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Cellular heterogeneity plays a pivotal role in tissue homeostasis and the disease
development of multicellular organisms. To deconstruct the heterogeneity, a multitude
of single-cell toolkits measuring various cellular contents, including genome,
transcriptome, epigenome, and proteome, have been developed. More recently, multi-
omics single-cell techniques enable the capture of molecular footprints with a higher
resolution by simultaneously profiling various cellular contents within an individual cell.
Integrative analysis of multi-omics datasets unravels the relationships between cellular
modalities, builds sophisticated regulatory networks, and provides a holistic view of
the cell state. In this review, we summarize the major developments in the single-cell
field and review the current state-of-the-art single-cell multi-omic techniques and the
bioinformatic tools for integrative analysis.

Keywords: multimodal single-cell techniques, spatial transcriptome, transcriptome, chromatin accessibility,
integrative analysis

INTRODUCTION

Cellular heterogeneity inherently exists in multicellular organisms, not only among cells of
distinct lineages, but also within seemingly identical cells (Altschuler and Wu, 2010; Qi et al.,
2014; Buenrostro et al., 2015; Paguirigan et al., 2015). Heterogeneity plays indispensable roles in
development, tissue homeostasis, tissue repair and regeneration upon damage, as well as disease
progression (Bansal, 2016; Goolam et al., 2016; Chen et al., 2018; Rognoni and Watt, 2018). To
elucidate the physiological functions and pathological conditions related to cellular heterogeneity,
scientists have dedicated sustained efforts to deconstruct heterogeneity based on certain cellular
characteristics. These include anatomical locations, morphological observations, and abundance
and localization of bio-molecules involved in the Central Dogma, namely DNA carrying genetic
information, intermediate RNA bearing coding information, and the resultant translated protein
(Crick, 1970; Wolosewick and Porter, 1977; Gal et al., 2006).
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Over the past decade, technical breakthroughs in single-cell
toolkits, accompanied with the blossoming of next generation
sequencing (NGS), have brought forth an astounding burst in
single-cell research (Kumaresan et al., 2008; Tang et al., 2009; Fan
et al., 2011; Ramsköld et al., 2012; Wang et al., 2012, 2019; Guo
et al., 2013; Sasagawa et al., 2013; Gawad et al., 2014; Smallwood
et al., 2014; Buenrostro et al., 2015; Fu et al., 2015; Jin et al.,
2015; Klein et al., 2015; Macosko et al., 2015; Rotem et al., 2015;
Flyamer et al., 2017; Peterson et al., 2017; Prakadan et al., 2017;
Ramani et al., 2017; Stoeckius et al., 2017; Cao et al., 2018; Chen
S. et al., 2019; Grosselin et al., 2019; Liu L. et al., 2019; Zhu
et al., 2019). In this review, we describe the major achievements
in the single-cell field with a focus on multimodal single-cell
techniques, particularly spatial transcriptome, and transcriptome
and chromatin accessibility. We also review the analytical tools
and approaches available for integrative analysis. Lastly, we
discuss their potential applications and future directions.

MAJOR DEVELOPMENTS IN THE
SINGLE-CELL FIELD

The major technical advances in the single-cell field can
be summarized as follows: (1) Transition from the targeted
measurements to genome-wide profiling. (2) Dramatic increase
in the variety of biomolecules assayed. (3) Remarkable increase
in the cell throughput. (4) Rise in the number of variables
measured within a single-cell. They are discussed in detail in the
following paragraphs.

Single-cell genetic techniques involve isolation of individual
cells, pre-amplification of genetic materials, and signal detection.
Among them, signal detection is the rate-limiting step
determining the throughput of data output. Pioneering
single-cell techniques relied on primers targeting genes of
interest and subsequent measuring of gene expression levels
using a polymerase-based qRT-PCR method (Brady et al.,
1990; Dulac and Axel, 1995). Later, scientists began to employ
hybridization-based microarray chips and digital PCR-based
microfluidic chips for signal measurements, which significantly
improves the detection throughput (Kamme et al., 2003; Tietjen
et al., 2003; Warren et al., 2006). In recent years, advancement in
the NGS sequencing platforms allows for profiling of molecular
footprints at a genome-wide scale (Kumaresan et al., 2008; Tang
et al., 2009; Fan et al., 2011).

Up to date, there is a multitude of single-cell genomic
(Kumaresan et al., 2008; Fan et al., 2011; Wang et al., 2012;
Gawad et al., 2014; Fu et al., 2015), transcriptomic (Tang et al.,
2009; Ramsköld et al., 2012; Sasagawa et al., 2013; Klein et al.,
2015; Macosko et al., 2015), and proteomic techniques (Huang
et al., 2007; Hughes et al., 2014) developed to de-convolute
the heterogeneity based on the copy number variations, genetic
mutations, as well as the abundance of transcripts and proteins
within each cell. Notably, a wide range of epigenetic mechanisms
are involved in the regulation of gene expression, including DNA
methylation, histone modification, transcription factor binding,
and 3D genomic architecture (Atlasi and Stunnenberg, 2017).
However, due to the technical challenges caused by the rarity

of genetic materials within individual cells, single-cell epigenetic
toolkits were only developed at a later time. To date, there
are an array of single-cell methylation techniques developed
based on the reduced representation bisulfite sequencing (RRBS)
and post-bisulfite adaptor tagging (PBAT) strategies (Guo et al.,
2013; Smallwood et al., 2014). A variety of single-cell assays are
developed to map the chromatin accessibility landscapes, relying
on the differential enzymatic access to the chromatin with varying
degrees of openness (Buenrostro et al., 2015; Cusanovich et al.,
2015; Jin et al., 2015; Pott, 2017). Droplet-based single-cell ChIP-
Seq approaches are developed to map the genetic regions bound
by proteins of interest (Rotem et al., 2015; Grosselin et al., 2019;
Wang et al., 2019). In spite of the significant improvements to
genomic coverage over the years, applications for scChIP-Seq
thus far are mostly limited to profiling histone modifications,
but not transcription factors which present lesser prevalence
in terms of genomic binding. Additionally, a couple of single
cell Hi-C methodologies have been developed to examine the
heterogeneity in 3D genomic architecture (Flyamer et al., 2017;
Ramani et al., 2017).

With the technical explosion, it was soon realized that single-
cell libraries suffer from the technical and biological noises, which
strongly affects the measurement accuracy. Therefore, the most
recent development in the single-cell field is associated with the
two strategies proposed to buffer the noises, including an increase
in the cell throughput and the number of variables measured
within a single cell (Prakadan et al., 2017).

Cell throughput is determined by multiple factors, such as
the single-cell platforms utilized, multiplexing strategies applied,
and the maximum output of the sequencers. For example, single-
cell techniques developed on PCR tubes/plates and valve-based
microfluidic chips tend to display lower throughput (magnitude
order of 1–3) than that of droplet-based microfluidics and
nanowells (magnitude order of 3–6) (Tang et al., 2009; Fan et al.,
2011; Macosko et al., 2015; Han et al., 2018). On the other hand,
the throughput of plate-based single-cell methods can be boosted
up to thousands and millions of cells (magnitude order of 3–7),
by applying combinatorial barcode indexing and a few rounds of
pool-and-split strategies (Cusanovich et al., 2015; Cao et al., 2017;
Zhu et al., 2019). However, in some cases, multiplexing for certain
types of libraries, such as genomic DNA libraries, are largely
limited by the sequencing capacity of sequencers, as each single-
cell library requires high sequencing depth to have full genomic
coverage (Prakadan et al., 2017).

The development of multimodal single-cell techniques allows
for the measurement of multiple classes of molecules within
the same single-cell. Thus far, there are multimodal techniques
developed to simultaneously assay transcriptome and genome
(Dey et al., 2015; Macaulay et al., 2015), transcriptome and
epigenome [transcriptome and DNA methylation (Angermueller
et al., 2016; Cheow et al., 2016; Hu et al., 2016; Clark et al.,
2018), transcriptome and chromatin accessibility (Cao et al.,
2018; Clark et al., 2018; Chen S. et al., 2019; Liu L. et al.,
2019; Xing et al., 2019; Zhu et al., 2019)], and transcriptome
and protein [limited number of cell surface markers (Peterson
et al., 2017; Stoeckius et al., 2017) and intracellular proteins
(Genshaft et al., 2016)] within the same single-cell. Addition of

Frontiers in Genetics | www.frontiersin.org 2 July 2020 | Volume 11 | Article 662

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00662 July 16, 2020 Time: 19:30 # 3

Xing et al. Single-Cell Multi-Omics

temporal and spatial layers on top of transcriptome provides
intriguing multi-dimensional insights (Raj et al., 2018; Wang
et al., 2018), allowing the connective inspection along the
developmental trajectory and anatomical axis. Except for
buffering the single-cell sequencing noises, multimodal single-
cell techniques enable the correlative investigation between
omics and discovery of regulatory relationship across modalities,
providing a comprehensive view of cell states.

MULTIMODAL SINGLE-CELL
TECHNIQUES

Spatial Transcriptome
Cell physiology relies on the cellular microenvironment and
tissue context. However, spatial information is lost under
the established single-cell sequencing protocols. Although
spatial information can be inferred indirectly by mapping
scRNA-Seq data to a fluorescence in situ hybridization (FISH)-
generated reference map (Achim et al., 2015; Satija et al.,
2015), direct approaches are less ambiguous and enable de
novo discoveries. Various spatially resolved techniques to
simultaneously obtain gene expression and spatial information,
typically FISH- or sequencing-based, have been reviewed
elsewhere (Crosetto et al., 2015; Moor and Itzkovitz, 2017;

Strell et al., 2019). Here, we summarize the most recent
developments in spatial transcriptomic technologies (Figure 1).

Advancement in FISH-Based Spatially Resolved
Methods
Quantitation of single mRNA transcript in situ can be traced back
to single molecule FISH (smFISH) (Femino et al., 1998), however
the number of simultaneously identifiable transcripts is limited
to a few spectrally distinct fluorophores. Strategies to improve
multiplexing include combinatorial labeling (Lubeck and Cai,
2012), sequential hybridization (Lubeck et al., 2014), sequential
and serial hybridization (Shah et al., 2016), and multiplexed
error-robust (MERFISH) (Chen et al., 2015). Recently, use of
branched DNA amplification reportedly improves MERFISH
signal detection (Xia et al., 2019). Other challenges in FISH-
based approaches include optical crowding due to the large size of
fluorescence spots and difficulty in probing short RNA transcripts
at multiple distant sites. Cyclic-ouroboros smFISH (osmFISH) is
a barcoding- and amplification-free method devised to address
these issues at the cost of gene coverage (Codeluppi et al., 2018).
More recently, seqFISH+ enables sub-diffraction limit resolution
imaging using a 60 “pseudocolor” palette, hence solving the
issues of optical crowding, enabling genome-wide targeting, and
rendering FISH-based methods capable of de novo discoveries for
the first time (Eng et al., 2019).

FIGURE 1 | Principles and workflow of recently developed spatial transcriptomic techniques. Two spatial transcriptomic strategies with recent development can be
broadly categorized as FISH-based and sequencing-based. FISH-based methods improve on its signal detection (branched MERFISH), diffraction limit (osmFISH
and seqFISH+) and gene coverage (seqFISH+). In situ sequencing has been combined with tissue clearing technology and modified sequencing by ligation to
improve deep tissue visibility and sequencing error in STARmap. Aside from that, many recent techniques are in favor of in situ indexing, either by utilizing
immobilized (Visium Spatial, HDST, Slide-seq) or flowing (DBiT-seq) barcoded oligonucleotide, followed by in vitro sequencing.

Frontiers in Genetics | www.frontiersin.org 3 July 2020 | Volume 11 | Article 662

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00662 July 16, 2020 Time: 19:30 # 4

Xing et al. Single-Cell Multi-Omics

Advancement in Sequencing-Based Spatially
Resolved Methods
Sequencing-based strategies can be broadly categorized as
follows: (1) in situ sequencing (ISS), (2) in situ indexing, (3)
in vivo RNA tagging (TIVA) (Lovatt et al., 2014), and (4) serial
tissue dissection or single-cell microdissection (Junker et al.,
2014; Nichterwitz et al., 2016; Chen et al., 2017). Only the first
two strategies are currently undergoing recent development and
will be discussed here.

Previously established ISS-based approaches employed rolling
circle amplification (RCA) and in situ sequencing-by-ligation
(SBL) (Ke et al., 2013; Lee et al., 2014). However, these methods
suffer from low enzymatic reaction efficiency, limited tissue
transparency, and short sequencing reads. Spatially resolved
transcript amplicon readout mapping (STARmap) integrates
specific RNA amplification, hydrogel-based tissue-clearing, and
error-reduced SBL to enable reaction-efficient and 3D RNA
sequencing of more than 1000 genes from tissue-slices with a
thickness of 150-µm (Wang et al., 2018).

The in situ indexing approach pioneered by Ståhl et al. (2016)
operates through hybridization of barcoded oligonucleotide-
spot array to a permeabilized tissue slice to render spatial
coordinates, thereby allowing for the reconstruction of a spatial
gene expression map from scRNA-Seq data. However, Ståhl’s
method is limited by the spatial resolution of 100 µm, preventing
analysis at a single-cell resolution. This technology has been
acquired by 10× Genomics and commercialized as Visium
Spatial Technology, with improved resolution of 55 µm. On a
basis of a similar principle, Slide-seq and high-density spatial
transcriptomics (HDST) utilize barcoded bead-array to offer
more refined spatial resolutions (10 and 2 µm, respectively),
thereby allowing transcriptomic profiling at the single-cell and
subcellular levels (Rodriques et al., 2019; Vickovic et al., 2019).
A novel microfluidics-based approach known as deterministic
barcoding in tissue for spatial omics sequencing (DBiT-seq)
indexes tissue in situ via the crossflow of two sets of barcodes
delivered by parallel microfluidic channels placed orthogonally
over the sample in a sequential order (Liu Y et al., 2019). DBiT-
seq is highly versatile as it offers a 10 µm spatial resolution and
can be extended to detect other biomolecules.

Integrative Analysis of Spatial and Transcriptomic
Data
Integrated analysis of spatially resolved data and scRNA-
Seq data complements each method’s weakness, thus enabling
enhanced profiling resolution and accuracy (Moffitt et al., 2018;
Zhu et al., 2018; Stuart et al., 2019). Analytical strategy for
spatial transcriptomic data typically involves the independent
examination of gene expression and subsequent projection back
to the spatial map for visualization and inference of cell types
and functions. For instance, Trendsceek and SpatialDE are
developed to identify genes with spatial expression pattern by
incorporating both datasets (Edsgärd et al., 2018; Svensson et al.,
2018). The more recent computationally efficient method, Spatial
PAttern Recognition via Kernels (SPARK), displays superior
statistical power as compared to the previous two methods
(Sun et al., 2020).

Aside from spatial expression profiling, spatial transcriptomic
studies aim to model cell-cell interactions. Spatial variance
component analysis (SVCA) is a computational framework
that allows for elucidating the effect of cell–cell interactions
to gene expression (Arnol et al., 2019). Another recently
available tool known as Multiview Intercellular SpaTial modeling
framework (MISTy) is an explainable machine learning
framework that models intra- and intercellular views to delineate
the relationship between different spatial contexts and gene
expression (Tanevski et al., 2020).

The methods described above require a spatial reference
map, which is used to formulate a statistical model to infer the
probability of the original location of each single cell. Prior to
these methods, DistMap (Karaiskos et al., 2017), Seurat v1.1
(Satija et al., 2015), and spatial_mapping (Achim et al., 2015)
were developed to formulate the inference models with different
computational strategies, which rely on mapping of scRNA-
Seq data to the pre-existing FISH-based gene expression atlas.
novoSpaRc is a newer method that allows for the de novo
spatial reconstruction of single-cell transcriptome without prior
spatial information (Nitzan et al., 2019). novoSpaRc maps cells to
tissues by generalizing this task as an optimal-transport problem
under the assumption that physically adjacent cells tend to share
similar transcriptome.

Beyond Spatial Transcriptomics
Following the advent of spatial transcriptomic era, methods to
spatially resolve proteome are also being developed (Angelo
et al., 2014; Giesen et al., 2014). Recent improvements include
greater multiplexing capabilities (up to thousands of proteins)
and reduced input requirements, albeit not at a single-cell
level (Xu et al., 2018; Davis et al., 2019). Spatially resolved
methods are also moving toward increased versatility. For
example, GeoMxTM Digital Spatial Profiler allows for a highly
multiplexed and spatially resolved analysis for RNA and
DNA or protein. GeoMxTM utilizes antibody or RNA-probe
tagged with photocleavable oligonucleotide for in situ target
binding, accompanied with the region-specific oligonucleotide
cleavage and quantification using nCounter R©, a probe-based
direct detection technology (Beechem, 2020). Another method
known as APEX-seq/APEX-MS utilizes ascorbate peroxidase
APEX2 to probe the spatial organization of the cellular
transcriptome and proteome, respectively (Padrón et al., 2019).
Furthermore, the road to spatial interactomes has been paved
by in situ transcriptome accessibility sequencing (INSTA-seq),
which allows mapping of RNA and RNA-protein interactions
in situ (Furth et al., 2019).

To sum up, the earlier FISH-based methods excel over
sequencing-based methods in terms of sensitivity and resolution
but are limited by targeted detection of only a subset of genes
with long transcripts and optical crowding. Improved FISH-
based methods theoretically allow for genome-wide profiling at a
sub-diffraction limit resolution. Meanwhile, current development
of sequencing-based methods is in favor of in situ indexing
strategies, which are progressing toward subcellular resolution.
By harnessing tissue clearing technology and light sheet
microscopy, both approaches are advancing from 2D culture
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to 3D deep tissue profiling. Additionally, simultaneous spatial
transcriptomic and proteomic profiling at single-cell level has
been accomplished by imaging mass cytometry (Schulz et al.,
2018). A thorough 3D spatial multi-omics profiling of complex
tissue at genome-wide coverage and subcellular resolution could
be achieved in the near future.

Transcriptome and Chromatin
Accessibility
Despite the dedication of sustained efforts to explore epigenetic
regulatory mechanisms, limited cues have been decoded
due to the complex networks, lack of multimodal toolkits,
and insufficient bioinformatics power for integrative analysis.
Development of multimodal techniques is tightly associated with
the maturity of the stand-alone single-cell techniques. Thus far,
among the single-cell epigenetic techniques, assays for DNA
methylation are most well-established, followed by those for
chromatin accessibility. Single-cell multimodal techniques for
transcriptome and DNA methylation were extensively developed
until 2018, and comprehensively summarized in a few recent
reviews (Chappell et al., 2018; Hu et al., 2018).

Single-Cell Approaches for Chromatin Accessibility
Single-cell chromatin accessibility techniques can be categorized
into three types, based on the enzymes utilized to enrich open
chromatin regions, such as scDNase-Seq with DNase I (Jin et al.,
2015), scATAC-Seq with Tn5 transposases (Buenrostro et al.,
2015; Cusanovich et al., 2015), and scNOMe-Seq with GpC
methyltransferase (M.CviPI) (Pott, 2017; Figure 2A).

scDNase-Seq involves the digestion of accessible chromatin
regions with DNase I, followed by ligation of sequencing adaptors
(Jin et al., 2015). scATAC-Seq employs a one-step cut-and-paste
mechanism, where Tn5 cuts the open chromatin and inserts
its adaptor payload sequences simultaneously (Buenrostro et al.,
2015; Cusanovich et al., 2015). In comparison, due to its protocol
simplicity, scATAC-Seq is more suited for high-throughput
applications. Different from these fragmentation-based methods,
scNOMe-Seq utilizes GpC methyltransferase (M.CviPI) to
methylate cytosine in the accessible GpC dinucleotides, followed
by bisulfite sequencing (Pott, 2017). Downstream analysis can
differentiate the methylated GpCs from the methylated CpGs,
which represent signals of the accessible/nucleosome-depleted
regions and the endogenously methylated DNA, respectively.

There are pros and cons of scNOMe-Seq over the
fragmentation-based methods. Advantages of scNOMe-seq
are as follows: (1) It provides bi-layer information of chromatin
accessibility and DNA methylation within the same cell. (2)
It presents the comprehensive accessibility status across the
entire genomic regions, including both open and closed regions.
Comparatively, fragmentation-based methods only map the
open chromatin, while the undetected regions could be either
close chromatin or open chromatin which was lost during the
process. (3) It captures high resolution accessibility landscapes.
Notably, GpC sites prevalently exist within the genome (∼1
in 16 bp), resulting in its high genomic resolution of around
16 bp, as compared to that of scATAC-Seq and scDNase-Seq
(100–200 bp). Disadvantages of scNOMe-Seq are as follows:

(1) The library suffers from low quality and high background
noises, owing to the bisulfite treatment. (2) It excludes GpCpG
sequences from the downstream analysis, which comprises 20%
of the genome. This is associated with the inherent principle of
the method to differentiate chromatin accessibility (GpC) from
the endogenous methylation status (CpG). (3) It requires high
sequencing depth to have full genome coverage, restricting its
application for high-throughput profiling.

Multi-Modal Single-Cell Techniques for
Transcriptome and Chromatin Accessibility
Up to date, there are six multimodal techniques jointly
profiling chromatin accessibility and transcriptome within a
single-cell or single-nucleus (Figure 2B). Different from the
others, scNMT-Seq adopts methyltransferase-based chromatin
accessibility approaches and simultaneously profiles the whole-
cell transcriptome (Clark et al., 2018; Figure 2B). Briefly, single-
cells are first treated with GpC methyltransferase (M.CviPI), after
which mRNA is enriched with oligo-dT beads and subjected
to library preparation following Smart-seq2. Meanwhile, the
isolated DNA is treated with bisulfite, followed by adaptor
ligation and library preparation.

The others employ Tn5 transposases for chromatin
accessibility, among which scCAT-Seq and ASTAR-Seq
demonstrate high detection sensitivity (Figure 2B). scCAT-
Seq (Liu L. et al., 2019) is a plate-based method, which involves
the physical separation of cytoplasmic RNA from nuclear
DNA by combining mild lysis and centrifugation (Figure 2B).
mRNA is then collected from the supernatant and subjected to
library preparation following Smart-seq2 protocol. Meanwhile,
precipitant nucleus DNA is subjected to Tn5 transposition and
subsequent library preparation. In comparison, ASTAR-Seq
employs the automated programmable valve-based microfluidic
chips (Xing et al., 2019), on which open chromatins are
tagmented with Tn5, followed by reverse transcription of mRNA
within the whole-cell (Figure 2B). In the following steps, cDNA
is labeled with biotin during PCR amplification and separated
from the open chromatins using streptavidin beads.

High-throughput bimodal methods jointly profile
transcriptome and chromatin accessibility within single-
nucleus through two different strategies and platforms, including
droplet-based microfluidics (SNARE-Seq) and plate-based
combinatorial indexing (sci-CAR and Paired-Seq) (Figure 2B).

In SNARE-Seq protocol, nuclei are first extracted,
permeabilized, and tagmented with Tn5 in bulk (Chen S.
et al., 2019; Figure 2B). The single tagmented nucleus is then
encapsulated in droplets along with the barcoded beads and
splint oligo which is designed to label the cDNA and accessible
regions in a single-cell with the same barcode. Nuclei are then
pooled, and the cDNA and accessible chromatins containing
cell-specific barcodes are segregated by beads purification based
on their size difference.

On the contrary, sci-CAR applies the reverse reaction order of
in situ reverse transcription followed by chromatin tagmentation
and adopts a combinatorial indexing approach to incorporate
cell-specific barcodes (Cao et al., 2018; Figure 2B). Briefly,
5000 permeabilized nuclei are first sorted into each well of a

Frontiers in Genetics | www.frontiersin.org 5 July 2020 | Volume 11 | Article 662

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00662 July 16, 2020 Time: 19:30 # 6

Xing et al. Single-Cell Multi-Omics

FIGURE 2 | Toolkits for chromatin accessibility and multimodal single-cell techniques. (A) Summary of techniques for chromatin accessibility, which have been
adapted for single-cell applications. (B) Workflow of multimodal single-cell techniques for simultaneous measurement of transcriptome and chromatin accessibility.

96-well plate, in which single-strand cDNAs and transposed
open chromatins are generated and labeled with different sets
of oligos carrying well-specific barcodes. All nuclei are pooled,
25 of which are then re-distributed into each well of a 96-well

plate by FACS for second strand synthesis of cDNA. Afterward,
materials within each well are dedicated to RNA and DNA
portions for independent library preparations, during which the
second indexes are introduced.
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Paired-seq, an ultra-high-throughput bimodal technique
developed on the basis of sci-CAR, adopts ligation-based
combinatorial indexing strategy to simultaneously tag cDNA
and open chromatin fragments with the same barcodes (Zhu
et al., 2019; Figure 2B). Paired-seq can achieve a throughput
of one to ten million. Contrary to the reaction order of sci-
CAR, tagmentation is first performed on 250,000 permeabilized
nuclei in eight replicates, followed by reverse transcription of
mRNA. All nuclei are then subjected to three rounds of pool-
split-ligation, where nuclei are equally distributed into each
well of a 96-well plate and well-specific barcodes are ligated
to both cDNA and accessible chromatins. After TdT-mediated
second strand synthesis of cDNA, both classes of molecules are
amplified by PCR and then dedicated to two portions. To remove
contaminant biomolecules from the other class, each aliquot is
treated with different restriction enzymes specifically digesting
the pre-designed sites in Tn5 adaptors and RT primers, prior to
mRNA-Seq and ATAC-Seq library preparation, respectively.

In sum, given the lower cell throughput, scNMT-Seq,
scCAT-Seq, and ASTAR-Seq libraries display higher sensitivity
in detecting full-length transcripts and accessible regions.
Specifically, scNMT-Seq presents the highest coverage for
accessible chromatins at the cost of sequencing. scCAT-Seq
and ASTAR-Seq are comparable in terms of the complexity
and sensitivity of accessible regions, whereas ASTAR-Seq
demonstrates superior gene detection sensitivity than scCAT-Seq,
which might be due to its mRNA capture from whole-cell, instead
of only cytoplasmic compartments. On the other hand, high-
throughput multimodal methods assay the nuclear transcriptome
with the bias toward the 3′ end of transcripts. Their scRNA-
Seq libraries are of similar quality (UMI: 1100–1800; genes:
400–800), whereas SNARE-Seq and Paired-Seq exhibit higher
chromatin complexity than sci-CAR (Sites No.:1500–2600 vs.
200–500). This might be associated with its reaction order of
reverse transcription followed by tagmentation, resulting in loss
of chromatin architecture during the prolonged incubation of
chromatin. Altogether, the appropriate multimodal techniques
should be carefully chosen, weighing the delicate balance
of various factors, including throughput, sensitivity, and the
qualities of single-cell libraries generated.

Integrative Analysis of Transcriptome and Chromatin
Accessibility
As compared to uni-modal single-cell datasets, multimodal
single-cell libraries for chromatin accessibility and transcriptome
present remarkable advantages, which are categorized into
the following groups. Additionally, we discuss the analytical
approaches and toolkits employed for integration of chromatin
accessibility and transcriptome.

(1) Refined classification enabling the identification of rare
cell types. There are a few strategies to achieve integrative
clustering. Instead of clustering based on the highly
accessible regions, chromatin accessibility signals of the
same cell-types or clusters inferred from scRNA-Seq
are first merged, followed by peaks calling, projection
onto a low dimensional space, and identification of
clusters (Cao et al., 2018; Chen S. et al., 2019). Besides,

computational algorithms, such as coupled non-negative
matrix factorizations (NMF), are devised specifically to
cluster cells, based on the simultaneous evaluation of gene
expression and chromatin accessibility and the correlation
between modalities (Huebschmann et al., 2017; Liu L.
et al., 2019; Xing et al., 2019). NMF identifies gene-
peak pairs with differential expression and accessibility
across the NMF clusters. In addition, SnapATAC, a
software designed for stand-alone single-nucleus ATAC-
Seq libraries, is adapted for analyzing multimodal scRNA-
Seq and scATAC-Seq libraries (Fang et al., 2019; Zhu et al.,
2019). In the adapted SnapATAC pipeline, a cells-to-bins
DNA matrix and a cells-to-genes RNA matrix are generated
separately and computed into an integrative matrix,
which are then subjected to dimensionality reduction
and graph-based clustering. Generally, clustering based
on the multimodal single-cell libraries generates more
distinct boundaries between cell types and identifies rare
populations which are largely undetected in the stand-
alone scATAC-Seq libraries. For example, clustering of
SNARE-Seq libraries based on chromatin accessibility with
prior knowledge of cell type identities from its linked
transcriptomic profiles, sensitively detects rare cell types
within mouse neonatal cerebral cortex and the accessible
chromatin regions specific to them (Chen S. et al., 2019).

(2) Modality correlation along the constructed trajectories.
Despite similarities in transcriptomic profiles, cells may
be primed for development in different degrees at the
epigenetic level (Lara-Astiaso et al., 2014). To identify
minority cells with differential developmental status
between modalities, cellular positions can be compared in
the trajectories, which are independently constructed based
on single-cell transcriptome and chromatin accessibility
signals. In addition, the temporal order of dynamics
in accessibility and expression can be perceived for
genes of interest (Cao et al., 2018; Clark et al.,
2018; Chen S. et al., 2019). Moreover, TFs critical for
development can be identified by overlapping TF motifs
with differential chromatin accessibility and TFs with
differential expression across the pseudotemporal axis
(Zhu et al., 2019).

(3) Annotation of putative target genes for the cis-regulatory
elements (CRE). A multitude of CREs which demonstrate
tissue-specific activities have been identified in the
mammalian genome (Heintzman et al., 2009; Ong and
Corces, 2011). However, annotation of their putative
targets remains a challenge, due to the complicated
regulatory networks. For example, CRE-to-gene regulation
can be one-to-one, one-to-many, and many-to-one, and
CREs for each target vary across the cell types. In addition,
putative targets of CREs are not absolutely determined by
the genomic distance between them. Using multimodal
single-cell libraries, interactions of CRE-to-gene can be
inferred based on their co-accessibility, which can be
further overlapped with the gene expression. Noteworthy,
bimodal single-cell datasets improve the prediction
accuracy of putative targets by 4–5 times (Cao et al., 2018).
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Computational Integration of
Multi-Modal Single-Cell Datasets
In line with their superior maturity in the technique
development, algorithms and analytical tools for unimodal
single-cell libraries are much more diverse, which have been
reviewed extensively elsewhere (Chen G. et al., 2019; Luecken
and Theis, 2019; Wu and Zhang, 2020). Here we review the
bioinformatic toolkits developed for the integration of single-cell
libraries across various modalities.

With the rapid growth of single-cell libraries prepared for
Cell Atlas programs, integration of scRNA-Seq and genomic-
based single-cell libraries is of utmost importance. To annotate
the cell types in the genomic-based single-cell datasets, various
analytical approaches and softwares have been developed. For
instance, a reference-guided approach allows for pairing of
scRNA-Seq and scATAC-Seq, by fitting a linear model to match
the global variations in chromatin accessibility and transcriptome
depicted by bulk ATAC-Seq and RNA-Seq libraries, respectively
(Buenrostro et al., 2018). A k-nearest neighbor (KNN)-
based classification approach is employed to transfer cell-type
labels of the nearest scRNA-Seq neighbors to sci-ATAC-Seq
libraries (Cusanovich et al., 2018). Likewise, Seurat v3 allows
for the classification of scATAC-Seq data based on the cell
types determined from scRNA-Seq data of a similar sample
(Stuart et al., 2019).

Apart from cell annotation, the most commonly adopted
integration strategy is to identify correspondence between
features of distinct modalities. For example, clonealign
integrates scRNA-Seq and scDNA-Seq data on the basis
of an assumed positive correlation between copy number
and gene expression, which is used to analyze the clone-
specific biological pathways in human cancers (Campbell
et al., 2019). Gradient-boosting model (GBM) integrates
the scDrop-Seq and scTHS-Seq libraries of brain tissue,
by predicting differentially accessible sites based on the
differentially expressed genes and vice versa (Lake et al.,
2018). In addition, NMF (Huebschmann et al., 2017) and
Coupled NMF (Duren et al., 2018) can be adopted for the
integration of chromatin accessibility and transcriptome.
Similarly, the integrative non-negative matrix factorization
(iNMF) method, also known as LIGER, integrates DNA
methylation and transcriptome, based on the negative
correlation between gene expression and gene-body methylation
(Welch et al., 2019). Likewise, the multi-omics factor analysis
(MOFA) method explicates the associations between DNA
methylation states and transcriptional profiles within the same
cell (Argelaguet et al., 2018).

Without prior knowledge of feature correspondence,
integration between modalities can be achieved by finding the
common biological states, which is based on the assumption
that cells of the same type or state share correlations across
modalities. For example, MATCHER projects cells from different
experiments onto a common 1D pseudotime space under the
assumption that a common developmental trajectory similarly
affects both modalities (Welch et al., 2017). MATCHER was
applied to study the temporal dynamics of transcriptome

and DNA methylation during iPSCs reprogramming
(Angermueller et al., 2016).

PERSPECTIVES AND FUTURE
DIRECTIONS

As the desire to gain a holistic view of cells grows, single-cell fields
are advancing toward the invention of multi-omics techniques
and integrative data analysis across modalities. The achievements
made over the past decades are laudable, but many challenges
still remain to be overcome: (1) Sensitivity of the multimodal
techniques is often lower than the corresponding stand-alone
single-cell techniques. This is likely due to sample loss during
isolation of various classes of molecules, or degradation of
molecules due to the incompatibility of protocols. Extensive
optimizations should be carried out for multi-modal single-
cell protocols to increase coverage, reduce dropout rate, and
maximize signal-to-noise ratio. (2) More multi-omic techniques
have yet to be developed. Due to the technical challenges,
limited single-cell techniques are available for some applications,
such as proteomics, chromatin structure, and chromatin
immunoprecipitation. Multi-omic techniques combining them
with transcriptome would undoubtedly provide novel insights
into transcriptional and translational regulatory mechanisms. (3)
On top of that, the number of omics should be further increased
to achieve better correlation across modalities. The ultimate
goal is to develop multi-omic techniques enabling collection
of information from all omics at a single-cell resolution. (4)
Bioinformatic tools tailored for multi-modal libraries would
facilitate the integration across modalities and leverage the
comprehensive characterizations of cell states. Altogether, single-
cell omics provide unprecedented opportunities to investigate
crucial biological questions in multi-dimensional spaces.
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