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SUMMARY

Young adult cancer has increased in incidence worldwide, but its molecular etiologies remain 

unclear. We systematically characterize genomic profiles of young adult tumors with ages of onset 

≤50 years and compare them to later-onset tumors using over 6,000 cases across 14 cancer types. 

While young adult tumors generally show lower mutation burdens and comparable copy-number 

variation rates compared to later-onset cases, they are enriched for multiple driver mutations 

and copy-number alterations in subtype-specific contexts. Characterization of tumor immune 

microenvironments reveals pan-cancer patterns of elevated TGF-β response/dendritic cells and 

lower IFN-γ response/macrophages relative to later-onset tumors, corresponding to age-related 

responses to immunotherapy in several cancer types. Finally, we identify prevalent clinically 

actionable events that disproportionally affect young adult or later-onset cases. The resulting 

catalog of age-related molecular drivers can guide precision diagnostics and treatments for young 

adult cancer.
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In brief

In recent years, the incidence of multiple cancer types has risen among young adults under 50 

years, but whether they show specific molecular etiology remains unclear. Lee et al. characterize 

the genomic and tumor microenvironment features distinguishing young adults from later-onset 

cancer and potential treatment implications.

INTRODUCTION

In the US and multiple countries, cancer incidence and mortality have steadily declined in 

adults over the age of 50 (Bray et al., 2018; Siegel et al., 2020). Alarmingly, the overall 

decline is coupled with a recent rise in the incidence of various cancer types among young 

adults, including colorectal, endometrial, gallbladder, multiple myeloma, pancreatic, and 

renal cancer, for individuals between 15 and 50 years old in the US (Sung et al., 2019) 

and worldwide (Gupta et al., 2020). However, existing genomic and molecular studies of 

adult cancers comprise mainly later-onset individuals (Campbell et al., 2020; Sanchez-Vega 

et al., 2018; Zehir et al., 2017), where alterations that are differentially prevalent in young 

adult cancers may be diluted. Comprehensive genomic analyses of young adult tumors 

are required to reveal their molecular underpinnings, which will in turn improve targeted 

diagnostics and treatments for this understudied population.

The molecular etiologies of young adult cancer are likely distinct from those of pediatric or 

later-onset adult cancer (Bleyer et al., 2008). Early-onset colorectal cancer is known to be 
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associated with germline mutations in mismatch repair (MMR) genes (Lynch syndrome) 

(Lynch et al., 2009; Pearlman et al., 2017), and germline mutations disrupting ATM, 
CHEK2, BRCA1/2, CDKN2A, and PALB2 may also contribute to early-onset colorectal 

carcinogenesis (Pearlman et al., 2017). Similarly, multiple studies have confirmed a higher 

prevalence of germline mutations in BRCA1/2 and TP53 in early-onset breast cancer 

(Gómez-Flores-Ramos et al., 2017; Packwood et al., 2019; Peto et al., 1999). However, 

while studies have identified various germline predisposing variants associated with young 

adult cancer, large-scale investigation of their somatic genomic and molecular profiles is 

scarce.

In this study, we conducted a comprehensive young adult pan-cancer genomic analysis using 

data from 1,757 young adult and 3,608 later-onset cases across 14 different cancer types 

in The Cancer Genome Atlas (TCGA), verified by analyses using non-overlapping cases in 

the International Cancer Genome Consortium (ICGC). We systematically identified somatic 

mutation, copy-number variation (CNV), DNA methylation, and immune features in young 

adult cohorts and compared them to those of later-onset cancer. Analyses of the tumor 

immune microenvironment revealed signaling and cellular features distinguishing young 

adults from older adults. Additionally, we identified treatment response-associated mutations 

and amplifications most frequently appearing in young adults, which may help to advance 

precision oncology applications for young adult cancer.

RESULTS

Cohort characteristics and mutation rates

We utilized TCGA cohort to characterize the genomic and molecular profiles of young 

adult cancer. Matching the young adult population defined by epidemiological studies that 

show increased cancer rates (Sung et al., 2019), we defined young adult cases as those 

with an age at initial pathologic diagnosis ≤50 years, while subjects >50 were classified 

as later-onset cases. Of the 33 cancer types in TCGA, 14 included ≥40 unique, pass 

quality-control cases in both the young adult and later-onset cohorts and were retained 

for subsequent analyses (STAR Methods), amounting to a total sample size of 1,757 young 

adult and 3,608 later-onset cases. While several cancer cohorts afford sufficient young adult 

cases for analysis, their minor representations across the majority of these cancer types 

(except for LGG [brain lower grade glioma], CESC [cervical squamous cell carcinoma and 

endocervical adenocarcinoma], PCPG [pheochromocytoma and paraganglioma], and THCA 

[thyroid carcinoma]) highlight the need for tailored investigations (Figure 1A). The ICGC 

cohort was further used to validate the age-related genomic driver events (Campbell et al., 

2020). After retaining only cases (1) with age at diagnosis data, (2) matched to one of 

the 14 analyzed TCGA cancer types, and (3) not overlapped with TCGA cases, the ICGC 

validation dataset contained 127 young adult and 515 later-onset samples (STAR Methods).

Of the 14 selected cancer types, seven had available, defined subtypes (Figures 1B and 

1C). We first assessed whether the subtypes enriched in young adults in TCGA were 

concordant with previous reports to ensure the young adult cancer populations studied herein 

were representative. A significantly lower percentage of young adult LGG as compared to 

later-onset LGG were of the wild-type IDH1 and IDH2 subtype (Fisher’s exact test, IDHwt, 
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false discovery rate [FDR] = 7.62E-15), in agreement with a previous report (Brat et al., 

2015), while a nearly proportionally greater percentage were of the mutated IDH, no 1p/19q 

codeletion subtype (IDHmut-non-codel, FDR = 3.86E-16) (Figure 1B). We also observed 

a suggestive association between later-onset LGG and the IDHmut-codel subtype (FDR = 

0.064). A significantly lower percentage of young adult SARC (sarcoma) cases were of the 

MFS/UPS subtype (myxofibrosarcoma/undifferentiated pleomorphic sarcoma, FDR = 0.024, 

Figure 1B), consistent with previous findings (Look Hong et al., 2013; Sessa et al., 2019). 

Young adult BRCA (breast invasive carcinoma) was suggestively associated with the basal 

subtype (FDR = 0.105, Figure 1C), affirming previous findings of basal breast cancer’s 

associations with earlier ages of onset (Bertucci et al., 2012). Additionally, significantly 

higher percentages of young adult UCEC (uterine corpus endometrial carcinoma) were of 

the POLE (POLE-ultramutated, FDR = 2.55E-3) and CN low (copy number low, FDR = 

0.030) subtypes, while a significantly lower percentage were of the CN high subtype (copy 

number high, FDR = 1.46E-4) (Figure 1C).

We next examine the mutation rate, which is known to show age dependency (Gao et al., 

2016; Risques and Kennedy, 2018). As expected, higher silent and nonsilent mutation rates 

were found in later-onset cases across all cancer types, except LGG and UCEC (Figures 

1B–1D and S1A–S1D). In CESC, KIRC (kidney renal clear cell carcinoma), KIRP (kidney 

renal papillary cell carcinoma), PCPG, and THCA, the positive associations between age 

and both mutation rates reached significance (FDR <4.81E-3). Surprisingly, young adult 

UCEC showed both significantly higher silent (FDR = 4.92E-5) and nonsilent (FDR = 

5.24E-5) mutation rates (Figure S1A). A closer examination revealed higher mutation rates 

in the POLE subtype prevalent in young adult UCEC (Figure 1C), suggesting cancer subtype 

and onset age need to be jointly considered in estimations of mutation rate in selected cancer 

types.

Somatic mutation landscapes

We conducted a multivariate regression analysis to identify cancer driver genes showing 

different mutation rates of likely driver mutations in young adult compared to later-onset 

cancer, corrected for covariates including subtype (when available), gender, and genetic 

principal components that represent population structures (STAR Methods). We identified 

21 significant (FDR <0.05) associations across 18 genes (Figure 2A; Table S1). While 

overall mutation rates are lower in young adult cases, multiple of the significant associations 

were enriched mutations in young adults. GATA3 somatic mutations were significantly 

associated with young adult cases in BRCA (FDR = 0.036). Somatic mutations in PTEN 
were significantly associated with young adult COAD (colon adenocarcinoma) (FDR = 

0.022) and UCEC (FDR = 0.028). ATRX mutations were significantly associated with both 

young adult LGG (FDR = 0.022) and UCEC (FDR = 0.027) (Figure 2A). In addition, 

somatic mutations of BRD7, CNBD1, CTNNB1, FLT3, LATS1, RPS6KA3, and SIN3A 
(FDR ≤0.045) were each significantly associated with young adult UCEC. We also found 

TP53 and BRAF somatic mutations to be significantly associated with young adult LGG 

(FDR = 3.25E-10) and SKCM (skin cutaneous melanoma) (FDR = 0.045), respectively 

(Figure 2A). Conversely, somatic mutations of TP53 (FDR = 5.09E-3), FAT1 (FDR = 

0.027), and NF1 (FDR = 5.71E-3) were significantly associated with later-onset CESC, 
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HNSC (head and neck squamous cell carcinoma), and SKCM, respectively. Additionally, 

somatic mutations in KMT2C (FDR = 0.046) and CDH1 (FDR = 0.045) were found to be 

significantly associated with later-onset BRCA, while those in EGFR (FDR = 1.34E-7) and 

IDH1 (FDR = 1.34E-7) were found to be significantly associated with later-onset gliomas 

(Figure 2A). To ensure robustness, we also conducted analyses treating age as a continuous 

variable in the multivariate model, again finding that TP53 and ATRX somatic mutations 

were each associated with decreased age in LGG, while the opposite trend was observed for 

IDH1 (FDR <8.96E-4, Figure S2A).

Given that somatic mutations may show specific associations with subtypes, we next 

compared the rate of mutation-subtype pairs within cancer types to their young adult versus 

later-onset status using Fisher’s exact tests (STAR Methods), identifying 16 significant and 

three suggestive associations. We found significant enrichment of GATA3-mutated luminal 

A BRCA in young adults (FDR = 3.11E-3, Figures 2B and S2B), as well as significant 

enrichment of TP53, IDH1, and ATRX-mutated IDHmut-non-codel gliomas in the same 

cohort (FDR ≤ 4.64E-10, Figures 2C and S2C). ATRX, BRD7, CNBD1, FLT3, LATS1, 
PTEN, RPS6KA3, and SIN3A-mutated POLE UCEC were each significantly enriched in 

young adults (FDR ≤ 0.034, Figures 2D and S2D), along with PTEN-mutated (FDR = 

0.048) and CTNNB1-mutated (FDR = 3.89E-3) CN-low UCEC (Figures 2D and S2D). 

Conversely, CDH1-mutated luminal A (FDR = 0.083) and KMT2C-mutated luminal A 

(FDR = 0.122) BRCA was suggestively enriched in later-onset cases (Figures 2B and S2B). 

We also found significant enrichments of EGFR-mutated IDHwt (FDR = 7.03E-10) and 

IDH1-mutated IDHmut-codel gliomas (FDR = 0.020) in later-onset cases (Figures 2C and 

S2C). Altogether, these analyses demonstrate that multiple recurrent mutations affecting 

young adult cancers (e.g., ATRX in both LGG and UCEC) were distinct from those affecting 

later-onset cases, and correlated with their subtype distributions.

To adjust for the potential confounding effect of hypermutator phenotypes, we conducted 

additional multivariate regression analyses within only the non-hypermutated TCGA 

samples (STAR Methods). Outside of UCEC, all significant somatic hits were rediscovered, 

except for the association between COAD and PTEN (Figure 2A; Figure S2E). In UCEC, 

however, none of the significant age-related somatic mutations (with the exception of 

CTNNB1 mutations) were re-discovered in our non-hypermutator analysis (Figure 2A, 

Figure S2E). These results were expected given our subtype analyses results showing an 

association between young adult UCEC and the hypermutator POLE subtype, where these 

mutations may be enriched (Figure 1C; Figure 2D; Figure S2D). In contrast and notably, 

CTNNB1 mutation, while also associated with young adults, was rediscovered, concordant 

with the finding of enriched CTNNB1-mutated, CN-low UCEC in young adults (Figures 2D 

and S2D).

To validate the age-related somatic driver mutations found in TCGA, we performed 

an independent multivariate regression analysis on the ICGC dataset (Campbell et al., 

2020) in which we removed the overlapping TCGA samples and mapped cancer types 

to TCGA. The five ICGC cohorts corresponding to TCGA cancer types include Breast

AdenoCA (corresponding to TCGA BRCA), Liver-HCC (corresponding to TCGA LIHC 

[liver hepatocellular carcinoma]), Ovary-AdenoCA (corresponding to TCGA OV [ovarian 
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serous cystadenocarcinoma]), Kidney-RCC (corresponding to TCGA KIRC/KIRP), and 

Skin-Melanoma (corresponding to TCGA SKCM) (Figure S2F). In the ICGC cohort, 

RPS6KA3 mutation is also associated with young adult Liver-HCC (p = 0.013, Figure 

S2F), in addition to its TCGA-identified association with young adult UCEC (Figure 2A). 

Additionally, ICGC analyses found an association between PTEN mutation and young adult 

Skin-Melanoma (Figure S2F), mirroring the TCGA-identified associations of PTEN with 

both young adult COAD and UCEC (Figure 2A). These findings also suggest possible cross

cancer type associations between young adult tumors and mutations in RPS6KA3 and PTEN 
(Figure 2A; Figure S2F). Finally, the ICGC validation rediscovered the TCGA-identified 

associations between mutations in BRAF (p = 0.028) and NF1 (p = 0.021) and young adult 

and later-onset SKCM, respectively (Figure S2F).

Copy-number variations

In addition to recurrent mutations, CNVs are critical genomic drivers of tumorigenesis. We 

first analyzed aneuploidy scores calculated by the summed burden of chromosome arm-level 

events in each sample (Taylor et al., 2018) (STAR Methods), finding significantly higher 

aneuploidy among later-onset cases in CESC, KIRC, LGG, OV, SARC, THCA, and UCEC 

(FDR <0.046, Figures S3A and S3B) and affirming previously reported positive associations 

between aneuploidy and age (Simonetti et al., 2019). Analyzing the number of copy-number 

segments per sample (STAR Methods), we found comparable overall CNV rates between 

young adult and later-onset cohorts across all cancer types except SARC, where later-onset 

cases showed higher CNV rates (FDR = 0.018, Figures 3A and S3C).

We next analyzed the prioritized driver copy-number deletions and amplifications defined 

by the PanCanAtlas project (Sanchez-Vega et al., 2018). The same multivariate regression 

model was applied to identify the gene-level CNVs that showed different rates in young 

adult compared to later-onset cancer (STAR Methods). We identified eight significant (FDR 

<0.05) and seven suggestive associations across 13 genes (Figure 3B; Table S2). Notably, 

the copy-number events exhibiting higher prevalences in young adult cancers were mainly 

amplifications, including YAP1 (FDR = 0.027) and MYC (FDR = 6.94E-4), significantly 

associated with young adult CESC and OV, respectively. RPTOR amplification was found to 

be significantly associated with young adult BRCA (FDR = 0.020), while amplifications 

of KDM5A, CCND2, KRAS, and ARRDC1 were each suggestively associated with 

young adult gliomas (FDR ≤ 0.148). Additionally, deletions of CDKN2A (FDR = 0.060) 

and CDKN2B (FDR = 0.107) were suggestively associated with young adult SKCM 

(Figure 3B). Copy-number events that showed significant associations with later-onset cases 

aggregated in LGG: deletions of PTEN (FDR = 0.026), CDKN2A (FDR = 1.78E-4), and 

CDKN2B (FDR = 1.16E-4) as well as amplifications of MDM4 (FDR = 0.011) and EGFR 
(FDR = 1.43E-8) were each significantly associated with later-onset gliomas (Figure 3B). In 

a separate multivariate regression analysis treating age as a continuous variable, we found 

few associated CNVs including MYC amplifications to be suggestively associated with 

increased age in OV (FDR = 0.121, Figure S3D).

We next compared the rate of CNV-subtype pairs within cancer types to their young adult 

versus later-onset status (STAR Methods), identifying eight showing significant and four 
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showing suggestive associations. RPTOR-amplified basal BRCA was enriched in young 

adults (FDR = 7.82E-3), while RPTOR-amplified luminal A BRCA was suggestively 

enriched (FDR = 0.068, Figures 3C and S3E). We also identified significant enrichments of 

both CCND2-amplified IDHmut-non-codel (FDR = 0.019) and KDM5A-amplified IDHmut

non-codel (FDR = 0.042) gliomas in young adults, along with suggestive enrichments of 

KRAS amplified IDHmut-non-codel (FDR = 0.108) and ARRDC1 amplified IDHmut-non

codel (FDR = 0.108) gliomas (Figures 3D and S3F). Conversely, later-onset gliomas were 

associated with the IDHwt subtype paired with EGFR or MDM4 amplification, as well as 

with CDKN2A, CDKN2B, or PTEN deletion (FDR <0.015). Suggestive enrichment was 

found for CCNE1-amplified CN-high UCEC in later-onset cases (FDR = 0.076, Figures 3E 

and S3G).

To validate findings in TCGA, we next performed independent multivariate regression 

analyses using the ICGC CNV dataset (Gerstung et al., 2020). The TCGA analysis 

uncovered an association between CCNE1 CNVs and later-onset UCEC (Figure 3B), and 

here we find that CCNE1 CNVs are also associated with later-onset OV (p = 0.020, 

Figure S3H). The ICGC analysis also validated the TCGA-identified association (Figure 

3B) between CDKN2A CNV and young adult SKCM (p = 0.028, Figure S3H). These 

analyses discovered multiple driver copy-number events that show different cancer and 

subtype prevalences in young adult cancers.

DNA methylation and fusion events

Using the PanCanAtlas prioritized gene-level methylations (Sanchez-Vega et al., 2018), 

we applied the multivariate model to identify events showing different rates in young 

adults cases (STAR Methods). We found six significant (FDR <0.05) and seven suggestive 

methylations affecting seven genes (Figure 4A; Table S3). Only three of the 13 identified 

events exhibited higher prevalences in young adult cancers: LATS2 methylation was 

strongly associated with young adult gliomas (FDR = 7.92E-9), while methylations of 

MGA (FDR = 0.017) and CDKN2A (FDR = 0.085) were significantly and suggestively 

associated with young adult KIRP, respectively. Notably, CDK2NA methylation was also 

significantly associated with later-onset LIHC (FDR = 1.40E-5) and SKCM (FDR = 0.017), 

and suggestively associated with later-onset THCA (FDR = 0.057) and BRCA (FDR = 

0.069) (Figure 4A). Methylations of HES4 (FDR = 0.017) and NOV (FDR = 3.26E-3) 

were each significantly associated with later-onset gliomas, while TCF7 methylation was 

suggestively associated (FDR = 0.132). Additionally, TCF7 methylation (FDR = 0.102) and 

MGA methylation (FDR = 0.069) were each suggestively associated with later-onset BRCA, 

while a suggestive association was identified between TLE3 methylation and later-onset 

LIHC (FDR = 0.079). The prevalence of TCF7 methylation and CDK2NA methylation 

(except for CDK2NA in KIRP) were enriched in the later-onset cases across multiple 

cancer types (Figure 4A). In parallel, age-as-a-continuous-variable regression analysis re

discovered that LATS2 and CDK2NA methylation rates significantly decreased with age in 

LGG (FDR = 4.68E-3) and HNSC (FDR = 0.046), respectively (Figure S4A).

Comparing methylation-subtype pairs within cancer types to their young adult versus later

onset status (STAR Methods), we identified five pairs showing significant and one showing 
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suggestive age-related enrichments, none of which appeared in BRCA (Figures 4B and 

S4B). We found LATS2-methylated IDHmut-non-codel gliomas to be significantly enriched 

in young adults (FDR= 1.21E-13), while LATS2-methylated IDHmut-codel gliomas were 

suggestively enriched in later-onset cases (FDR = 0.100) (Figures 4C and S4C). HES4

methylated IDHwt (FDR = 9.58E-3) and NOV-methylated IDHwt (FDR = 0.010) gliomas 

were both significantly enriched in the later-onset cohort, along with HES4-methylated 

IDHmut-codel (FDR = 0.015) and TCF7-methylated IDHmut-codel (FDR = 0.016) gliomas 

(Figures 4C and S4C). These results demonstrate that age-related methylations in LGG are 

particularly subtype specific, while those in BRCA are not.

We also applied the multivariate model to identify fusion drivers characterized by 

PanCanAtlas (Sanchez-Vega et al., 2018), finding three fusions showing suggestive 

associations with onset age status (Figure 4D; Table S4). Suggestive associations were found 

between young adult THCA and gene fusions involving RET (FDR = 0.102) or NTRK3 
(FDR = 0.102), as well as between later-onset gliomas and EGFR fusions (FDR = 0.102) 

(Figure 4D). Fusion-subtype pairs identified enrichment of EGFR-fusion IDHwt gliomas in 

the later-onset cohort (STAR Methods; Figures S4D and S4E).

Gene and pathway expression differences

To elucidate mRNA-level differences between young adult compared to later-onset cases, 

we identified differentially expressed genes using a multivariate linear regression model 

implemented in limma (Ritchie et al., 2015), adjusting for subtype, tumor stage, gender, and 

genetic principle components (STAR Methods). We identified 207 instances of differentially 

expressed genes (FDR <0.05) across nine of the 13 analyzed cancer types with sufficient 

data (Figure 5A). Overall, 114 genes showed higher expression, which were found primarily 

in BRCA, CESC, LIHC, and THCA, compared to 93 genes showing lower expression in 

young adult cases (Figure S5A). The majority of differentially expressed genes (193) were 

identified in five cancer types (BRCA, CESC, LGG, LIHC, and THCA) (Figure S5A), 

suggesting their age-related differences in gene expression.

Next, we investigated pathways enriched by differentially expressed genes between young 

adult and later-onset cases using gene set enrichment analysis (GSEA) (Subramanian et 

al., 2005). We identified 158 instances of significantly differentially expressed pathways 

(FDR <0.05), involving 86 unique pathways across seven cancer types. Among them, 

124 differentially expressed pathways showed negative normalized enrichment scores, 

indicating lower pathway gene-expression levels in young adult cases (Figures 5B and S5B). 

Two immune-related pathways, graft versus host disease and cytokine-cytokine receptor 

interaction, showed consistently lower expressions across cancer types (except for BRCA) 

and were significant in SARC, LGG, and HNSC (Figures 5C, 5D, and S5C), suggesting 

lower immune involvements in these young adult cases.

It has been hypothesized that metabolic dysregulation (e.g., induced by obesity) may have 

driven the recent rise in young adult cancer (Berger, 2018). From the pathway enrichment 

analyses, we identified 26 instances of differentially expressed metabolic pathways (Figure 

5B). Surprisingly, 25 of the associations showed negative normalized enrichment scores, 

suggesting lower transcription levels of genes in these pathways compared to later-onset 
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cases. Four pathways showed lower expression in two cancer types, including the linoleic 

acid pathway in LIHC (FDR = 0.030) and HNSC (FDR = 0.031), amino sugar and 

nucleotide sugar metabolism in SARC (FDR = 0.021) and KIRP (FDR = 0.034), and 

butanoate metabolism as well as glycine, serine, and threonine metabolism in both LIHC 

(FDR = 0.019) and KIRP (FDR ≤ 0.034) (Figure S5D). Genes involved in the type I diabetes 

mellitus pathway also showed significantly lower expression across four cancers: SARC 

(FDR = 0.021), LGG (FDR = 0.024), HNSC (FDR = 0.018), and KIRC (FDR = 0.049) 

(Figure S5D). Overall, these results implicated lower expression of metabolic genes in this 

series of young adult cancers, and further investigation of metabolic wiring across different 

types of young adult cancers is required.

Tumor immune microenvironment

The tumor immune microenvironment (TIME) dictates patient prognosis and response to 

immunotherapy (Binnewies et al., 2018), but TIME in young adult cases remain poorly 

characterized. Tumor neoantigens can be susceptible to recognition by the adaptive immune 

system (Ward et al., 2016), and we utilized the multivariate model to identify potential 

differences in neoantigen loads between young adult and later-onset cases (STAR Methods). 

With few exceptions, higher SNV and indel neoantigen loads were associated with later

onset cancers (Figure 6A), concordant with their higher mutation rates (Figure S1A). 

However, higher SNV neoantigen load was associated with young adult UCEC (FDR 

= 2.76E-9, Figure 6A), possibly due to the prevalence of the POLE subtype in young 

adult UCEC and its high mutation rates (Figure 1C). Accordingly, POLE mutations were 

previously found to precipitate a dramatic rise in SNVs, but not indels (León-Castillo et al., 

2020; Temko et al., 2018).

While old age is associated with diminished immune responses (Montecino-Rodriguez et 

al., 2013; Simon et al., 2015), its effects on the TIME remain to be elucidated. To this 

end, we examined the young adult versus later-onset differences in immune gene signatures, 

immune infiltrates, and Th and other immune cell fractions derived from gene-expression 

data (STAR Methods) (Thorsson et al., 2018). Across cancer types, we found, on average, 

lower interferon (IFN)-γ responses and lymphocyte infiltration in young adult cases, 

including significant associations in LGG and SARC. In contrast, greater transforming 

growth factor (TGF)-β response was associated with young adult cancer, showing significant 

associations in BRCA/UCEC (FDR <0.050) and suggestive in KIRP/SKCM (FDR <0.084). 

Intriguingly, compared to later-onset cases within their respective cancer cohorts, young 

adult BRCA exhibited more robust immune signatures, whereas young adult LGG showed 

diminished tumor immune response signatures, including a significant decrease in TGF-β 
response (Figure 6B). We next evaluated the cell-type compositions in TIME: the majority 

of young adult cancers exhibited higher naive B cell levels but reduced macrophages, 

including significant decreases in BRCA/KIRP total macrophages and BRCA/SARC M2 

macrophages. We also noted a trend of increased dendritic cells among young adult cases, 

reaching significant/suggestive levels in both renal cancers (Figure 6B). Th cell analysis 

found elevated Th2 levels, connected to generally unfavorable outcomes across cancer types 

(Lee et al., 2019; Protti and De Monte, 2012), to be significantly associated with young 

adult KIRP (FDR = 0.035). Conversely, elevated Th1 and Th17 levels, both of which 
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have been linked to improved cancer outcomes (Kim and Cantor, 2014; Maimela et al., 

2019; Thorsson et al., 2018), were significantly associated with later-onset SARC (FDR = 

1.52E-3) and BRCA (FDR = 0.025), respectively. Across cancer types, stronger Th2 and 

weaker Th17 responses were consistently salient features of the young adult cohort (Figure 

6C). A multivariate regression analysis treating age as a continuous variable confirmed 

multiple key findings, including increasing SNV neoantigen loads, macrophages, and Th17 

cells with age in UCEC, KIRP, and BRCA, respectively (Figures S6A–S6C). We also 

found significantly and suggestively higher leukocyte fractions in later-onset SARC (FDR = 

6.82E-3) and young adult BRCA (FDR = 0.105), respectively (Figures S6D and S6E).

These results were corroborated by our expression analysis of immune markers using RNA 

sequencing (RNA-seq) data (Figure 6D), which found PDCD1 (PD-1) expression, a co

inhibitory checkpoint protein expressed by activated CD8+ T cells (Simon and Labarriere, 

2018), to be higher (p < 0.05) in later-onset HNSC, which also showed suggestively 

elevated CD8+ T cells (Figure 6B). Our immune marker analysis also found CD274 
(PD-L1) expression, strongly associated with tumor macrophages (Goldman et al., 2018), 

to be elevated in later-onset SARC (Figure 6D). For young adult cases, several immune 

checkpoint genes showed trends of elevated (albeit not significant) expression in KIRP 

(which had significantly higher dendritic cell fractions), suggesting these tumors may be 

suitable for treatments using immune checkpoint inhibitors.

We next sought to evaluate the potential therapeutic implications of the age-related 

differences in TIME. Utilizing a cohort of 1,525 patients of multiple solid tumor types 

who received immune checkpoint inhibitors (Samstein et al., 2019), we conducted a survival 

analysis adjusting for tumor mutational burden (TMB) within each cancer type (STAR 

Methods). We found a trend of young adult HNSC (p = 0.068) and BLCA (p = 0.086) 

presenting with worse post-immunotherapy survival (Figure S6F). The worse prognosis for 

young adult HNSC parallels the corresponding TCGA cases’ lower levels of lymphocyte 

infiltration and CD8+ (cytotoxic) T cells compared to later-onset HNSC. Additionally, we 

observed higher levels of naive CD4+ T cells—a negative prognostic factor in the TIME 

(Su et al., 2017)—among young adult HNSC (Figure S6B). These results implicate that the 

age-associated TIME differences we identified using multi-omic analyses may be correlated 

with different responses in age-stratified patient populations treated with immunotherapy 

and require further clinical validation.

Clinically actionable events

Complementing features of TIME that can help determine immunotherapy response, the 

different genomic events observed in young adult cancer can guide other targeted treatments. 

We next identified biomarkers of clinical actionability by compiling data from three 

databases: CIViC (Griffith et al., 2017), CGI (Tamborero et al., 2018), and OncoKb 

(Chakravarty et al., 2017). We established an analysis workflow identifying genomic 

markers linked to both approved (level A) and experimental (level B) anti-cancer drugs 

that appear most frequently in young adult cancers, as well as whether a given patient’s 

cancer type is an approved indication for the drug (on versus off-label status). To arrive at 

a reasonable estimate of fractions of patients that may benefit from therapies, we focused 
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on seven cancers (BRCA, CESC, COAD, HNSC, SKCM, THCA, and UCEC) that had ≥10 

young adult and ≥10 later-onset cases with actionable mutations at the A or B evidence 

levels in this analysis (STAR Methods).

BRAF V600E, a recurrent biomarker for approved drugs (level A) in multiple cancer 

types, shows diverging associations with young adult status. In COAD, 15.1% of later-onset 

cases, compared to only 2.2% of young adult cases, harbored mutations in BRAF V600E, 

which was druggable with two combination therapies (Panitumumab + Encorafenib and 

Encorafenib + Cetuximab); these fractions account for all COAD cases with level A on

label treatment options in both cohorts (Figures 7A, 7B, and S7A). In contrast, 60.5% 

of young adult SKCM harbor BRAF V600E (all young adult Level A on-label SKCM 

cases) compared to only 31.6% of later-onset cases (Figure 7B), potentially druggable 

with multiple A on-label therapeutics such as Vemurafenib, Trametinib, Dabrafenib + 

Trametinib, Cobimetinib + Vemurafenib. These BRAF associations were concordant with 

trends reported by previous studies in COAD (Chen et al., 2014) and SKCM (Bauer et 

al., 2011). We also observe clear differences at the A off-label level for multiple cancers 

types: 10.6% of later-onset versus 5.8% of young adult CESC were maximally treatable at 

this level, compared to 8.9% of young adult versus 2.9% of later-onset COAD (Figures 7A 

and S7A). Across cancer types, PIK3CA H1047 mutations show comparable frequencies 

between young adult and later-onset cases, while PIK3CA E545K and E542K hotspot 

mutations display age dependence, most notably in BRCA, CESC, COAD, and UCEC. 

In contrast, frequencies of druggable KRAS hotspot mutations do not appear to be age

related in any of the seven cancer types (Figures 7B and S7B). We note these descriptive 

frequencies in young adult versus later-onset groups do not indicate age associations that 

are independent of other clinical variables. Correcting for confounding factors, we found 

BRAF V600E mutations to be significantly associated with young adult SKCM (Figure 

S7C, FDR = 4.60E-5). We also found an association between BRAF V600E mutations and 

later-onset COAD (p = 3.13E-3), as well as associations between PIK3CA E545K mutations 

and later-onset BRCA, CESC, and COAD (P ≤ 0.0367); however, they did not reach the 

significance level for this study (Figure S7C).

We next examined the clinically actionable copy-number amplifications, where six cancers 

(BRCA, CESC, HNSC, LGG, OV, and SKCM) satisfied the minimum required sample 

size for analyses. In BRCA, we found a slightly higher rate of the A on-label ERBB2 copy

number amplification in young adult cases (13.3%) compared to later-onset cases (11.2%), 

representing all BRCA cases treatable with A on-label drugs (Figures 7C, 7D, and S7D). 

All other cancer types only had A off-label copy-number amplifications, and later-onset 

cases generally showed similar or slightly higher frequencies of actionable events. In LGG, 

A off-label was the highest predicted actionability level for 27.5% of later-onset versus 

13.5% of young adult cases (Figures 7C and S7D). A large proportion of the discrepancy 

can be explained by 7.8% of later-onset cases compared to 2.6% of young adult LGG 

cases presenting CDK4 amplification (Figure S7E), which corresponded to the A off-label 

combination therapy Abemaciclib + Palbociclib. In the multivariate analysis correcting for 

covariates (Figure 3B), ERBB2 copy-number amplification was not significantly associated 

with age in BRCA (p = 0.35), whereas CDK4 amplification was associated with later-onset 

LGG (p = 0.010), validating recently published findings in a Japanese glioblastoma cohort 
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(Fukai et al., 2020). Overall, while our results highlight age-related molecular drivers across 

cancer types, further studies are required to establish the mechanistical underpinning and 

clinical implications of their age associations in cancer.

DISCUSSION

We present here a comprehensive investigation of young adult cancer’s genomic and 

molecular profiles, uncovering molecular features distinguishing cancer of this understudied 

population suffering from increased incidence in the US and worldwide (Gupta et al., 2020; 

Sung et al., 2019).

While accumulated mutations throughout an individual’s lifetime are known to drive 

tumorigenesis (Stratton et al., 2009; Tomasetti et al., 2013; Vogelstein et al., 2013), young 

adult cancers may be precipitated by specific, aggressive genomic drivers. For example, 

while IDH1/2 mutations are known to be associated with young adult gliomas (Haase et al., 

2018; Yan et al., 2009), our paired mutation-subtype analysis provides improved resolution, 

showing IDHmut-non-codel glioma enrichment in young adults whereas IDHmut-codel 

gliomas are enriched in later-onset cases (Figure 1B). Building on this distinction, we also 

found mutations in TP53 and ATRX to be associated specifically with IDHmut-non-codel 

subtype gliomas (Brat et al., 2015; Cheung et al., 2012) (Figures 2A and 2C). Additionally, 

we confirmed the association between PTEN mutations and young adult COAD found in 

previous reports (Ballester et al., 2016; Berg et al., 2010). Interestingly, we also identified 

mutations in both ATRX and PTEN associated with young adult UCEC (Figure 2A), 

suggesting a pan-cancer relationship between these gene-level mutations and young adult 

cancer.

Copy-number variations dominate the functional genomic drivers in multiple cancer types 

and may explain young adult tumors lacking driver mutations. Multiple copy-number 

amplifications are enriched in young adult cases, including RPTOR in BRCA, ARRDC1/
KRAS in LGG, and MYC in OV. RPTOR amplification was specifically enriched in basal 

and luminal A BRCA in young adults (Figure 2D). Recent studies have linked RPTOR 
activity with treatment implications in triple-negative and luminal-A breast cancer models 

(Bostner et al., 2018; You et al., 2018). More, the druggable ERBB2 amplification occurred 

in a quarter of young adult breast cancer cases. In young adult gliomas, we identified 

enrichment of KRAS and CCND2 amplifications with potential targeted treatment options, 

whereas later-onset LGG showed higher rates of actionable EGFR amplification (Figure 

7D).

While age strongly affects innate and adaptive immunity (Montecino-Rodriguez et al., 2013; 

Simon et al., 2015), its effects on the TIME remain unclear. Cancer types showing the 

greatest differences in young adults included BRCA, KIRC/KIRP, LGG, and SARC. Young 

adult status is associated with multiple prognostically unfavorable immune gene signatures 

in BRCA, including elevated TGF-β response and wound healing signatures but reduced 

Th17 levels (Kim and Cantor, 2014; Massagué, 2008; Thorsson et al., 2018) Figure 6B). 

Young adult sarcomas present diminished lymphocyte infiltration, IFN-γ response, M1 

macrophages, and Th1 response (Figures 6B and 6C): together, these features would predict 
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reduced survival time and poor treatment response (Brown et al., 2017; Lugade et al., 2008; 

Maimela et al., 2019; Thorsson et al., 2018). In KIRP, young adult cases present elevated 

TGF-β response and proliferation; however, they are also associated with a favorable 

increase in M1 macrophages, a feature shared with young adult BRCA (Brown et al., 2017; 

Massagué, 2008; Thorsson et al., 2018) (Figure 6B). While KIRC/KIRP and LGG show 

more prognostically mixed TIME features between cohorts, these findings would predict 

poorer overall survival in young adult BRCA and SARC (not considering other molecular or 

systematic differences). Intriguingly, an epidemiological review has shown that breast cancer 

and soft-tissue sarcomas are among the five cancer types that have worse 5-year survivals 

in young adults and adolescents (defined as 15–39 years at diagnosis) than in either older 

adults or children (Bleyer et al., 2008), corroborating our immune prognostic findings. This 

same review also found colorectal cancer to be among these cancer types showing worse 

prognosis for young adults (Bleyer et al., 2008). In our immunotherapy survival analysis, 

young adult BRCA and COAD also showed trends of worse survival (Figure S6F). Although 

the significance only borderlines the threshold of p < 0.05, the corroborating findings of 

TIME differences using multi-omic analyses suggest age may serve as additional factor 

that can affect immune response and should be considered, especially when comprehensive 

immune-profiling data are not readily available. Overall, TIME differences in young versus 

older adults vary across tissues, which may be a result of the complex interplays between 

accumulated neoantigens and age-related immune changes that require further investigation. 

These differences can determine patient prognosis and suitability of immunotherapy.

Overall, our comprehensive assessment revealed the molecular etiologies of young 

adult tumors across multiple cancer types. The findings highlighted key genomic 

and microenvironment alterations that may be targeted by kinase inhibitors and 

immunotherapies, presenting possible treatment options for young adult cancer patients.

Limitations of the study

While we identified multiple types of aberrations associated with young adult cancer 

in TCGA, studies using specifically designed, prospective tumor cohort collections are 

required to interrogate whether these molecular events are also the underlying drivers in 

the recently arising cases of young adult cancer. More, cohorts with detailed documentation 

on environmental factors are required to reveal how changes in diet or lifestyle interacted 

with the molecular drivers. For example, at the mRNA level, we found a general trend of 

lower metabolic gene expressions in young adult cancer. While obesity is a risk factor for 

multiple cancer types and some evidence has paired the obesity pandemic in the US to its 

rising rates in young adult cancer (Berger, 2018), our gene-expression analyses revealed 

these tumors, except for BRCA, generally showed lower metabolic gene expression after 

correcting for tumor stage and subtypes (Figures 5C and S5D). The metabolic regulations in 

young adult cancer remain to be further investigated. Last, while we identified age-related 

differences in clinically actionable drivers and the tumor immune microenvironment, their 

possible implication on treatment also warrants further mechanistic and clinical studies.
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STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and data should be 

directed to and will be fulfilled by the lead contact, Dr. Kuan-lin Huang (kuan

lin.huang@mssm.edu).

Materials availability—This study did not generate new unique reagents.

Data and code availability

• This paper analyzes existing, publicly available data. DOIs or links for the 

datasets are listed in the key resources table. The TCGA genomic data used 

herein are generated from the TCGA PanCanAtlas project.

• All original code has been deposited at Zenodo and is publicly available as of the 

date of publication. DOIs are listed in the key resources table.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

METHOD DETAILS

Cohort and data description—Based on 10,956 unique TCGA cases, we only included 

samples that had available gender, age at initial pathologic diagnosis, and principal 

component data as calculated by the PanCanAtlas Germline project (Huang et al., 2018; Oak 

et al., 2020). In the 7 cancer types with available subtype information, we further filtered 

for cases with defined subtypes. We retained 8,943 unique cases across the 33 TCGA cancer 

types. Only cancer types with ≥ 40 cases in both the young adult and later-onset cohorts 

were retained for subsequent analyses, resulting in 14 cancer types and a total of 5,365 

unique cases for downstream analyses. In the non-hypermutator somatic mutation analysis, 

the matching samples from the list of 342 hypermutated samples as defined by the TCGA 

PanCanAtlas project (Bailey et al., 2018) were removed before the multivariate regression 

analysis was conducted.

Somatic driver mutations—Somatic mutations of 10,244 cases were obtained from the 

Multi-Center Mutation Calling in Multiple Cancers (MC3) dataset (Ellrott et al., 2018). 

We only considered the nonsynonymous mutations in 299 cancer driver genes as defined 

by the PanCanAtlas driver project (Bailey et al., 2018), including missense, non-sense, 

frameshifting, in-frame shifting, or splice-site altering single-nucleotide changes or indels. 

Mutations predicted as functional impact by any of the algorithms described in Bailey et al. 

were considered as somatic driver mutations. Truncations in the 299 driver genes were also 

considered as drivers. We collected 35,815 likely somatic driver mutations for analyses.

DNA methylation—We obtained 16 prioritized gene-level driver methylations of 9,125 

TCGA cases as defined by the PanCanAtlas project. Potential methylations were identified 

using the bioinformatics tool RESET, then retained only if they overlapped promoters also 

identified by FANTOM5 project. Further filtering excluded events with an FDR ≥ 10% or 

Lee et al. Page 14

Cell Rep. Author manuscript; available in PMC 2021 November 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



a RESET score ≤ 1, in addition to the manual removal of tissue-associated cases (Sanchez

Vega et al., 2018).

Copy number variations—We obtained 102 prioritized driver deletions and 

amplifications of 9,125 TCGA cases as defined by the PanCanAtlas project. Potential CNVs 

were identified through integration of GISTIC 2.0, which produced a list of statistically 

recurrent copy-number altered regions of interest (CL = 0.95). To filter for functional 

gene-level CNVs inside these regions of interest, only CNVs directly relevant to the function 

of a given gene (either oncogene or tumor suppressor) or designated as oncogenic, likely 
oncogenic, or predicted oncogenic in OncoKb were retained (Sanchez-Vega et al., 2018). 

Copy number values for each genomic segment were determined by applying ABSOLUTE 

to somatic DNA copy number data from 10,552 TCGA samples, and totals were determined 

by summing the number of detected segments within a given sample (Taylor et al., 2018).

Fusion events—We obtained 124 prioritized driver fusion events of 9,125 TCGA cases as 

defined by the PanCanAtlas project. Potential fusion events were called from TCGA RNA

Seq data (mapped to the human genome) using STAR-Fusion, in conjunction with EricScript 

and BREAKFAST algorithms. These fusion events were further filtered by their OncoKb 

labels: only those designated as oncogenic, likely oncogenic, or predicted oncogenic were 

retained (Sanchez-Vega et al., 2018).

Expression data—The batch-normalized mRNA gene expression data of TCGA samples 

were obtained from the PanCanAtlas consortium. For patients with data from multiple 

samples, we averaged the expression values. We next removed patients lacking any 

information of the following information: age, gender, PC1, PC2. The expression value 

of each gene is log2(expression+0.05) transformed. Only cancers with at least 40 patients in 

either young adult or later-onset cohorts were retained, resulting in 5,009 patients across 13 

cancer types and 20,531 analyzed genes.

Genomic and immune signatures—We integrated genomic and immune signatures of 

11,080 TCGA individuals from Thorsson et al., collected into a pan-cancer TIME immune 

feature matrix (Thorsson et al., 2018).

The ICGC validation cohort—To validate the age-related associations, we applied 

similar analyses on the ICGC somatic mutation and CNV data. The ICGC cohort, after 

filtering out all TCGA samples and samples missing necessary variables (e.g., age at 

pathologic diagnosis), contained 1,820 unique samples. We then filtered to cancers with 

corresponding types in the 14 retained TCGA cancers. LICA, LINC, and LIRI were 

collapsed into one acronym to match TCGA’s liver cancer designation: LIHC. Additionally, 

MELA cases were relabeled as SKCM to match TCGA’s melanoma designation. RECA 

covers 2 of the 14 retained TCGA cancer types: KIRC and KIRP. Ultimately, we ended 

up with 6 consolidated ICGC cancer types and a total of 642 unique samples to validate 

against our TCGA results. In the ICGC driver catalog, we removed any genes containing the 

following strings: ‘lncrna’, ‘enhancers’, and ‘telomere’. The ICGC multivariate regression 

model adjusted for these covariates: subtype, gender, and country (of the study).
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QUANTIFICATION AND STATISTICAL ANALYSIS

Multivariate regression model—Considering age effects on molecular profiles may 

be confounded by other factors, we evaluated standard ways to address such confounders, 

including multivariate regression and propensity score matching. Whether propensity score 

matching yields more robust findings compared to multivariate regression remains debated, 

and in practice the results are often similar (Biondi-Zoccai et al., 2011). A Monte Carlo 

simulation study showed that, when the number of events per confounder is greater than 8, 

logistic regression should be the technique of choice: its median percentage of bias reduces 

while the number of events increased above 8, in contrast to the propensity score approach, 

where the bias remains steady and is therefore preferable for smaller sample sizes (Cepeda 

et al., 2003). In the analyzed TCGA cancer cohorts, we have a median of 80 young adults 

in each cancer type and 4 covariates, equivalent to 20 events per confounder. Ergo, we chose 

multivariate regression models for subsequent analyses.

We considered age at initial pathologic diagnosis – our independent variable (xi) – as 

both binary and continuous across all analyses (except gene expression, where age was 

considered only as binary). In our age-as-binary analyses, subjects who were over 50 years 

old at initial pathologic diagnosis were classified as later-onset cases, while subjects 50 

years or younger were classified as young adult cases. The dependent variable (yi) was 

the analysis-dependent feature of interest (e.g., somatic mutation status, methylation status, 

score for an immune feature, etc.). For all analyses except the immune feature analysis, 

the dependent variable was binary (i.e., the genetic event did or did not occur). For these 

analyses the family of our generalized linear model (GLM) function was set to “binomial,” 

and the test parameter of the following ANOVA function was set to “Chisq.” For the 

immune features analysis, the dependent variable was continuous. Ergo, for this analysis the 

family of our GLM was set to “gaussian,” and the test parameter of the following ANOVA 

function was set to “F.” Our covariates were subtype (in the 7 cancer types where it is 

available), gender (when cancer type was not female-specific), and the PC1 and PC2 that 

accounted for 80.8% of the variation across the first 20 principal components (Huang et 

al., 2018; Oak et al., 2020). P values were adjusted to FDR using the standard Benjamini

Hochberg (BH) procedure. In this study, significance was defined as an FDR < 0.05.

To adjust for large-magnitude coefficients obtained during our CNV, methylation, and 

fusion age-as-binary analyses (for the purpose of plotting), we first made all coefficients 

positive, then applied a log10 transformation. Positive log10-transformed coefficients that 

were originally negative were multiplied by −1, and negative log10-transformed coefficients 

that were originally positive were also multiplied by −1. In this way, we were able to 

scale down large magnitude coefficients while preserving their original direction. This same 

transformation was also applied to the coefficients obtained during the somatic mutation and 

CNV ICGC validations.

Aneuploidy, copy number segment, and leukocyte fraction analyses—We used 

Mann-Whitney U tests to determine significant and suggestive differences in summed 

ABSOLUTE-determined copy number segments (Taylor et al., 2018), aneuploidy scores, 

and leukocyte fractions (Thorsson et al., 2018) between young adult and later-onset cases 
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across the 14 cancer types. We utilized base R’s wilcox.test() function to obtain p values, 

which were then adjusted to FDR using the BH procedure.

Enrichment of event-subtype pairs—We first used Fisher’s exact tests to identify 

significant and suggestive differences in subtype proportions between young adult and 

later-onset cases within cancer types, adjusting p values to FDR using the BH procedure. 

We then used Fisher’s exact tests to identify significant and suggestive differences in rates of 

event-subtype pairs between young adult and later-onset cases. This was done within cancer 

types, and the events tested were those found to be significant or suggestive by the GLM. 

Additionally, these event-subtype tests (part of the somatic mutation, methylation/fusion, 

and CNV analyses) were done only for cancer types in which significant or suggestive 

differences in subtype proportions had been found between young adult and later-onset 

cases. P values were again adjusted to FDR using the BH procedure.

Differentially expressed genes and pathways—Within each cancer type, we applied 

a multivariate linear regression model to assess the significance P value and differential 

expression of each gene between young adult and later onset cohorts adjusting any available 

covariant (PC1, PC2, subtype, tumor stage, gender), implemented by the lmFit function of R 

package limma (Ritchie et al., 2015). Only genes with less than 30% of zero proportion in 

a specific cancer type were assessed. Genes with BH adjusted P value < 0.05 and absolute 

values of coefficient > 1 were defined as differentially expressed genes.

We then used Gene Set Enrichment Analysis (GSEA) to identify KEGG pathways affected 

by the differential expression of genes in each cancer (Subramanian et al., 2005). First, 

genes were ranked by their expression change between young adult and later-onset cases. 

Next, the ranked gene lists were subjected to GSEA analysis as implemented by the R 

package fgsea. Pathways with BH-corrected p values < 0.05 were regarded as significant.

Immunotherapy cohort survival analysis—The association between age of cancer 

onset and overall survival after immune checkpoint inhibitor therapy was assessed using 

a genomic cohort of 1,525 patients with advanced solid tumors at the Memorial Sloan 

Kettering Cancer Center (Samstein et al., 2019). Age of cancer onset was dichotomized into 

≤ 50 or > 50 years. Cox proportional hazards models adjusting for tumor mutation burden 

(TMB) were used to test the association of age of cancer onset and overall survival. The 

analysis was stratified by cancer histology.

Clinical actionability analyses—We mapped our biomarkers of interest (somatic variant 

and amplification) to 3 oncology knowledge bases: CIViC (Griffith et al., 2017), CGI 

(Tamborero et al., 2018), and OncoKb (Chakravarty et al., 2017). We made sure to exclude 

biomarkers not linked to either approved (Level A) or experimental (Level B) anti-cancer 

drugs, since we are specifically interested in clinical actionability. Additionally, for both 

analyses, only cancer types with ≥ 10 unique young adult and ≥ 10 unique later-onset cases 

with biomarker(s) druggable at the A or B evidence levels were retained for subsequent 

analyses. We manually annotated both patient cancer types and CGI + OncoKb cancer types 

(CIViC was pre-annotated) with DOIDs from the disease ontology database to determine on 

versus off-label status.
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Highlights

• Gene-level mutations, CNVs, methylations, and fusions associated with 

young adult cases

• Different rates of mutation/CNV-subtype pairs in young adult versus later

onset cases

• Pan-cancer approach identifies consistent age-related tumor immune response

• Young adult cases show different frequencies of actionable genomic drivers
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Figure 1. Characterizing 5,365 adult cancers of the TCGA PanCanAtlas cohort
(A) Attributes of the 5,365 cases (1,757 young adult and 3,608 later-onset) across 14 cancer 

types, including TCGA abbreviation of the cancer type, gender ratio, mean age at diagnosis, 

and young adult ratio.

(B) Subtype percentages between young adult and later-onset cases in non-female-specific 

cancer types. Log10-transformed nonsilent mutation rates for unique individuals in each 

cancer type are colored by subtype.
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(C) Subtype percentages between young adult and later-onset cases in female-specific cancer 

types. Log10-transformed nonsilent mutation rates for unique individuals in each cancer 

type are colored by subtype.

(D) Log10-transformed nonsilent mutation rates for unique individuals in cancer types 

without subtype information are distinguished by PanCanAtlas colors.

See also Figure S1.
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Figure 2. Somatic mutations between young adult and later-onset tumors
(A) Somatic mutations associated with young adult versus later-onset cancer cohorts. For 

each gene-level mutation, a coefficient >0 represents a higher rate in young adult cases, 

while a coefficient <0 represents a higher rate in later-onset cases. Significant mutations 

(FDR <0.05) are labeled.

(B) Percentages of young adult versus later-onset BRCA cases presenting mutation-subtype 

pairs.

(C) Percentages of young adult versus later-onset LGG cases presenting mutation-subtype 

pairs.

(D) Percentages of young adult versus later-onset UCEC cases presenting mutation-subtype 

pairs.

See also Figure S2 and Table S1.
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Figure 3. Copy-number variations between young adult and later-onset tumors
(A) Log10-transformed summed copy-number segments per sample across the 14 cancer 

types in young adult versus later onset tumors; black bars designate median values. *FDR 

≥0.10 and <0.15, **FDR ≥0.05 and <0.10, and ***FDR <0.05.

(B) CNVs associated with young adult versus later-onset cancer cohorts. For each deletion 

or amplification, a log10-transformed coefficient >0 represents a higher rate young adult 

cases, while a log10-transformed coefficients <0 represents a higher rate in later-onset cases. 

Significant (FDR <0.05) and suggestive (FDR <0.15) CNVs are labeled.

(C) Percentages of young adult versus later-onset BRCA cases presenting CNV-subtype 

pairs.

(D) Percentages of young adult versus later-onset LGG cases presenting CNV-subtype pairs.

(E) Percentages of young adult versus later-onset UCEC cases presenting CNV-subtype 

pairs.

See also Figure S3 and Table S2.
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Figure 4. Methylations/fusions between young adult and later-onset tumors
(A) Methylations associated with young adult versus later-onset cancer cohorts. For each 

gene-level methylation, a log10-transformed coefficient >0 represents a higher rate in young 

adult cases, while a log10-transformed coefficient <0 represents a higher rate in later-onset 

cases. Significant (FDR <0.05) and suggestive (FDR <0.15) methylations are labeled.

(B) Percentages of young adult versus later-onset BRCA cases presenting methylation

subtype pairs.

(C) Percentages of young adult versus later-onset LGG cases presenting methylation

subtype pairs.

(D) Fusions associated with young adult versus later-onset cancer cohorts. For each fusion 

event, a log10-transformed coefficient >0 represents a higher rate in young adult cases, 

while a log10-transformed coefficient <0 represents a higher rate in later-onset cases. 

Significant (FDR <0.05) and suggestive (FDR <0.15) fusions are labeled.

See also Figure S4 and Table S3.
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Figure 5. Differentially expressed genes and pathways between young adult and later-onset 
tumors
(A) Differentially expressed genes between young adult and later-onset cancer cohorts. 

Positive and negative logFC values represent higher levels in young adult and later-onset 

cases, respectively. Color represents a gene differentially expressed in a specific cancer type; 

gray represents a gene not differentially expressed in any cancer. Differentially expressed 

genes with BH-corrected p values less than that of the top third gene are labeled.
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(B) Overview of pathway perturbed by differential expression in different cancers. Positive 

and negative normalized enrichment scores represent higher levels in young adult and 

later-onset cases, respectively.

(C) The normalized enrichment scores of pathway-cancer associations. Red and blue 

indicate higher levels in young adult and later-onset cases, respectively. Significant 

associations are pinpointed by gray boxes. Cancers are ordered by the number of 

significantly perturbed pathways involved, and pathways are split based on the number of 

involved cancers.

(D) Enrichment of two immune-related pathways (cytokine-cytokine receptor interaction 

and graft versus host disease) with consistently lower expressions across three cancer types 

(HNSC, LGG, and SARC).

See also Figure S5.
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Figure 6. Tumor immune microenvironment differences between young adult and later-onset 
cases
(A) Differences in neoantigen loads between young adult and later-onset cases. Red and blue 

indicate higher levels in young adult and later-onset cases, respectively. *FDR ≥0.10 and 

<0.15, **FDR ≥0.05 and <0.10, and ***FDR <0.05.

(B) Differences in immune gene signatures and infiltrates between young adult and later

onset cases. Red and blue indicate higher levels in young adult and later-onset cases, 

respectively. *FDR ≥0.10 and <0.15, **FDR ≥0.05 and <0.10, and *** FDR <0.05.

(C) Differences in Th cell levels between young adult and later-onset cases. Red and blue 

indicate higher levels in young adult versus later-onset cases, respectively. *FDR ≥0.10 and 

<0.15, **FDR ≥0.05 and <0.10, and ***FDR <0.05.

(D) Positive logFC (red) indicates higher expression in young adult cases; negative logFC 

(blue) indicates down-expression in young adult cases. Genes with p < 0.05 are pinpointed 

by black boxes.
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See also Figure S6.
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Figure 7. Clinical actionability in young adult versus later-onset tumors
(A) Percentages of unique young adult and later-onset cases with somatic variants druggable 

at the A or B evidence levels, further subdivided by on versus off-label status.

(B) Percentages of unique young adult and later-onset cases expressing each of the top 

five (ranked by frequency of appearance in the seven selected cancers) clinically druggable 

somatic variants. Young adult percentages are red; later-onset are black. After correcting for 

confounding factors, a single significant association (FDR <0.05) was found between BRAF 
V600E mutations and young adult SKCM.
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(C) Percentages of unique young adult and later-onset cases with copy-number 

amplifications druggable at the A or B evidence levels, further subdivided by on versus 

off-label status.

(D) Percentages of unique young adult and later-onset cases expressing each of the top 

five (ranked by frequency of appearance in the six selected cancers) clinically druggable 

copy-number amplifications. Young adult percentages are red; later-onset are black.

See also Figure S7.
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KEY RESOURCES TABLE

Reagent or resource Source Identifier

Deposited data

MC3 somatic mutations Ellrott et al., 2018 https://doi.org/10.1016/j.cels.2018.03.002

PanCanAtlas-defined driver genes Bailey et al., 2018 https://doi.org/10.1016/j.cell.2018.02.060

PanCanAtlas-prioritized gene-level methylations Sanchez-Vega et al., 2018 https://doi.org/10.1016/j.cell.2018.03.035

PanCanAtlas-prioritized copy number variations Sanchez-Vega et al., 2018 https://doi.org/10.1016/j.cell.2018.03.035

Summed ABSOLUTE-determined copy number 
segments per sample

Taylor et al., 2018 https://doi.org/10.1016/j.ccell.2018.03.007

PanCanAtlas-prioritized fusion events Sanchez-Vega et al., 2018 https://doi.org/10.1016/j.cell.2018.03.035

Batch-normalized mRNA gene expression data PanCanAtlas https://gdc.cancer.gov/about-data/publications/pancanatlas

Genomic and immune signature data Thorsson et al., 2018 https://doi.org/10.1016/j.immuni.2018.03.023

Survival and associated genomic data Samstein et al., 2019 https://doi.org/10.1038/s41588-018-0312-8

Clinically actionable CIViC biomarkers Griffith et al., 2017 https://doi.org/10.1038/ng.3774

Clinically actionable CGI biomarkers Tamborero et al., 2018 https://doi.org/10.1186/s13073-018-0531-8
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