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Abstract

Motivation: DNA methylation plays a key role in a variety of biological processes. Recently, Nanopore long-read
sequencing has enabled direct detection of these modifications. As a consequence, a range of computational meth-
ods have been developed to exploit Nanopore data for methylation detection. However, current approaches rely on
a human-defined threshold to detect the methylation status of a genomic position and are not optimized to detect
sites methylated at low frequency. Furthermore, most methods use either the Nanopore signals or the basecalling
errors as the model input and do not take advantage of their combination.

Results: Here, we present DeepMP, a convolutional neural network-based model that takes information from
Nanopore signals and basecalling errors to detect whether a given motif in a read is methylated or not. Besides,
DeepMP introduces a threshold-free position modification calling model sensitive to sites methylated at low fre-
quency across cells. We comprehensively benchmarked DeepMP against state-of-the-art methods on Escherichia
coli, human and pUC19 datasets. DeepMP outperforms current approaches at read-based and position-based
methylation detection across sites methylated at different frequencies in the three datasets.

Availability and implementation: DeepMP is implemented and freely available under MIT license at https://github.
com/pepebonet/DeepMP.

Contact: jose.bonet@irbbarcelona.org or mandiche@kth.se

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Chemical modifications of nucleotides are important epigenetic
markers. These DNA modifications play a crucial role in regulating
the expression of genes, and cellular responses to stimuli (Bergman
and Cedar, 2013; Jones, 2012; Schübeler, 2015). Among all the
modifications, one of the most prevalent and widely studied is DNA
methylation, in particular at cytosines. Its relevance to fundamental
biological processes such as embryonic development (Lund et al.,
2004), aging (Gonzalo, 2010) and diseases (Grønbaek et al., 2007)
has highlighted the importance of accurate genome-wide profiling
techniques.

Both short- and long-read sequencing technologies are exploited
to identify methylated genomic sites. These approaches are associ-
ated with different experimental and computational limitations. For
instance, the Bisulfite sequencing (Miura et al., 2012) with short
reads suffers from limited conversion efficiency (Cytosine to Uracil).
Also, the amplification bias and the uncertainty of mapping large re-
petitive regions add to the experimental complexity of its use for
methylation detection. Long-read-based technologies, such as
Nanopore and PacBio sequencing approaches, have appeared more
recently, and as a result, computational methods for DNA methyla-
tion detection are currently under development. Although PacBio
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Single-Molecule Real-Time (SMRT) approach can detect DNA
methylation directly (Flusberg et al., 2010), low signal-to-noise
ratios and coverage requirements have limited its application (Davis
et al., 2013; Zhu et al., 2018). Conversely, Nanopore sequencing
overcomes these limitations as no amplification and prior enzymatic
or chemical treatment steps are required, thus supporting the ana-
lysis of DNA molecules harboring modifications in their native state
(Laszlo et al., 2013; Schatz, 2017; Schreiber et al., 2013; Wescoe
et al., 2014). Therefore, Nanopore sequencing has been recently
established as the state-of-the-art long-read sequencing approach to
detect DNA methylation.

In recent years, several models have contributed to the improve-
ment of Nanopore’s methylation detection accuracy (Liu et al.,
2019a,b; McIntyre et al., 2019; Ni et al., 2019; ONT Megalodon,
2021; Rand et al., 2017; Simpson et al., 2017; Stoiber et al., 2016).
The majority of these methods focus on directly analyzing the out-
put signals of the Nanopore device and do not make use of the base-
calling errors (Liu et al., 2019b; McIntyre et al., 2019; Ni et al.,
2019; Rand et al., 2017; Simpson et al., 2017; Stoiber et al., 2016).
These models have shown the ability to accurately call the methy-
lated status for a target motif at the level of individual reads (read-
based calling). However, the position-based calling (across all reads)
relies on a human-defined threshold. An alternative approach to de-
tect DNA methylations through Nanopore uses basecalling errors as
model features (Liu et al., 2019a). Methods based solely on this ap-
proach can, thus far, only identify methylated genomic positions, ra-
ther than reveal the methylation status of every read covering the
site. Therefore, these methods tend to underpredict sites methylated
at low frequency across cells, i.e. sites at which most reads covering
the base will be unmodified. A recent study (Yuen et al., 2021)
benchmarking some of the latest published methods reported that
tools such as Nanopolish (Simpson et al., 2017) and Tombo (Stoiber
et al., 2016) tend to overestimate the number of methylated sites. In
contrast, Guppy (ONT Guppy, 2021) suffers from an overesti-
mation of the number of unmethylated reads. Megalodon (ONT
Megalodon, 2021) and DeepSignal (Ni et al., 2019) reported the
best results overall.

We hypothesized that the combination of basecalling errors and
current signals could improve the detection of methylated cytosines
in the DNA over the use of only one of them. Thus, we developed
DeepMP, a deep learning model that exploits the errors and signals
from the data. DeepMP includes a further innovation, a supervised
Bayesian model to call the position-based methylation, which is—to
our knowledge—unique. It comprises a statistical approach based
on the information from individual reads covering a position that
improves the detection of the methylation status of a genomic pos-
ition. We show that DeepMP outperforms state-of-the-art methods
DeepSignal (Ni et al., 2019), Nanopolish (Simpson et al., 2017),
Guppy (ONT Guppy, 2021) and Megalodon (ONT Megalodon,
2021) in the tasks of detecting modified reads and positions methy-
lated at varying frequencies across Escherichia coli, human and
pUC19 Nanopore long-read data.

2 Materials and methods

2.1 Datasets
Three datasets, K12 ER2925 (E.coli), NA12878 (human) and
pUC19 (plasmid DNA) were useed to evaluate the performance and
benchmark DeepMP. Supplementary Table S1 summarizes all data-
sets and the number of reads available for each sample. The datasets
used in this study contain methylation on the cytosines (E.coli and
human) and adenine (pUC19) residues. DeepMP was trained to dis-
tinguish unmethylated cytosines (C) from 5-Methylcytosines (5mC)
at CpG motifs in the first two datasets and unmethylated adenines
(A) from 6-methyladenines (6 mA) at GATC motifs in the latter.

2.1.1 CpG methylation data

Nanopore reads from E.coli (K12 ER2925) (Simpson et al., 2017)
were downloaded from the European Nucleotide Archive under ac-
cession number PRJEB13021. The dataset contains reads obtained

from E.coli treated with M.SssI, which lead to methylation of
�95% of the CpGs (5mC methylated), and PCR-amplified (negative
control), which are completely unmethylated. Although reads from
both Nanopore R7.3 and R9 flow cells are included, R7.3 flow cells
do not provide raw signals, and therefore only R9 reads were used.
The ground truth for E.coli is generated by selecting treated samples
as fully methylated and the control as fully unmethylated.

Human Nanopore reads from the NA12878 datasets were down-
loaded from the European Nucleotide Archive under accession number
PRJEB23027 (Jain et al., 2018). Reads are obtained from 5 sequencing
studies (Norwich, UCSC, Bham, Notts and UBC). However, only the
Norwich subset is used (Supplementary Table S1). Datasets were base-
called by Guppy 4.4.2 [available to members of the Nanopore commu-
nity at nanoporetech.com (ONT Guppy, 2021)].

2.1.2 Bisulfite sequencing data

Bisulfite sequencing results of the NA12878 datasets were down-
loaded from ENCODE (ENCFF835NTC) (The ENCODE Project
Consortium, 2012). Both replicates available allow the labeling of
high-quality methylated and unmethylated positions. We follow the
approach of Liu et al. (2019b) to characterize the methylation status
of each position. If a cytosine in a given position in the reference
genome (GRCh38) contained >90% of methylations in both repli-
cates, that position was considered to be modified and hence com-
pletely methylated. On the other hand, if a cytosine has 0%
methylations in both replicates of bisulfite sequencing, the position
was considered unmodified and thus completely unmethylated.

2.1.3 6mA methylation data

Raw Nanopore reads from pUC19 were downloaded from NCBI
under accession number SRR5219626. pUC19 plasmids were cloned
in E.coli grown either in the presence (treated) or absence (untreat-
ed) of Dam methyltransferase (Supplementary Table S1). The pres-
ence of this enzyme leads to the complete methylation adenines
(m6A) in GATC motifs (Rand et al., 2017). Sequences were also
basecalled using Guppy 4.4.2 (ONT Guppy, 2021).

2.2 Benchmarking methylation detection with similar

tools
We benchmarked DeepMP against four existing tools: Nanopolish
(Simpson et al., 2017), Megalodon (ONT Megalodon, 2021),
DeepSignal (Ni et al., 2019) and Guppy (ONT Guppy, 2021). The
different tools are explained in Supplementary Section S1.1 of
Supplementary Methods.

2.3 Preprocessing and feature extraction
DeepMP consists of two different modules: a sequence module for
handling the signals (Nanopore currents) and another module to
process basecalling errors (Fig. 1A and B). In the sequence feature
extraction, the raw Nanopore reads are first basecalled using Guppy
(ONT Guppy, 2021), and then re-squiggled by Tombo (Stoiber
et al., 2016) to aligning the currents to the reference genome.
Following Ni et al. (2019) median normalization (Stoiber et al.,
2016), was then applied to the raw signals. To obtain the error fea-
tures, variants need to be called from fastq files by samtools (Li
et al., 2009) after the reference alignment using minimap2 (Li,
2018). The resulting files consist of the status of a position in a read
(Match, Mismatch, Deletion, Insertion) and the quality of the call.
This data is then processed to obtain the information of the presence
or absence of mismatches, deletions and insertions at the genomic
position of the read.

Specifically, features for DeepMP are selected through an
Incremental Feature Selection (IFS) strategy. We applied this strategy
to a set of 11 features. Seven of them for the sequence module: mean,
median, standard deviation, range, skewness, kurtosis and the number
of signals; and four for the error module: base quality, mismatches,
deletions and insertions. The features are ranked by the model per-
formance (Supplementary Figs S5 and S6) on one subset of the E.coli
data and a subset of the human data (Supplementary Fig. S7). Both

1236 J.Bonet et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab745#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab745#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab745#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab745#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab745#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab745#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab745#supplementary-data


sample sets contain 100 000 labeled examples. The selection starts
with the top 1 ranked feature (signal mean in E.coli) and iteratively
adds features into the combination according to the rank until the end
of the list is reached. If a decrease in performance is observed, the cur-
rent feature will be excluded in the following run. A 5-fold cross-
validation was used to evaluate the performance of the selected fea-
tures (Supplementary Figs S5–S7).

Based on this strategy, the features used by DeepMP are the
mean, median, standard deviation and value range of the Nanopore
signals for the sequence module and the read quality, deletions,
insertions and mismatches for the error module. After feature ex-
traction for each target base, an l-length vector is constructed for
every feature. Every vector contains the value of the nucleotide of
interest and its l - 1 closest neighbors from both directions.

2.4 DeepMP Framework
Recent efforts to detect modifications (Liu et al., 2019b; Ni et al.,
2019) for Nanopore sequencing data have been exploring long
short-term memory recurrent neural networks (LSTM RNNs),
which are neural network models designed to learn long-term
dependencies in sequential data. On a high level, our prediction task
could be regarded as a many-to-one problem where the input of the
model is a sequence and the output is a single value indicating the
methylation state of the targeted base, which appears to naturally
match the specialty of RNNs. However, this perspective overlooks
some characteristics of the data: first, the inputs of the mentioned
models are statistical measures of the signals instead of the raw sig-
nals, which have weaker time dependencies between the variables.
Second, the base in interest locates at the middle of the input se-
quence rather than the end. In the mentioned methods, a bidirection-
al RNN first processes the sequence from one end to the other to

output a representation for the whole sequence, then performs the
same process for the reversed sequence. The representations
obtained from this procedure are most sensitive to the input bases
located at both ends of the sequence (Goodfellow et al., 2016) in-
stead of the middle one. Besides, since these methods use a fixed-
length sequence as the input to the networks, the flexibility of
RNNs to adapt to various sequence lengths is not fully utilized in
this particular problem setting. In addition, the large amount of
parameters in RNNs makes training the networks costly.

From a different aspect, one might consider the excerpted set of
features to be a series of buckets containing information for each
base in the sequence. The goal is to capture the interactions between
the center bucket and its neighbors, as well as the interactions
among them. Concerning the spatial correlation in these buckets, we
propose to use convolutional neural networks (CNNs). By virtue of
sparse connections between units and the parameter sharing in the
convolutional layers, CNNs are memory efficient and easy to paral-
lelize, therefore, less expensive to train compared with RNNs.
CNNs have been successfully applied to numerous tasks such as
classification, detection, segmentation in various study fields includ-
ing computer vision, natural language processing, drug discovery,
etc. In our DeepMP model, there are two CNN modules (Fig. 1D):
the sequence module and the basecalling error module. They are
designed to process two different sets of features extracted from
Nanopore sequencing data.

2.4.1 Sequence module

The four l-length vectors generated by sequence feature extraction
are stacked with the one-hot embedded nucleotide sequence to form
the model input vector of size l � 9. The input vector is then given to
the sequence CNN module, which is composed of 6 1D

Fig. 1. DeepMP model overview. (A) Scheme of Nanopore technology, raw signals and basecalling. (B) Input features are divided into the basecalling error features (left) and

the signal sequence features (right). Error features comprise the sequence information, read quality, mismatches, deletions and insertions. Sequence features consist of the se-

quence data and the mean, median, SD and range of the base currents. (C) Methylation calling pipeline. (D) DeepMP architecture. The sequence module involves 6 1D convo-

lutional layers with 256 1�4 filters. The error module comprises 3 1D convolutional layers and 3 locally connected layers both with 128 1� 3 filters. Outputs are

concatenated and inputted into a fully connected layer with 512 units. (E) Probabilistic graphical model of the proposed Bayesian approach for position-based calling. The in-

put data xi consists of N read predictions. ri is the read state, and s is the position state to be detected. Shaded nodes represent observed values, while the values of unshaded

nodes are inferred
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convolutional layers with 256 1�4 filters. The stride for convolu-
tion is fixed to 1 base. The convolution function computes the nth
element Z on the feature map by

Zn ¼
X

j

Xðn�1ÞþjKj (1)

where X is the input to the layer, Kj is the jth element in kernel tensor.
Batch normalization (BN) is applied to each convolutional layer

right before a ReLU activation function. The sequence module ends
with a global average pooling layer.

2.4.2 Basecalling error module

With the same treatment as to the sequence feature, the l-length vec-
tors are stacked with the one-hot embedded nucleotide sequence,
resulting in the final l � 9 l � 9-shaped input for the error module.

The error module contains two types of layers: 1D convolutional
layers and locally connected layers (LeCun, 1989). The convolution-
al layers compress the features into a compacted representation
whereas the locally connected layers detect the neighborhood infor-
mation in the sequence. A locally connected layer learns a set of fil-
ters separately for every location, naturally, it captures spatial
characteristic information of the features. Since the signals from one
base in the DNA sequence is highly correlated with its close neigh-
boring bases, learning the spatial patterns enhances the model’s abil-
ity to discriminate between different modification states. The input
vector is fed into a three-layer convolutional neural network fol-
lowed by a max-pooling layer, and then a three-layer locally con-
nected network, finally a global average pooling layer. Both of the
convolutional layers and locally connected layers have 128 1�3
filters.

2.4.3 Model outputs

The outputs from the sequence module and the error module are
concatenated and inputted into a fully connected layer with 512
units. Later on, the last fully connected layer with a sigmoid activa-
tion function outputs the final prediction ŷ 2 ½0; 1� for the central
base of the read. This target position is called to be methylated if the
model outputs a value � 0:5.In addition, the two modules can be in-
dependent models by themselves.

2.4.4 Training DeepMP

During the training process, the model learns to minimize the loss
computed by the binary cross-entropy loss function

Loss ¼ � 1

m

Xm
i¼1

yi � log ŷi þ ð1� yiÞ � log ð1� ŷiÞ (2)

where y is the label, ŷ is the model output, and m is the mini-batch
size.

We trained the model using an Adam optimizer with a learning
rate of 0.00125 and a mini-batch size of 512, early stopping was
applied to prevent overfitting. In the default settings, we set the se-
quence length l to be 17. The full implementation is in Python 3
with Tensorflow 2.

In the experiments, DeepMP was trained for 10–20 epochs de-
pending on the size of the dataset. On E.coli we performed a 5-fold
cross-validation following the strategy proposed by Liu et al.
(2019b). The E.coli genome was split into five sections ([0,
1000000], [1000000, 2000000], [2000000, 3000000], [3000000,
4000000], [4000000, 4700000]) (Supplementary Table S2). Then,
models were trained on four sets and test on the remaining one. For
the human dataset, chromosome 1 was kept for testing, while other
regions were used for training and validation. For the pUC19 plas-
mid DNA data, reads were split into a 90% training set, a 5% valid-
ation set and a 5% test set. In all datasets, training, test and
validation sets contained 50/50 positive and negative samples.

2.4.5 Position modification calling

Individual read-based calls mapped to a certain position in the gen-
ome need to be gathered to predict the methylation status of that
position. Particularly, we introduce a Bayesian approach to accom-
plish the position modification calling (Fig. 1E). Once the neural
networks are tested on labeled data, read-based predictions for each
label group can be obtained. These values are subsequently used to
infer the parameters of the underlying distribution for each group.
By incorporating the read-based predictions and the ground truth
labels, the proposed Bayesian approach provides more precise calls
for the genomic positions.

The Bayesian model is based on the following: let x ¼
fx1; x2; . . . ;xNg 2 XN to be the prediction of N reads for one pos-
ition. Assuming different read calls are independent and identically
distributed, the probability of observing x given the position state s
can be computed by

pðxjsÞ ¼
Y

i

X
ri

pðxijriÞpðrijsÞ (3)

where ri indicates if the ith read mapped to the position is modified,
ri 2 f0; 1g. The graphical model is shown in Figure 1E.

According to Bayes’ rule, given a prior distribution p(s) the pos-
terior probability of s is in proportion to pðxjsÞ

pðsjxÞ ¼ pðxjsÞpðsÞ
pðxÞ / pðxjsÞpðsÞ (4)

To infer the position state, we need to compute pðxjs ¼ 0Þ along
with pðxjs ¼ 1Þ and compare these two likelihoods. Notice that
given position state s, the random variable ri follows a Bernoulli dis-
tribution. Therefore, we model pðrijsÞ with two Bernoulli distribu-
tions parameterized by � and c:

f ri � Bernð�Þ; if s ¼ 0
ri � Bernð1� cÞ; if s ¼ 1

(5)

then model pðxijriÞ with beta distribution parameterized by
a; b; c; d � fz 2 Rjz � 0g

f xi � Betaða;bÞ; if ri ¼ 0
xi � Betaðc; dÞ; if ri ¼ 1

(6)

with Equations 3–6, we arrive at the final expression:

pðxjsÞ ¼
Y

i

f ð1� �Þ � fðxi; a;bÞ þ � � fðxi; c;dÞ; if s ¼ 0
c � fðxi; a; bÞ þ ð1� cÞ � fðxi; c; dÞ; if s ¼ 1

(7)

where f is the probability density function of beta distribution. Once
pðxjs ¼ 1Þ and pðxjs ¼ 0Þ are computed, the methylation state of the
position is decided by the higher probability among them. For ex-
ample, a state is called positive, i.e. methylated when pðxjs ¼ 1Þ �
pðxjs ¼ 0Þ and negative otherwise.

We now discuss how to choose parameters c; � and a; b; c; d. By
having c close to 1.0 and � close to 0, the model becomes prone to
call positions methylated at low frequency as methylated. In the ex-
periment, we fix c ¼ 0:83 and � ¼ 0:05. The parameters for the beta
distribution are estimated from the read-based predictions on an in-
dependent labeled dataset. The predictions are divided into two
groups according to the label of the sample, where we estimate the
sample mean l and variance for each group. The shape parameters a
and b for beta distribution can be approximated by

a ¼ 1� l
var

� 1

l

� �
l2

b ¼ a
1

l
� 1

� �
8>><
>>:

(8)

finally, we obtain two sets of a and b: fa; bg for label 0 group and
fc; dg for label 1 group.
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2.4.6 Performance evaluation

We quantify the performance of the models by four common meas-
ures: accuracy, precision, recall and F-score. The ground truth labels
(positive and negative) are obtained from the bisulfite sequencing
for the human data, as described in Section 2.1.2; for E.coli data,
they are obtained as described in Section 2.1.1. We define an in-
stance as true positive (TP) or true negative (TN) when the model
prediction is consistent with the ground truth label in methylated
and unmethylated examples, respectively. A false-positive (FP) in-
stance corresponds to the model predicting a methylated site when
the ground truth is labeled unmethylated. In contrast, a false-nega-
tive (FN) instance results when a model classifies a methylated site
as unmethylated.

Accuracy ¼ TPþ TN

TPþ TNþ FPþ FN
(9)

Precision ¼ TP

TPþ FP
(10)

Recall ¼ TP

TPþ FN
(11)

F� Score ¼ 2�Recall� Precision

Recallþ Precision
(12)

Methylated Frequency ¼
P

Methylated Reads

Total number of reads
(13)

where TP, TN, FP, FN, are abbreviations for true positives, true neg-
atives, false positives and false negatives, correspondingly. The ac-
curacy gives an overview of the quality of the predictions. The
precision shows the correct predictions in the positive calls, and re-
call is the percentage of correct predictions in all positive samples. In
addition, the F-score is the harmonic mean of precision and recall,
which shows the balance between the two. Finally, the methylation
frequency of a position is calculated as the quotient between the
number of methylated reads and the total number of reads overlap-
ping the position.

3 Results

DeepMP takes as input two types of information from Nanopore
sequencing data (Fig. 1A), basecalling errors and raw current sig-
nals (Fig. 1B). Features from these two types of information are fed
into a CNN-based module to identify modified sites in individual
reads (Fig. 1D). These read-level predictions are then integrated by
the position-based calling method described in Section 2.4.5
(Fig. 1E), to identify methylated genomic sites (Fig. 1C).

We assessed the performance of DeepMP in the task of detecting
methylated sites on three different datasets, E.coli, human and
pUC19. The E.coli dataset has been widely used for model training
and benchmarking. It consists of a negative control with 0% methy-
lation (PCR amplified) and a positive one treated with a methyl-
transferase (M.SssI) that converts 5C to 5mC with a �95%
efficiency (Simpson et al., 2017) (Section 2.1.1). Regarding the
human dataset, the available bisulfite sequencing allowed the label-
ing of high-quality methylated and unmethylated positions (Section
2.1.2). Moreover, the pUC19 dataset opens up the possibility to
evaluate DeepMP in the identification of a different modification
(6 mA) within GATC motifs. These three datasets were used to
benchmark DeepMP against Megalodon (ONT Megalodon, 2021),
Guppy (ONT Guppy, 2021), DeepSignal (Ni et al., 2019) and
Nanopolish (Simpson et al., 2017).

3.1 5mC detection performance on E.coli data
DeepMP and DeepSignal were trained on a mixture of methylated
and unmethylated reads as described in Section 2.4.4. For the other
methods, we used the available pre-trained models and the

procedures explained in Section 2.2. All methods were tested on the
same set of the data.

3.1.1 Prediction accuracy and studies at read level

To determine whether a genomic position is methylated, the first
step is to detect the methylation status of each read covering it
(Fig. 1C). Thus, an independent set of reads, as described in Section
2.4.4 is selected to evaluate all three models. DeepMP showed the
best Area under the ROC (AUC) among all the benchmarked meth-
ods (DeepMP: 0.988, Megalodon: 0.981, DeepSignal: 0.974,
Guppy: 0.924, Nanopolish: 0.878) (Fig. 2A). While Guppy and
Megalodon presented the highest precision values (Guppy: 0.9957,
Megalodon: 0.9906), DeepMP exhibited the highest overall accur-
acy (0.9397), recall (0.9347) and f-score (0.9398) (Fig. 2B). These
results were consistent throughout the 5-fold cross-validation
(Fig. 2C; Supplementary Table S2).

These read predictions come from a mixture of two samples that are
completely methylated or unmethylated. However, in a natural popula-
tion of cells, one particular base may be methylated across some, but
not all of them. For instance, 6mA across 12 different genomic sites is
found at levels ranging from 7% to 69% in yeast samples (Garcia-
Campos et al., 2019). To benchmark DeepMP in a real-life scenario, we
thus generated 11 synthetic datasets featuring mixtures of methylated
and unmethylated reads at different proportions. The methylated fre-
quency of a given position is estimated by the ratio of predicted methyl-
ations to the total number of reads mapping that position. The accuracy
was measured as 1� L1meth frequency. The L1meth frequency distance is
defined as the absolute value of the difference between the true methy-
lated frequency of the position and that estimated by the model. This
measurement takes into account FP and FN at read level, avoiding
biased estimates of the methylated frequency. Figure 2D shows the
improved performance of DeepMP for inferring the true methylated fre-
quency of the sample. The accuracy of DeepMP was the highest among
the methods at high proportion of methylated reads. At low proportions
of methylated reads, Megalodon and Guppy showed a comparable per-
formance. These results are in accordance with the FN and FP levels
shown in Figure 2E and Supplementary Figure S1A. DeepMP presents
a lower number of FN across all proportion of methylated reads, and
the levels of FP are consistent across synthetic datasets for all methods
except Nanopolish.

One of the main innovations of DeepMP consists in combining a
basecalling error module and a sequence signal module. To assess
how much this innovation actually contributes to the observed gain
in performance, DeepMP trained on the sequence module only
(DeepMP Seq) was also included in the comparison (Supplementary
Fig. S1C and D). DeepMP Seq shows a decreased performance com-
pared with DeepMP (DeepMP F-score: 0.9398; DeepMP Seq F-
score: 0.889) (Supplementary Table S2), which highlights the im-
portance of taking into account the features derived from basecall-
ing errors for the E.coli dataset.

3.1.2 Prediction accuracy on genomic sites

The ultimate goal of methods that identify DNA methylation is to
be correctly determine the frequency of methylation of a genomic
site across cells. This is done through the identified read level methy-
lation sites of reads overlapping the genomic position under ana-
lysis. One strategy to do so is to decide a particular percentage of
methylated reads as the threshold (Liu et al., 2019b), i.e. a 20%
threshold will detect as methylated any position presenting more
than 20% of methylated overlapping reads. Another approach is to
get a mean estimate of the predictions of the n reads overlapping a
particular position (Ni et al., 2019).

Although such approaches yield acceptable results on datasets
with sites methylated at high-frequency (Liu et al., 2019b; Ni et al.,
2019), their accuracy usually drops at sites methylated at lower lev-
els (10–30%) (Fig. 2F) (a 20% threshold was applied to all models
but DeepSignal and DeepMP). To solve this problem, we propose to
apply a Bayesian approach (DeepMP; Figs 1E and 2F), which uti-
lizes the statistical features of the read predictions to compute the
likelihood of the different states for the genomic position (Section
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2.4.5). As a result, DeepMP shows the highest accuracy (>80% of
the positions) when the dataset contains, on average, sites methy-
lated in 10% of the reads (Fig. 2F), while robustly calling �80% of

the positions when the dataset is completely unmethylated. This
trend is conserved when comparing DeepMP using different thresh-

olds (10%, 20% and 50% Threshold) (Supplementary Fig. S1B).

3.2 5mc detection performance on human data
DeepMP and DeepSignal were trained on reads containing methy-
lated and unmethylated cytosines (determined by bisulfite sequenc-

ing) and tested on the same type of data drawn from reads
overlapping human chromosome 1 in the Norwich subset of the
human data (Supplementary Table S1). For Megalodon, Guppy and

Nanopolish, we used available pre-trained models as explained in
Section 2.2 and we tested them on the same set of data.

3.2.1 Prediction accuracy at read level

Similar to E.coli dataset, DeepMP, Megalodon, Guppy, DeepSignal

and Nanopolish were evaluated on their read prediction perform-
ance at read level (Fig. 3A and B; Table 1). DeepMP achieves the
better ROC AUC scores (DeepMP: 0.967; Megalodon: 0.9394;

Guppy: 0.8602; DeepSignal: 0.9629; Nanopolish: 0.9284) and F-
scores (DeepMP: 0.9324; Megalodon: 0.8968; Guppy: 0.7787;

DeepSignal: 0.9255; Nanopolish: 0.9236).
When comparing DeepMP Seq (DeepMP trained only using the

sequence module) against DeepMP, Megalodon, DeepSignal, Guppy
and Nanopolish, it outperforms all methods but DeepMP (DeepMP
Seq AUC: 0.966; DeepMP Seq F-score: 0.9315) (Supplementary Fig.

S2A and B; Supplementary Table S3). These results differ from the
E.coli dataset where DeepMP Seq is behind DeepSignal in perform-
ance measurements.

3.2.2 Correlation with bisulfite sequencing and biologically

meaningful regions

To further evaluate the ability of models to infer the correct fre-
quency of methylation of methylated positions, we evaluated the
correlation of their estimated frequency with the result obtained
from the bisulfite sequencing data. We computed this correlation
across all probed genomic sites. Moreover, we estimated the per-
formance of all methods to call methylated sites overlapping two
types of functionally relevant genomic regions (LINE1 genomic
regions and genomic imprinting genes). DeepMP (shown in Fig. 3C)
showed the highest Pearson’s correlation value (r¼0.866) and coef-
ficient of determination (r2 ¼ 0.75), as well as the lowest Root
Mean Square Error (RMSE ¼ 0.204) compared with DeepSignal
(r¼0.843, r2 ¼ 0.711, RMSE ¼ 0.218), Megalodon (r¼0.809, r2 ¼
0.655, RMSE ¼ 0.202), Nanopolish (r¼0.850, r2 ¼ 0.723, RMSE
¼ 0.214) and Guppy (r¼0.599, r2 ¼ 0.359, RMSE ¼ 0.395) at the
genome-wide scale.

We then assessed the performance of the methods to detecting
methylation at sites overlapping LINE1 regions (which tend to be re-
petitive) or imprinting genes. At read level, positions were selected
based on the criteria explained in Section 2.1.2 to generate ground
truth labels. Supplementary Figure S4A and B shows that DeepMP
outperforms other methods in terms of AUC (0.968), accuracy
(0.917) and F-score (0.926) in the identification of methylation sites
at imprinting genes. DeepMP also outperforms other methods
(AUC: 0.945; accuracy: 0.896; F-score: 0.896) in the identification
of methylated sites overlapping LINE1 regions (Supplementary Fig.
S4C and D).

Finally, we also compared the correlation of the methylation fre-
quency estimated by the methods in the two latter datasets (LINE1
and imprinting genes) with the results from bisulfite sequencing
(shown in Fig. 3F alongside the aforementioned values for genome-
wide sites). DeepMP shows the highest correlation in the three data-
sets (LINE1: 0.737; Imprinting genes: 0.895; Genome-wide: 0.866).

Fig. 2. Performance of DeepMP, Megalodon, Guppy, DeepSignal and Nanopolish on E.coli dataset. (A) Receiver operating characteristic (ROC) curve showing the false-posi-

tive rate (x-axis) versus the true-positive rate (y-axis) for the read predictions on a mixture of methylated and unmethylated reads in a single cross-validation fold. (B) Accuracy

measurements for the compared models in the cross-validation fold in A. (C) 5-fold cross validation accuracy and AUC results for mixtures of methylated and unmethylated

reads. (D) Accuracy to determine the methylation frequency of a sample measured by 1 - L1meth frequency (y-axis). 1 - L1meth frequency is evaluated on 11 datasets comprising dif-

ferent levels of methylated reads (0–100%) (x-axis). (E) False-negative rate (y-axis) evaluated on the same 11 datasets as in D. Dots in E and D represent the median observa-

tion and black lines the first (Q1) and third (Q3) quartiles. (F) Position calling accuracy for each of the partially methylated datasets at different thresholds (DeepMP: Bayesian

approach; DeepSignal: mean read predictions estimate; Megalodon, Guppy and Nanopolish: 20% threshold). Note that, jitter has been added to D, E and F to avoid overlap-

ping of dots in the graph
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Furthermore, to study the correlation with bisulfite more in detail,
positions were divided into three groups based on the level of methy-
lation in bisulfite sequencing (low, intermediate and high).
Megalodon and Guppy show higher performance at sites methylated
at low frequencies. In contrast, DeepMP and DeepSignal exhibit

better performance (and consistent results across the three catego-
ries) with bisulfite sequencing at intermediately and highly methy-

lated sites in imprinting genes (Supplementary Fig. S3A) and LINE1
(Supplementary Fig. S3B).

3.3 6mA detection performance on pUC19 plasmid DNA

data
To evaluate the ability of DeepMP to detect a different type of
methylation (6mA), we benchmarked DeepMP on the pUC19 data-
set. The read-based strategy was used to train DeepMP and

DeepSignal on a mixture of methylated (6mA) and unmethylated
(A) reads, as described in Section 2.4.4. As the model selected for

Guppy does not specifically detect modifications in all contexts
(Section 2.2), it was discarded. Nevertheless, Megalodon, consid-
ered (and supported by our previous results) the state-of-the-art

Nanopore method for methylation detection (ONT Megalodon,
2021; Yuen et al., 2021), rather than Guppy, was run with the avail-

able model for all contexts as described in Section 2.2. Nanopolish
was run to detect modifications in dam sites (DNA adenine methyl-
ase). Considering the number of reads discarded by the selective cut-

off, we tested Nanopolish on all the extracted examples. The rest of
the models used the same set of data for testing.

DeepMP significantly outperforms DeepSignal, Megalodon and
Nanopolish in the detection of 6mA within GATC motifs (Table 1). In
Figure 3D and E, DeepMP also shows an improvement of performance

in the binary classification task and the related accuracy measurements.
Furthermore, DeepMP Seq alone was also able to outperform any other

method but DeepMP in the detection of modified GATC motifs
(Supplementary Fig. S2C and D; Supplementary Table S3).

Fig. 3. Performance of DeepMP, Megalodon, Guppy, DeepSignal and Nanopolish on the Norwich subset of the human dataset and of DeepMP, Megaldon, DeepSignal and

Nanopolish on the pUC19 plasmid. (A, D) Receiver operating characteristic (ROC) curve showing the false-positive rate (x-axis) versus the true-positive rate (y-axis) for the

read predictions on a mixture of methylated and unmethylated reads on the human dataset (A) and pUC19 (D) respectively. (B) Accuracy measurements for the models on the

human dataset. (E) Accuracy measurements for the models on the pUC19 plasmid. (C) Correlation between the methylation frequency of a method and bisulfite sequencing for

the human dataset. Lines denote the mean methylated frequency of a method for a given bisulfite frequency and the shaded surface corresponds to the 95% confidence interval.

(F) Pearson’s correlation of every method for three different genomic regions (LINE1, Imprinting genes, Genome-wide) of the human dataset

Table 1. Performance summary at read level of DeepMP,

Nanopolish, DeepSignal, Guppy and Megalodon on E.coli, human

and pUC19 datasets

Dataset Test Method Accuracy Precision Recall F-score

E.coli Read level Nanopolish 0.7929 0.7535 0.8859 0.8143

DeepSignal 0.8948 0.9035 0.8865 0.8949

Guppy 0.8322 0.9961 0.6466 0.7841

Megalodon 0.9327 0.9901 0.8757 0.9294

DeepMP 0.9386 0.9431 0.9352 0.9391

Homo

sapiens

Read level Nanopolish 0.9080 0.9543 0.8949 0.9236

DeepSignal 0.9076 0.9340 0.9191 0.9255

Guppy 0.7680 0.9568 0.6565 0.7787

Megalodon 0.8788 0.9594 0.8418 0.8968

DeepMP 0.9160 0.9388 0.9260 0.9324

pUC19

plasmid

Read level Nanopolish 0.7211 0.6038 0.7737 0.6783

DeepSignal 0.8141 0.8207 0.7976 0.8090

Megalodon 0.7730 0.6583 0.9547 0.7792

DeepMP 0.8697 0.8370 0.9141 0.8738

Note: Accuracy measurements for E.coli represent the average value of the

5-fold cross-validation. Bold entries represent the largest measurement value

for every data set.
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4 Discussion

Nanopore sequencing, coupled with the computational methods
that exploit its output to detect base modifications, has opened
up the possibility of directly identifying epigenetic modifications
of DNA nucleotides. The advent of this technology has the po-
tential to supersede methodologies like bisulfite sequencing,
which is currently the gold standard to detect DNA methylation.
For this to be accomplished, the accuracy computational meth-
ods of detection need to be improved to correctly identify the
methylation level at individual genomic positions (Garcia-
Campos et al., 2019). This study proposes a neural network solu-
tion, DeepMP, which utilizes both electric currents and basecall-
ing errors from Nanopore sequencing to deliver high accurate
methylation detection.

We showed that DeepMP outperforms state-of-the-art methods
Megalodon, Guppy, DeepSignal and Nanopolish on E.coli, human and
pUC19 datasets. DeepMP favorably compared in the proposed bench-
mark when inferring the true methylated frequency of partially methy-
lated E.coli datasets (0%, 10%, . . ., 100%), consistently presenting
lower false positive and negative rates. DeepMP also outperformed
other methods in the estimated frequency of methylation across sites in
the human data. Furthermore, the analysis of the methods’ ability to
call the position methylation status displayed the limitation of introduc-
ing an arbitrary, human-defined threshold. A 20% threshold could not
properly capture a position’s true methylation status in datasets with
low methylation levels (<30% methylation). Importantly, using
DeepMP’s novel Bayesian approach corrected this problem while being
robust on completely methylated samples.

Intriguingly, in the case of the human dataset, the features based
on basecalling errors do not appear to provide the same level of in-
formation as in the E.coli dataset. This finding indicates that the in-
formational value of basecalling errors varies in different types of
data, i.e. the error features may be dataset-specific. A hypothesis
would be that the M.SssI treatment in E.coli samples generates a
characteristic error pattern that is not present when mutations occur
naturally (human dataset). Consequently, to obtain a more general-
izable model across species, one might consider using DeepMP with-
out the basecalling errors module.

Moreover, we demonstrated that DeepMP detects not only 5mC
but also 6 mA more accurately than state-of-the-art methods. Given
the low number of reads, DeepMP achieved a significant separation
compared with Megalodon, DeepSignal and Nanopolish. This fact
highlights the versatility of DeepMP across different types of nucleo-
tide modifications (including at certain sequence motifs) and
sequencing coverage. Nevertheless, it shares one of the current limi-
tations of most supervised learning models, namely, the inability to
detect out-of-sample modifications. That is, to detect methylated
bases absent in the training set. One way to overcome could be to
use unsupervised or one-shot learning methods (Koch et al., 2015;
Vinyals et al., 2016). This technical advancement would allow the
exploration of a different set of interesting problems regarding the
identification of modified bases using Nanopore.

In summary, DeepMP accurately detects methylated sites
both, in individual reads and at genomic positions, at different
levels of methylation of the sample, as real-world biological sam-
ples. Besides, the proposed Bayesian approach could apply to
related problems to substitute a human-defined threshold, espe-
cially when labeled data is available. In addition, we posit that
DeepMP could also be used to generate genome-wide maps of
different DNA base lesions from Nanopore sequencing data.
This could largely reduce experimental hurdles to achieve this
objective. As Nanopore technology continues to advance and the
sequencing costs are reduced, the amount of data will exponen-
tially increase. Accurate and efficient methods as DeepMP will
be key to exploit this sequencing data in scenarios with limited
computational resources.
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