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Abstract. In 2016, the World Health Organization incorpo‑
rated ‘myeloid neoplasms with germline predisposition’ into its 
classification of tumors of hematopoietic and lymphoid tissues, 
revealing the important role of germline mutations in certain 
myeloid neoplasms, particularly myelodysplastic syndrome and 
acute myeloid leukemia. The awareness of germline suscepti‑
bility has increased, and some patients with myeloid neoplasms 
present with a preexisting disorder or organ dysfunction. In 
such cases, mutations in genes including CCAAT enhancer 
binding protein α (CEBPA), DEAD (Asp‑Glu‑Ala‑Asp) box 
polypeptide 41 (DDX41), RUNX family transcription factor 1 
(RUNX1), GATA binding protein 2 (GATA2), Janus kinase 2 
(JAK2) and ETS variant transcription factor 6 (ETV6) have 
been recognized. Moreover, with the application of advanced 
technologies and reports of more cases, additional germline 
mutations associated with myeloid neoplasms have been iden‑
tified and provide insights into the formation, prognosis and 
therapy of myeloid neoplasms. The present review discusses 
the well‑known CEBPA, DDX41, RUNX1, GATA2, JAK2 
and ETV6 germline mutations, and other mutations including 
those of lymphocyte adapter protein/SH2B adapter protein 3 
and duplications of autophagy related 2B, GSK3B interacting 
protein αnd RB binding protein  6, ubiquitin ligase, that 
remain to be confirmed or explored. Recommendations for the 

management of diseases associated with germline mutations 
are also provided.
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1. Introduction

Myeloid neoplasms are a group of heterogeneous neoplasms 
formed by the clonal proliferation of hematopoietic stem cells 
(HSCs) with multidirectional differentiation potential in the 
bone marrow, and they include acute myeloid leukemia (AML), 
myelodysplastic syndrome (MDS) and myeloproliferative 
neoplasms (MPNs). The pathogenesis of myeloid neoplasms 
is complicated, and germline mutations play a critical role in 
this process. Patients with these mutations have been observed 
to have a predisposition to MDS/AML and other myeloid 
neoplasms. This concept was added to the 2016 revision to the 
World Health Organization (WHO) classification of myeloid 
neoplasms and acute leukemia as a new category, indicating 
the importance of germline mutations in these hematopoi‑
etic malignancies (1). This revision is profound, as patients 
with myeloid neoplasms caused by germline mutations may 
have different clinical manifestations, responses to clinical 
management and prognoses from those with de novo MDS 
and AML (2). Patients with MDS/MPNs who have germline 
mutations also have a higher risk of developing AML, which 
is also likely to have more malignant clinical features and poor 
outcomes. Therefore, it is essential to identify the germline 
mutations in myeloid neoplasms, understand their mechanisms 
and take early therapeutic measures with long‑term follow‑ups. 
Myeloid neoplasms with germline mutations are sporadic, but 
with the application of whole‑genome and targeted sequencing 
and more familial hematopoietic disorders being reported, a 
greater number of germline mutations have been identified 
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and more clearly defined. The present review summarizes 
basic information about germline mutations, and the features 
of associated clinical syndromes or diseases in Tables I and II.

2. Germline mutation of myeloid neoplasms

In the 2016 revision of the WHO classification guidelines 
for myeloid neoplasms and acute leukemia (1), the molecular 
recognition of germline predisposition to hematopoietic 
neoplasms was formalized. For example, the primary genetic 
susceptibility factors used to identify bone marrow malignan‑
cies, namely RUNX family transcription factor 1 (RUNX1), 
CCAAT enhancer binding protein α (CEBPA) and GATA 
binding protein 2 (GATA2), are hematopoietic transcription 
factors, which are often associated with the onset of malignan‑
cies in young individuals. While idiopathic MDS has a typical 
onset age of >60 years, it is common for patients with GATA2 
deficiency to develop MDS at a younger age, with a median 
age at onset of 29 years; in these patients, the prevalence 
of MDS during their lifetime is estimated to be 90%, and 
GATA2‑associated MDS is a high‑risk pre‑leukemic disease 
that may rapidly develop into AML (3). The recent identifica‑
tion of DEAD (Asp‑Glu‑Ala‑Asp) box polypeptide 41 (DDX41) 
germline mutations in familial myeloid malignancies has 
also led to a shift in the view of susceptibility to hematologic 
malignancies, indicating an association of germline mutations 
with age at onset and potential function. Therefore, further 
research into the myeloid neoplasms associated with germline 
mutations is recommended.

CEBPA. The CEBPA gene is located on chromosome 
19q13.1, and encodes a transcription factor that is essential for 
granulocytic differentiation and cellular growth arrest (4,5). 
CEBPA consists of three domains, which comprise two 
N‑terminal transactivating domains, and a basic region with 
leucine‑zipper (bZIP) for specific DNA sequence binding and 
dimerization, respectively, at the C‑terminal end (6). The bZIP 
domain of the transcription factor is able to recognize the 
CCAAT motif in the promoters of target genes (4). Alternative 
in‑frame non‑AUG (GUG) and AUG start codons result in 
protein isoforms with different lengths, namely p42 and p30. 
CEBPA‑p42, as the full‑length isoform, has been widely 
studied, and its function has been shown to be associated with 
the proliferation and differentiation of myeloid progenitors (7). 
A study by Zhang et al (8) found that the loss of CEBPA‑p42 
in mice disrupted the normal development of terminally 
differentiated granulocytes and macrophages, and increased 
the self‑renewal of HSCs. The truncated protein CEBPA‑p30 
is a negative factor responsible for blocking differentiation in 
AML, and mutations in CEBPA are critical in the disruption 
of myeloid differentiation in AMLs (9).

Smith et al (6) reported the first case of CEBPA mutation 
in 2004. The case was a member of a family in which three 
members were affected by AML. The researchers identified a 
212delC mutation in CEBPA by analyzing DNA extracted from 
peripheral blood samples. Two siblings possessed a normal 
karyotype and were diagnosed with a rare disease, namely 
M2 with eosinophilia, and their father was diagnosed with 
M1. The researchers screened for the 212delC mutation in five 
healthy family members and found the wild‑type sequence, 

indicating that the germline CEBPA mutation truly contributed 
to the development of AML. The characteristics of these three 
familial cases were consistent with French‑American‑British 
subtype M1 or M2 classification.

Sellick et al (10) reported further cases with a germline 
mutation in CEPBA that caused AML, supporting the previous 
conclusion. The authors screened five members of a family, 
three of whom were diagnosed with AML. The affected 
patients were found to harbor an out‑of‑frame germline 
217insC mutation in the N‑terminal area of CEBPA, leading 
to reduced expression of the 42‑kDa isoform and enhanced 
production of the 30‑kDa isoform. Corresponding results 
were observed in two subsequent studies (11,12). It is worthy 
of note that the locations and types of mutations found by 
Sellick et al (10) are almost identical to the mutations in the 
aforementioned family with AML, indicating that these muta‑
tion of CEBPA may serve to initiate the pathogenesis of AML 
as a dependent factor.

In subsequent years, other germline CEBPA mutations 
have been reported, including 350‑351insCTAC, 291delC, 
465‑466insT and 217‑218insC (11‑13). All of these mutations 
are located in the N‑terminal region. Yan et al (14) also reported 
that a patient with AML that may have developed from MDS 
carried a germline CEBPA mutation: C.134dupC. The germ‑
line CEBPA mutation was an initial event in this case, and the 
patient presented with myelodysplasticity, indicating that this 
mutation may participate in the transition from MDS to AML.

It has become increasingly clear that familial AML with 
germline CEBPA mutation involves the inheritance of a single 
copy of mutated CEBPA encoding a granulocyte differentia‑
tion factor (4). The AML is associated with biallelic CEBPA 
mutations, typically with the germline mutation at the 5'-end 
of the gene and a somatic mutation at the 3'-end of the allele 
acquired when progression to AML occurs (13).

DDX41. DDX41 is a receptor belonging to the DEAD/H‑box 
helicase family, encoded by a gene comprising 17 exons on 
chromosome 5 (5q35.3)  (15). DEAD‑box proteins such as 
DDX41 have a core consisting of two major domains involved 
in nucleotide binding, with sites for RNA binding and ATP 
hydrolysis. The functions of the N‑ and C‑terminal regions are 
not specific to particular proteins. In terms of RNA metabo‑
lism, DDX41 takes part in pre‑mRNA splicing, mRNA export, 
transcriptional and translational regulation, ribosome biogen‑
esis and RNA decay (16).

In multiple families with MDS/AML, DDX41 mutations 
have been identified as germline and acquired somatic muta‑
tions, and most of the germline mutations are frameshift 
mutations. DDX41 mutations can affect the development of 
tumors, as the loss of DDX41 has been shown to result in a loss 
of tumor‑suppressive function (17,18). Somatic mutations have 
also been detected in the majority of tumors with germline 
mutations (19). Clinically, DDX41 mutation leads to the devel‑
opment of high‑risk MDS. Notably, the functions of DDX41 
contribute to various biological processes, including mRNA 
splicing, innate immunity and rRNA processing (15).

In 2015, Polprasert et al (17) first described adult cases of 
MDS/AML caused by germline mutations (p.I396T, p.F183I, 
p.Q52fs and p.M155I) in the DDX41 gene. The authors identi‑
fied a higher incidence of DDX41 mutations and deletions in 
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patients with advanced MDS (19%) compared with low‑risk 
MDS (6%). They also observed that patients with DDX41 
mutations or deletions had poorer overall survival, In addition, 
they noted that the occurrence of somatic DDX41 mutation 
is closely associated with the existence of germline DDX41 
mutations, with ~50% of patients with germline DDX41 muta‑
tions also acquiring somatic mutations (p.A225D, p.E247K, 
p.P321L and split‑donor site mutations), compared with 0.8% 
of patients with wild‑type DDX41.

Lewinsohn et al (18) also provided evidence that DDX41 
mutations are an important cause of MDS/AML induction, 
suggesting that DDX41 is an effective tumor suppressor. The 
authors screened 289 families with hematological malignan‑
cies by whole‑exon sequencing, and detected heterozygous 
germline DDX41 mutations in nine families. Three of these 
families carried a p.D140gfs*2 repeat mutation, one family 
carried a germline c.1574G>A p.R525H mutation, and five 
carried new mutations that had not been reported before. In 
addition, the average age of the germline DDX41 mutation 
carriers at the onset of MDS or AML was 57 years, which is 
younger than the previously reported age of 67 years. Further 
germline DDX41 mutations have been reported in subsequent 
studies  (19,20), including c.711G>T p.L237F, c.712C>A 
p.P238T, c.155dupA, c.1586_1587delCA and c.719delTinsCG.

Patients with DDX41 mutations who develop MDS/AML 
usually present with leukopenia with or without other cytope‑
nias and macrocytosis, in addition to hypocellular bone marrow 
with prominent erythroid dysplasia, and a normal karyotype, 
often leading to erythroleukemia (18). The prognosis of these 
patients is generally poor. On the basis of findings in a limited 
number of patients, cases with DDX41 mutation may respond 
to lenalidomide  (15). However, more data are required to 
verify the efficacy of this treatment.

RUNX1. RUNX1 is located on chromosome band 21q22, and 
is associated with the development of normal hematopoi‑
esis. It is a key regulator of hematopoietic and bone marrow 
differentiation. The protein is a member of a family of tran‑
scription factors with a homologous region called the runt 
homology domain (RHD). The RHD directs the binding of 
RUNX1 to the DNA sequence of the target gene and mediates 
the interaction between RUNX1 and core binding factor‑β. 
Mutations in RUNX1 are associated with leukemia and MDS, 
and patients with these mutations often have a favorable 
outcome (21).

In 1999, Osato et al (22) first revealed three types of muta‑
tions within the Runt domain of the RUNX1 gene, namely 
silent mutations, missense mutations and nonsense or frame‑
shift mutations. These mutations can affect the function of 
RUNX1, leading to leukemia. Since then, additional RUNX1 
mutants have been identified in patients with MDS/AML, 
indicating that germline RUNX1 mutation is one of the main 
pathogenic mechanisms of MDS and AML. RUNX1 muta‑
tions can inhibit the differentiation of HSCs and the onset 
and development of MDS/AML (22). Ismael et al (23) found 
RUNX1 mutations, including V90‑K117del, Val117fsX124 and 
T300fsX311, in three of five pediatric patients diagnosed with 
MDS/MPN‑unclassified.

Owen  et al  (24) conducted a study of familial platelet 
disease with propensity to myeloid malignancies (FPD/AML), 

an autosomal dominant syndrome characterized by platelet 
abnormalities and susceptibility to MDS/AML that is caused 
by the genetic mutation of RUNX1. The authors identified 
germline RUNX1 mutations in five families with a history 
of MDS/AML, including 1007_1013del, G336fsX563, 83insG 
and A28fsX109, and found a 35% incidence of MDS/AML in 
carriers of RUNX1 mutations. In another study of FPD/AML, 
Cavalcante de Andrade Silva et al (25) examined two brothers 
who had been diagnosed with hematological malignancies 
and their families. The study revealed a microdeletion encom‑
passing exons 1‑2 of RUNX1 in six family members.

Harada and Harada (26) proposed a new category of myelo‑
dysplastic neoplasms, comprising MDS refractory anemia with 
excess blasts and AML with myelodysplasia‑related changes, 
and sought to elucidate the relationship between RUNX1 
mutations and secondary MDS and AML. In their analysis, 
20% of patients with this new category of disease were found 
to have RUNX1 mutations. The study concluded that RUNX1 
mutations are likely to be an initial factor in the development 
of AML, in addition to other genetic abnormalities.

Different families with germline RUNX1 mutations exhibit 
varying risks of developing MDS and AML (11‑100%), and 
the median age of patients with such mutations at the onset of 
MDS/AML is 33 years, which is younger than that of sporadic 
MDS/AML (2,27).

GATA2. The GATA2 gene, located on chromosome 3, encodes 
a zinc finger transcription factor that contains two zinc fingers 
and a nuclear localization signal. This protein is vital in the 
development and proliferation of hematopoietic and endocrine 
cell lineages (28). GATA2 is crucial for the production and 
maintenance of HSCs in embryonic and adult hematopoietic 
processes and plays a regulatory role by combining with down‑
stream targets, including transcription factor PU.1 (SPI1), LIM 
domain only 2, T‑cell acute lymphocytic leukemia protein 1, 
Friend leukemia integration 1 transcription factor and 
RUNX1 (3). Hematopoietic cells are susceptible to changes 
in GATA2 levels (3). Mutations in the exons and intron 5 of 
this gene have been identified to cause several hematopoietic 
diseases, including MDS, AML and chronic myelomonocytic 
leukemia (CMML). In humans, germline mutations are an 
important cause of GATA2 deficiency.

While MDS primarily affects the elderly, it is often asso‑
ciated with an underlying genetic predisposition in children 
and young adults. An et al (29) found that germline GATA2 
mutations accounted for 8.5% of primary MDS cases in a 
cohort of children in China. Wang et al (30) investigated the 
prevalence of GATA2 mutations in pediatric hematological 
diseases related to MDS and AML. Using Sanger sequencing 
to analyze all exons and intron 5 of GATA2 in children with 
MDS from three families with recorded pathogenic mutations, 
they detected GATA2 germline mutations in all three families 
(c.892dupT p.C298LfsX86, c.1168_1170delAAG p.K390del, 
c.802G>T p.G268X). In the follow‑up sequencing of target 
genes in six familial MDS patients, GATA2 germline muta‑
tion was also found. In two consecutive prospective studies 
conducted in Germany over 15 years, Wlodarski et al  (31) 
investigated 426 child and adolescent patients with MDS and 
a further 82 patients with secondary MDS. It was found that 
GATA2 germline mutations accounted for 15% of advanced 
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primary MDS cases and 7% of all cases. However, in chil‑
dren with MDS secondary to treatment or acquired aplastic 
anemia, these mutations were not present. Carriers of GATA2 
mutations were older than patients with wild‑type GATA1 
when diagnosed and were more likely to have monosomy 7 
and advanced disease. A further 108 patients with primary 
MDS were then subjected to a stratified analysis. Among 
these patients, a total of 57 cases with GATA2 mutations 
were identified, with 44 different germline mutations, 31 
of which were new. It was observed that GATA2 mutations 
had a prevalence of 37% in patients of all age groups with 
monosomy 7, and peaked at puberty when they were present 
in 72% of adolescents with monosomy 7. The study identified 
GATA2 mutation as the most common germline defect, with 
monosomy 7 predisposing adolescents to infantile MDS and a 
high prevalence of GATA2 mutations.

McReynolds et al (3) conducted a clinical, hematological 
and genetic evaluation of 25 patients with GATA2 mutations, 
including missense (11/24, 46%), transcoding (2/24, 8%), 
acquisition (5/24, 21%) and regulatory (6/24, 25%) mutations. 
Hematological analyses revealed that 48% of the patients met 
the criteria for the diagnosis of MDS or CMML. The study also 
suggested that abnormal clonal hematopoiesis is frequent in 
MDS patients with symptomatic GATA2 mutation, indicating 
the importance of the close monitoring of disease progression 
in early MDS.

Bödör et al (32) investigated familial cases of MDS/AML 
with GATA2 germline mutations and observed a GATA2 
p.Thr354Met mutation in five individuals from one family 
pedigree. Furthermore, high‑risk MDS syndrome with 
monosomy 7 was noted in two first cousins with somatic 
ASXL1 c.1934dupG p.Gly646TrpfsX12. These findings 
confirm that individuals with germline GATA2 mutations 
are prone to familial MDS/AML, and the occurrence of 
monosomy 7 and ASXL1 mutation may be prevalent secondary 
genetic abnormalities.

Ding et al (28) sequenced the whole genome and exons of a 
high‑risk MDS family comprising an affected father and son, 
and healthy daughter. On the basis of sequencing results, the 
affected family members were diagnosed with monocytopenia 
and mycobacterial infection (MonoMAC) syndrome with a 
heritable germline GATA2 mutation (R396Q) as a risk factor. 
Mutations in stromal antigen 2 and ryanodine receptor  2 
were also detected in bone marrow samples of the father and 
son. However, the mutations occurred at different locations, 
suggesting that these mutations were independently acquired.

Pasquet et al (33) described the preliminary identification 
of a GATA2 mutation (R396Q) in a mother and her three 
children by exon sequencing; the mutation was associated 
with a history of chronic mild neutropenia that developed into 
AML or MDS. Ten patients with severe chronic neutropenia 
from six different families were subsequently identified as 
having six distinct and previously unreported GATA2 muta‑
tions (R204X, E224X, R330X, A372T, M388V and complete 
deletion of the GATA2 locus). The frequent occurrence of 
MDS and AML in these patients with chronic neutropenia 
suggests that it is important to screen for GATA2 mutations 
in chronic neutropenia. The suggestion that GATA2 mutation 
contributes to the initiation and progression of MDS/AML was 
supported by Hahn et al (34), who identified a compound in‑cis 

GATA2 germline mutation in a pedigree with MDS/AML and 
thrombocytopenia.

GATA2‑associated disorders include familial MDS/AML, 
chronic myeloid leukemia, MonoMAC syndrome and dendritic 
cell, monocyte, B and NK lymphoid deficiency (30).

Janus kinase 2 (JAK2). The JAK2 gene is located on chro‑
mosome 9p. It encodes a non‑receptor tyrosine kinase 
associated with a variety of tumors, particularly hematologic 
neoplasms. This enzyme is involved in numerous important 
biological processes, including cell proliferation, differentia‑
tion, apoptosis and immune regulation, via participation in the 
JAK‑STAT pathway. The well‑known mutation JAK2‑V617F 
is strongly associated with MPNs, including polycythemia 
vera (PV), essential thrombocythemia (ET) and primary 
myelofibrosis (PMF) (35).

PMF carries a risk of developing into secondary AML, and 
mutations of JAK2 have been shown to initiate this progression. 
Engle et al (36) performed an in‑depth sequencing analysis of 
649 validated somatic single‑nucleotide variants in a single 
patient at different disease stages. The results indicated that 
a clonal group comprising JAK2 and U2 small nuclear RNA 
auxiliary factor 1 represented the founding clone, and included 
mutations present at high frequencies in all three disease 
stages.

The majority of mutations in ET are somatic; however, 
Yoshimitsu et al (37) reported the first case of ET caused by 
JAK2‑T875N mutation in a patient with a family history of 
thrombocytosis and cerebral infarction, which may have been 
associated with germline mutations. Marty et al (38) identi‑
fied two families with germline mutations that led to ET. One 
family had the JAK2 R867Q mutation, and the other presented 
with two JAK2 mutations, S755R and R938Q. These unusual 
mutations exhibited lower sensitivity to JAK2 and HSP90 
inhibitors than the JAK2 V617F mutation. Another germline 
mutation, JAK2 R564Q, was reported by Etheridge et al (39). 
The authors found that although JAK2 R564Q shows similar 
levels of increased kinase activity to the JAK2 V617F muta‑
tion, the growth‑promoting effects of JAK2 R564Q are much 
milder than those of JAK2 V617F. Although these mutations 
are of the same gene, their differing drug sensitivities and 
disease action mechanisms suggests that they affect different 
functions of the same gene. These distinctions may be associ‑
ated with the site of the mutation.

ETS variant transcription factor 6 (ETV6). The ETV6 gene 
is located on chromosome 12. It encodes an ETS family tran‑
scription factor with three functional domains necessary for 
hematopoiesis and the vascular development. Mutations of this 
gene indicate a predisposition to MDS and acute leukemia, 
including AML and B‑cell acute lymphoblastic leukemia 
(B‑ALL). Patients with ETV6 mutations appear to have 
decreased platelet numbers with normal‑sized platelets and a 
mild‑to‑moderate bleeding tendency (40). Several studies have 
described germline ETV6 variations as a susceptibility factor 
for hematologic malignancies.

Melazzini et al (41) described ETV6 mutations (P214L, 
R369W, W380R and N385VFs) leading to ALL or PV. The 
average platelet counts of these patients were mild to low. 
The patients were diagnosed at a younger age than those 
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without such mutations, with the exception of PV. Similar 
observations were also made in another studies, in which the 
ETV6 mutations included R359X, L349P, L358M, R399C 
and R369Q (40,42‑45). Among the carriers of these ETV6 
mutations, patients with L349P, N385VFs, P214L and R399C 
presented with features of MDS. Thrombocytopenia was 
also observed as a common feature in these patients, but 
some of the germline mutations were associated with a low 
platelet count without hematopoietic malignancies. To identify 
whether ETV6 mutations contribute to childhood leukemia, 
Topka  et  al  (44) screened a cohort of 588  patients with 
leukemia. Nineteen distinct ETV6 variants were identified, 
including two rare germline variants (V37M and R181H).

Lymphocyte adapter protein (LNK)/SH2B adapter protein 3 
(SH2B3). The LNK gene, which is also known as SH2B3 and 
insulin‑dependent diabetes mellitus 20, is located on chromo‑
some 12, and encodes a lymphocyte adaptor protein. This gene 
is a negative regulator of multiple cytokine signaling molecules 
and tyrosine kinase receptors; notably, the lymphocyte adaptor 
protein αcts as a negative regulator of the mutant protein in 
MPNs with JAK2‑V617F mutations (46).

Mutations of LNK/SH2B3 are often present in exon 2, 
and disturb the normal homeostasis process of HSCs (47‑49). 
Although the majority of LNK variants in MPNs are somatic, 
germline mutations are also present in sporadic cases, indi‑
cating that germline predisposition, including single‑nucleotide 
polymorphisms and haplotypes, may strongly affect the occur‑
rence of MPNs, particularly during leukemic transformation 
and in idiopathic erythrocytosis (50).

Luque Paz et al (50) reported the case of an 80‑year‑old 
man who presented with chronic thrombocytosis. Using 
next‑generation sequencing (NGS), an LNK mutation 
(c.639C>A p.Ser213Arg) in the PH domain was detected, a 
mutation that was also reported by Spolverini et al (51).

A germline LNK‑E208Q mutation has also been 
reported  (46,52,53). An LNK‑E208Q mutation in the PH 
domain was detected in five members of a family, two of whom 
were diagnosed with MPNs. However, this mutation showed 
low capacity for the promotion of autonomous progenitor cell 
proliferation, which may explain why the other three family 
members with this variant did not develop MPN (52).

Oh et al (46) studied 33 samples from patients with JAK2 
V617F‑negative MPNs and identified two novel mutations in 
exon 2 of LNK (603_607delGCGCT and 613C>G). These 
two mutations were identified from DNA in the skin, so it 
was deduced that both variants were germline mutations. 
Germline LNK mutations were also detected in a further study 
of 341 patients with hematopoietic malignancies, including 
a 1‑bp deletion that led to a frameshift and premature stop 
codon (Q72fs) in a patient with CMML, and a missense muta‑
tion (S186I) in four patients, one with PMF and three with 
CMML (54).

Autophagy related 2B (ATG2B) and GSK3B interacting 
protein (GSKIP). Both ATG2B and GSKIP are located 
on chromosome 14q32. They play a synergistic role in 
megakaryopoiesis (55). Hematopoietic malignancies caused 
by ATG2B and GSKIP may be associated with a duplication 
in 14q32. Plo et al (56) identified a 700‑kb tandem duplication 

at the 14q32.13‑q32.2 locus in four families from the West 
Indies. More than 30 members of these families presented 
with AML, MDS, CMML or MPN. This locus contains 
five protein‑coding genes: TCL1 family AKT coactivator 
A, GSKIP, ATG2B, and bradykinin receptors B1 and B2. 
The researchers found that simultaneous downregulation 
of ATG2B and GSKIP in this locus led to the reduction of 
the spontaneous growth of megakaryocytic progenitors, and 
thereby revealed a novel predisposition locus. However, the 
opposite conclusion was proposed by Babushok et al (55), in a 
study of a North American family with an autosomal dominant 
predisposition to myeloid neoplasms. A duplication of chro‑
mosome 14q32 without duplication of GSKIP and ATG2B was 
detected. Presumably, the duplication in this region may affect 
the expression of GSKIP and ATG2B. However, whether the 
duplication of ATG2B and GSKIP is necessary for myeloid 
neoplasms remains to be determined.

RB binding protein 6, ubiquitin ligase (RBBP6). The human 
RBBP6 gene is located on chromosome 16p12.2, and influ‑
ences cell proliferation and apoptosis by interacting with p53 
and pRb. The RBBP6 gene encodes three proteins: Isoforms 1 
and 2 bind the tumor‑suppressive proteins p53 and pRb via 
a RING domain (57,58). Although isoform 3 has no named 
domain, it may be a cell cycle regulator involved in mitosis 
and apoptosis (58). Notably, mutations on RBBP6 isoform 3 
have shown to be a predisposing factor in several cancers, 
including lung cancer, breast cancer and MPNs  (57,59). 
Harutyunyan et al (60) detected germline RBBP6 mutations 
in ~5% of familial cases of MPN (3/67) and ~0.6% of sporadic 
cases (3/490). In familial MPN, they found five mutations on 
this gene, namely E1654G, R1451T, R1569H, S1444E and 
A1673V, suggesting that RBBP6 mutations are strong candi‑
dates for familial predisposition to MPN.

Other mutations. In recent decades, with the application of 
advanced biotechnology approaches, an increasing number 
of germline mutations have been discovered. For example, 
Narumi et al (61) revealed the loss of chromosome 7 carrying 
sterile α motif domain‑containing 9 germline mutations in two 
patients with MDS by exome sequencing and other methods. 
Noris et al (62) found that mutations in 5'‑untranslated region 
of ankyrin repeat domain 26 (ANKRD26) on chromo‑
some 10p12 may lead to a 30‑fold increase in the incidence 
of MDS/AML. Takaoka et al (63) reported a new germline 
helicase‑like transcription factor mutation (E259K) in familial 
MDS. They demonstrated that this mutation may lead to the 
accumulation of DNA double‑strand breaks and the weak‑
ening of PCNA polyubiquitination. Both telomerase RNA 
component (TERC) and telomerase reverse transcriptase 
(TERT) take part in the assembly of telomerase, which protects 
chromosomes and stabilizes the genome (64,65). Mutations in 
TERT or TERC may lead to multiple diseases as presented 
in Tables I and II. As regard to signal recognition particle 72 
(SRP72), limited information is available; however, mutation 
in this gene is associated with hematological diseases (64,66). 
Although the existing research on these susceptible genes is 
relatively superficial, it provides evidence on the pathogenesis 
of myeloid neoplasms and suggests potential strategies for 
further diagnosis and treatment.
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3. Clinical significance

Pathogenicity and tumor mutation burden. Pathogenicity may 
result from the accumulation of various genetic mutations 
rather than known mutations. In patients with germline muta‑
tions, other mutated genes have also been detected (12,17,30). 
These secondary mutations increase the mutational load, 
leading to changes in the original disease course and a rapid 
switch to malignancy  (5,30,67). As they accumulate, the 
pathogenic mechanism appears more complicated. Thus, the 
detection of gene mutations and mutational burden helps in the 
analysis and explanation of the pathogenesis and progress of 
disease from the genetic perspective, and can further improve 
the level of accurate diagnosis and treatment.

Germline mutations in clinical prediction. Various germ‑
line mutations have been identified to be associated with 
hematological malignancies, but heterogeneity is evident 
in penetrance, the age of disease onset, clinical manifesta‑
tions and prognoses. Certain mutations often lead to specific 
types of hematological tumors appearing in specific clinical 
syndromes. Mutations at different loci of the same gene 
may also be a cause of heterogeneity. For example, heredi‑
tary MDS is a heterogeneous disease that develops from 
congenital bone marrow failure syndrome. It seems appro‑
priate that the risk management approach for MDS should 
differ according to the associated genetic mutations and their 
diagnoses, including those with current risk such as Fanconi 
anemia, short‑term risk such as RUNX1 mutations, and 
long‑term risk such as DDX41 mutations (68). The following 
characteristics suggest that genetic susceptibility should be 
considered in patients with MDS: Physical deformities and 
dysplasia, recurrent hemopenia, macrocyte and bone marrow 
failure, repeated infections since childhood, rare types of 
infections such as Mycobacterium avium infection, multiple 
concurrent tumors, severe side effects of chemotherapy or 
radiotherapy, or multiple family members with a family 
history of malignancy (69,70).

Germline mutations may act as biomarkers for the predic‑
tion of drug efficacy. At the 25th European Hematology 
Association Congress, it was disclosed that patients with 
DDX41 germline mutations had improved overall survival 
(HR 0.63, P=0.009) compared with those with wild‑type 
DDX41 when treated with azacytidine. This observation may 
help physicians to predict the therapeutic response (71).

Germline mutation in treatments. Due to the heterogeneity of 
myeloid neoplasms, there are no uniform recommendations for 
treatment. However, HSC transplantation (HSCT) is consid‑
ered to be an essential treatment for this type of neoplasm. 
Timely HSCT can avoid the occurrence of primary infections, 
organ dysfunction and malignancy. Nevertheless, as germ‑
line mutations have familial aggregation, family members 
with germline mutations also have a high risk of acquiring 
diseases, and the use of HSCT donations from relatives can 
lead to recurrence (72). Therefore, donors must be screened 
for potential germline mutations to eliminate the potential risk 
of donor‑derived recurrence. Moreover, genetic consulting and 
testing is also recommended for other family members (73). 
Abnormal bone marrow is a good predictor of prognosis, and 
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Table II. Germline mutation-associated syndromes or diseases in myeloid neoplasms.

Genes	 Associated syndromes or diseases	 Clinical features

CEBPA	 Familial AML, particularly FAB M1, M1Eo, 	 Early age of AML onset (11,12); favorable outcomes in
	 M2 and M2Eo (11-13), MDS (11-13)	 patients with AML (11-13)
DDX41	 Familial MDS/AML, CML, non-Hodgkin lymphoma,	 Late age of MDS/AML onset (17,18); inferior overall
	 Hodgkin lymphoma (18)	 survival (17); improved response to lenalidomide (17)
RUNX1	 Familial platelet disease/AML, MDS/AML, 	 Outcomes for MDS/AML are heterogeneous and
	 MPNs (26)	 effective treatment options are limited (24)
GATA2	 Familial MDS/AML, CML, MonoMAC syndrome, 	 Early age of MDS onset with a high risk of AML (29); 
	 DCML deficiency, Emberger syndrome	 heterogeneous manifestations in multiple systems; 
	 (lymphoedema, monosomy 7 and MDS) (30)	 GATA2 mutational status does not negatively affect the 
		  outcome of MDS or HSCT (31)
JAK2	 MPNs, including PV, ET and PMF (35), secondary	 JAK2 V617F is a canonical mutation in MPN (37);
	 AML from PMF (36)	 different mutations of JAK2 vary in drug sensitivity
ETV6	 ETV6-RT inherited thrombocytopenia predisposes to	 Thrombocytopenia; early leukemic transformation is a
	 childhood ALL (41), ALL (45), red cell macrocytosis	 major risk (41); children with ALL with germline
	 (45)	 ETV6 variants are significantly older (42)
LNK/SH2B3/	 Pediatric B-ALL (48), familial MPNs, including	 High SH2B3 levels are associated with longer
IDDM20	 PV, ET and PMF (46,52,53)	 event-free survival and overall survival in pediatric
		  patients with B-ALL (48)
ATG2B and	 Familial MPNs (56)	 Unclear whether the duplications of the GSKIP and 
GSKIP		  ATG2B genes are necessary for familial myeloid 
duplication		  neoplasms (55,56)
RBBP6	 Familial MPNs	 Clinical features and survival of familial MPNs are 
		  similar to those of sporadic MPN (59)
SRP72	 Familial BMF syndrome with elevated risk of 	 Little known due to limited cases (64,66)
	 MDS/AML (64,66)	
TERC	 Dyskeratosis congenita, BMF syndrome with elevated	 TERC mutations disturb telomerase functions, leading
	 risk of AA, MDS and AML (65,66,80), AA (81-83),	 to dyskeratosis congenita, BMF and MPNs and a high 
	 AML (82,84), MDS (82-84), paroxysmal nocturnal	 risk of AA/MDS/AML; highly variable clinical
	 hemoglobulinemia (83)	 phenotypes from mild to severe (64,85); patients with
		  AA and TERC mutations have an inadequate response
		  to immunosuppression (86) and exhibit worse survival
		  (65)
TERT	 Dyskeratosis congenita, BMF syndrome with elevated	 TERT mutations disturb telomerase functions, leading
	 risk of AA, MDS and AML (65,66,80), MPNs	 to dyskeratosis congenita, BMF and MPNs and
	 including PV, ET, PMF (87-89), AML (90,91), AA	 a high risk of AA/MDS/AML; highly variable
	 (92), MDS evolving into AML (86)	 clinical pheno typesfrom mild to severe (64,85); 
		  patients with AA and TERT mutations have an
		  inadequate response to immunosuppression (86) and
		  exhibit worse survival (65); in AML, the highest
		  median TERT levels are in M1 and M7, and higher
		  TERT levels indicate a significantly lower overall
		  survival in M1 (90)

CEBPA, CCAAT enhancer binding protein α; DDX41, DEAD (Asp-Glu-Ala-Asp) box polypeptide 41; RUNX1, RUNX family transcription 
factor 1; GATA2, GATA binding protein 2; JAK2, Janus kinase 2; ETV6, ETS variant transcription factor 6; LNK, lymphocyte adapter 
protein; SH2B3, SH2B adapter protein 3; IDDM20, insulin-dependent diabetes mellitus 20; ATG2B, autophagy related 2B; GSKIP, GSK3B 
interacting protein; RBBP6, RB binding protein 6, ubiquitin ligase; SRP72, signal recognition particle 72; TERC, telomerase RNA component; 
TERT, telomerase reverse transcriptase; AML, acute myeloid leukemia; FAB, French-American-British classification; M1Eo, M1 with 
eosinophilia; M2Eo, M2 with eosinophilia; MDS, myelodysplastic syndrome; CML, chronic myeloid leukemia; MPNs, myeloproliferative 
neoplasms; MonoMAC, monocytopenia and mycobacterial infection; DCML, dendritic cell, monocyte, B and NK lymphoid; PV, polycythemia 
vera; ET, essential thrombocythemia; PMF, primary myelofibrosis; ALL, acute lymphoblastic leukemia; B-ALL, B-cell ALL; AA, aplastic 
anemia; BMF, bone marrow failure.
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not all mutations indicate the need for HSCT, so monitoring 
is essential.

Targeted therapy is also a topic of great interest in cancer 
therapy. Potential targets associated with germline mutations 
include the mutated gene itself, the products expressed and the 
pathway involved. Germline mutations result in diseases by 
influencing the bone marrow microenvironment. It has been 
reported that leukemias associated with germline mutations 
cannot be securely managed with HSCT alone; it is also 
necessary to treat the aberrant microenvironment, as therapy 
targeting abnormal chemokine production from mutated genes 
may help reverse the process of leukemia (74).

Gene therapy has potential as an future treatment. The 
introduction of normal genes into reproductive cells, i.e., sperm 
and eggs, or preimplantation embryos by germline gene editing 
can provide favorable outcomes for patients and prevent the 
passage of genetic disease to future generations (75). The key 
to this therapy is the choice of genetic vectors and the effective 
expression of the genes inserted into them. Frequently used 
vectors of choice include those based on adeno‑associated 
viruses, retroviruses adenoviruses and herpes viruses. 
Effective expression is essential for the therapeutic level of 
the protein to be reached. However, at present, this technology 
is only being researched in mice and human preimplantation 
embryos so that its safety and efficacy may be studied and for 
ethical reasons.

Somatic mutation, gene modification and germline mutation. 
Germline mutations may change the structures of genes, 
which can lead to the acquisition of somatic mutations in 
the same genes, with germline mutations acting as an initial 
trigger (30,67). The somatic mutation is often identified as a 
second hit and accelerates the disease process by disabling 
the function of the gene and enhancing the clonal advantages 
of the germline mutation making the disease more complex. 
These two types of mutations imply different prognoses. 
Medullary tumors with DDX41 mutations were reported to 
have a good prognosis. Moreover, the overall response rate 
(ORR) to hypomethylating drugs in patients with germline 
and somatic mutations was 63%, while the ORR of patients 
with only somatic mutations was 75%. Therefore, it may be 
concluded that patients who have medullary tumors with 
DDX41 somatic mutations have a good prognosis and may be 
considered as an independent population (76). By sequencing 
samples from the oral mucosa, saliva, fingernails or hair 
follicles, these individuals may be identified and further 
clinical measures taken.

Along with genetic mutations, genetic modifications can 
occur. Variations, which mainly include DNA hypermeth‑
ylation, histone modifications and changes to non‑coding 
RNAs, play a critical role in the pathogenesis of myeloid 
neoplasms by inhibiting tumor suppressor genes or increasing 
the expression of oncogenes (77,78). Drugs targeting DNA 
methylation and histone deacetylation enzymes are associated 
with an improved outcome. The use of azacitidine is benefi‑
cial for high‑risk MDS patients, as it reduces the remission 
rate, controls the disease and prolongs survival (71). Histone 
deacetylase inhibitors are an emerging class of drug, as an 
alternative to hypomethylating agents (HMAs). As MDS is 
only mildly responsive to HMAs with low CR and PR rate 

(20‑35%) when used as monotherapy (78), genetic modifica‑
tions may also act as a prognostic biomarker.

4. Summary and prospects

The revision of the myeloid tumor classification guidelines 
by the WHO in 2016 highlighted the importance of germline 
susceptibility genes, by creating a category of myeloid tumors 
with germline susceptibility. In the past few years, the number 
of susceptibility genes discovered by NGS technology has 
increased sharply, and includes GATA2, ANKRD26, ETV6, 
SRP72, DDX41, TERC and TERT. Moreover, most germline 
mutations are accompanied by somatic mutations, which may 
be an important reason for secondary genetic abnormalities. 
The discovery of susceptibility genes reveals the possible 
pathogenesis of myeloid neoplasms from the perspective of 
molecular biology. This research avenue provides further 
directions for clinical diagnosis, drug application and even 
gene therapy. However, due to differences among samples and 
the pathological complexity of myeloid neoplasms, genetic 
predisposition research is relatively scattered and cannot be 
accurately classified. Nevertheless, as research into this subject 
deepens, it is likely that scientists will find effective treatments 
for this intractable disease.
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