiotic crossovers between a pair
of maternal and paternal chromosomes gives rise to a new list of
starting positions and origins, which represents a new chromo-
some (Cheng et al. 2015a). A chromosome of one Morgan on aver-
age has one crossover during meiosis, and thus, in the first
generation of nonfounders, the position-origin list, representing
such a chromosome, would on average have a length on only
one, regardless of the number of loci being simulated on the
chromosome. When a large number of loci are simulated, this
approach to simulation results in a tremendous saving in stor-
age space relative to recording the allele state at each locus that
is simulated on the chromosome. Given the allele states of the
founder haplotypes and the position-origin list of a nonfounder
chromosome in any generation, the allele states of the
nonfounder chromosome can be efficiently generated without
dropping down allele states each generation. Thus, when allele
states are not needed in each generation, this approach to
simulation results in tremendous savings in storage and
computing time.

For the current setting, tens of thousands of individuals in
each population with thousands of markers recorded can be sim-
ulated in few minutes per generation on a personal laptop
(MacBook 1600 with 2.6 GHz 6-Core Intel Core i7 and 16GB
2667 MHz DDR4). However, the computing speed and memory ef-
ficiency of XSimV2 still has room for further improvement. For
example, when we simulate a population, computations for each
individual at the same generation are mostly independent.
Additional computing resources, if applicable, can be utilized to
resolve the intensive simulation with the aid of parallel comput-
ing. Large matrices, such as genotypes, can be stored in a sparse
matrix coded in 8-bit integers instead of a regular dense matrix
to improve memory efficiency.

Several breeding program simulators have been developed,
e.g. QMSim (Sargolzaei and Schenkel 2009), SBVB (P�erez-Enciso
et al. 2017), MoBPS (Pook et al. 2020), and AlphaSim (Faux et al.
2016; Gaynor et al. 2021). These simulators are capable of fulfill-
ing needs in practical scenes with their strengths, such as effi-
cient algorithms in simulating Mendelian inheritance (P�erez-
Enciso et al. 2017), open-source environments for better extensi-
bility (Faux et al. 2016; Pook et al. 2020), versatile models in genetic
evaluation (P�erez-Enciso et al. 2017), or high flexibility in mating
design (Faux et al. 2016; Pook et al. 2020). However, current com-
munity is still in strong need for all the mentioned merits in a sin-
gle software platform to design and simulate modern breeding
problems. In conclusion, with the foreseeable demands in the
community, XSimV2 can serve as a modern simulator to bridge
those features missing in alternative software, and within the
context of a friendly environment, with strong flexibility, and
readily extended as we presented in this article.

Data availability
The authors state that all data necessary for confirming the con-
clusions presented in the article are represented fully within the

article. The documentation of XSimV2 can be found on the

GitHub repository (https://github.com/reworkhow/XSim.jl).

Funding
This work was partially supported by the United States

Department of Agriculture, Agriculture and Food Research

Initiative National Institute of Food and Agriculture Competitive

Grant No. 2018-67015-27957 and No. 2021-67015-33412.

Conflicts of interest
None declared.

Literature cited
Arias JA, Keehan M, Fisher P, Coppieters W, Spelman R. A high den-

sity linkage map of the bovine genome. BMC Genet. 2009;10:18.

Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ, Browne C,

Ersoz E, Flint-Garcia S, Garcia A, Glaubitz JC, et al. The genetic ar-

chitecture of maize flowering time. Science. 2009;325(5941):

714–718.

Cheng H, Fernando R, Garrick D. JWAS: julsitaaimnoptlheemrenta-

tion of whole-genome analysis software. Proc World Congress

Genet Appl Livestock Prod. 2018a;11:859.

Cheng H, Garrick D, Fernando R. XSim: simulation of descendants

from ancestors with sequence data. G3 (Bethesda). 2015a;5:

1415–1417.

Cheng H, Kizilkaya K, Zeng J, Garrick D, Fernando R. Genomic predic-

tion from multiple-trait Bayesian regression methods using mix-

ture priors. Genetics. 2018b;209(1):89–103.

Cheng H, Qu L, Garrick DJ, Fernando RL. A fast and efficient Gibbs

sampler for BayesB in whole-genome analyses. Genet Sel Evol.

2015b;47(1):1819.

de Roos APW, Hayes BJ, Spelman RJ, Goddard ME. Linkage disequilib-

rium and persistence of phase in Holstein–Friesian, Jersey and

Angus Cattle. Genetics. 2008;179(3):1503–1512.

Erbe M, Hayes BJ, Matukumalli LK, Goswami S, Bowman PJ, Reich

CM, Mason BA, Goddard ME. Improving accuracy of genomic pre-

dictions within and between dairy cattle breeds with imputed

high-density single nucleotide polymorphism panels. J Dairy Sci.

2012;95(7):4114–4129.

Faux A-M, Gorjanc G, Gaynor RC, Battagin M, Edwards SM, Wilson

DL, Hearne SJ, Gonen S, Hickey JM. AlphaSim: software for breed-

ing program simulation. Plant Genome. 2016;9(3):1–14. doi:

10.3835/plantgenome2016.02.0013.

Fernando RL, Cheng H, Golden BL, Garrick DJ. Computational strate-

gies for alternative single-step Bayesian regression models with

large numbers of genotyped and non-genotyped animals. Genet

Sel Evol. 2016;48(1):96.

Fernando RL, Dekkers JC, Garrick DJ. A class of Bayesian methods to

combine large numbers of genotyped and non-genotyped ani-

mals for whole-genome analyses. Genet Sel Evol. 2014;46:50.

Gaynor RC, Gorjanc G, Hickey JM. AlphaSimR: an R package for

breeding program simulations. G3 (Bethesda). 2021;11:jkaa017.

Gianola D, Fernando RL. A multiple-trait Bayesian Lasso for genome-

enabled analysis and prediction of complex traits. Genetics. 2020;

214(2):305–331.

Habier D, Fernando RL, Dekkers JCM. The impact of genetic relation-

ship information on genome-assisted breeding values. Genetics.

2007;177(4):2389–2397.

C. J. Chen et al. | 7

https://github.com/reworkhow/XSim.jl

Habier D, Fernando RL, Garrick DJ. Genomic BLUP decoded: a look into

the black box of genomic prediction. Genetics. 2013;194(3):597–607.

Habier D, Fernando RL, Kizilkaya K, Garrick DJ. Extension of the

Bayesian alphabet for genomic selection. BMC Bioinformatics.

2011;12:186.

Henderson CR. Applications of Linear Models in Animal Breeding.

Guelph, ON, Canada: University of Guelph, 1984.

Kernighan BW, Ritchie DM. The C Programming Language, Second.;

Prentice-Hall Software Series; Prentice Hall: Englewood Cliffs, N.J.

1998.

Kizilkaya K, Fernando RL, Garrick DJ. Genomic prediction of simu-

lated multibreed and purebred performance using observed fifty

thousand single nucleotide polymorphism genotypes. J Anim Sci.

2010;88(2):544–551.

Kurata N, Yamazaki Y. Oryzabase. An integrated biological and ge-

nome information database for rice. Plant Physiol. 2006;140(1):

12–17.

Legarra A, Aguilar I, Misztal I. A relationship matrix including full

pedigree and genomic information. J Dairy Sci. 2009;92(9):

4656–4663.

Meuwissen THE, Hayes BJ, Goddard ME. Prediction of total genetic

value using genome-wide dense marker maps. Genetics. 2001;

157(4):1819–1829.

Moser G, Lee SH, Hayes BJ, Goddard ME, Wray NR, Visscher PM.

Simultaneous discovery, estimation and prediction analysis of

complex traits using a Bayesian mixture model. PLoS Genet.

2015;11(4):e1004969.

Park T, Casella G. The Bayesian Lasso. J Am Stat Assoc. 2008;

103(482):681–686.

Perkel JM. Julia: come for the syntax, stay for the speed. Nature.

2019;572(7767):141–142.

Pook T, Schlather M, Simianer H. MoBPS—modular breeding pro-

gram simulator. G3 (Bethesda). 2020;10(6):1915–1918.

Portwood JL, Woodhouse MR, Cannon EK, Gardiner JM, Harper

LC, Schaeffer ML, Walsh JR, Sen TZ, Cho KT, Schott DA,

et al. MaizeGDB 2018: the maize multi-genome genetics and

genomics database. Nucleic Acids Res. 2019;47(D1):

D1146–D1154.

P�erez-Enciso M, Forneris N, de Los Campos G, Legarra A. Evaluating

sequence-based genomic prediction with an efficient new simu-

lator. Genetics. 2017;205(2):939–953.

R Core Team. R: a Language and Environment for Statistical

Computing. Vienna, Austria: R Foundation for Statistical

Computing, 2020.

Sargolzaei M, Schenkel FS. QMSim: a large-scale genome simulator

for livestock. Bioinformatics. 2009;25(5):680–681.

Scott MF, Ladejobi O, Amer S, Bentley AR, Biernaskie J, Boden SA,

Clark M, Dell’Acqua M, Dixon LE, Filippi CV, et al. Multi-parent

populations in crops: a toolbox integrating genomics and ge-

netic mapping with breeding. Heredity (Edinb). 2020;125(6):

396–416.

Tortereau F, Servin B, Frantz L, Megens H-J, Milan D, Rohrer G,

Wiedmann R, Beever J, Archibald AL, Schook LB, et al. A high den-

sity recombination map of the pig reveals a correlation between

sex-specific recombination and GC content. BMC Genomics.

2012;13:586.,

Van Rossum G, Drake FL, Jr. Python tutorial. Centrum voor

Wiskunde en Informatica Amsterdam, The Netherlands; 1995.

VanRaden PM. Efficient methods to compute genomic predictions. J

Dairy Sci. 2008;91(11):4414–4423.

Wang J, Zhang Z. 2020. GAPIT version 3: boosting power and accu-

racy for genomic association and prediction. bioRxiv. doi:

10.1101/2020.11.29.403170.

Zhao T, Fernando R, Cheng H. Interpretable artificial neural net-

works incorporating Bayesian alphabet models for genome-wide

prediction and association studies. G3 (Bethesda). 2021;11:

jkab228.

Communicating editor: D.-J. de Koning

Appendix

Data formats
In the “map.csv” file used in build_genome() and build_phe-
nome(), each row represents one locus. The valid header names,
which can be read by build_genome(), include “chr,”” cM,” “bp,”
and “maf,” which refer to chromosome codes, positions in centi-
morgans (genetic position), positions in base pairs (physical posi-
tion), and minor allele frequencies (MAFs). The valid header
names, which can be read by build_phenome() is column names
with eff_ prefixes to specify QTL effects of multiple traits. In the
example below, we have 4 markers on 2 chromosomes with spe-
cific MAFs, physical, and genetic positions. The first marker are
simulated as a pleiotropic QTL with nonzero effects, and the
remaining markers are not treated as QTL, for which zero effects
are assigned.

To define genome and phenome by files, the files should be for-
matted as rows of observations with valid header names.
Assuming we want to simulate a genome with four markers lo-
cated on two chromosomes, and there are two traits of interest
with known QTL effects. We can put chromosome codes, physical

positions, and genetic positions in the column chr, bp, cM, re-
spectively. And use columns with eff_ prefixes to specify QTL
effects of two traits. The file for the described scenario is format-
ted as:

map.csv

id, chr, bp, cM, MAF, eff_1, eff_2

snp_1,1,1818249,50.8,0.5,1.5,2.8

snp_2,1,6557697,80.3,0.5,0.0,0.0

snp_3,2,2298800,39.2,0.5,0.0,0.0

snp_4,2,5015698,66.3,0.5,0.0,0.0

To initialize founders using known haplotypes, genotypes, or
pedigree, users can provide such information in a text file. The
haplotypes should have individuals recorded by rows, and have
every two columns recording paternal and maternal alleles for
each locus. The haplotype is coded as 0 or 1 to represent the exis-
tence of a reference allele. If genotypes are provided, haplotypes
will be further inferred from genotypes randomly. In the geno-
type file, alleles are coded as 0, 1, and 2 to represent the allele
dosage, and these values should be arranged as individuals
(rows) by loci (columns). Missing haplotypes and genotypes can

8 | G3, 2022, Vol. 12, No. 4

be denoted as �1 or 9. An example for 5 individuals and 4 loci is
shown below. If the provided file indicate the pedigree, it should
be a three-column file in an order of individual ID, sire ID, and
dam ID. ID and pedigree information can be obtained from calling
get_pedigree(cohort). The demonstrate example showing 5 indi-
viduals with the first 3 are the founders and the rest 2 are repro-
duced from the first and second individuals.

haplotypes.csv

1,1,0,0,0,0,1,0

0,0,0,0,1,0,0,0

0,0,0,1,0,0,1,1

1,0,1,0,0,0,1,1

1,1,0,0,1,1,0,0

genotypes.csv

2,0,0,1

0,0,1,0

0,1,0,2

1,1,0,2

2,0,2,0

pedigree.csv

1,0,0

2,0,0

3,0,0

4,1,2

5,1,2

C. J. Chen et al. | 9

