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ABSTRACT

We introduce a method for predicting RNA folding
pathways, with an application to the most important
RNA tetraloops. The method is based on the idea
that ensembles of three-dimensional fragments ex-
tracted from high-resolution crystal structures are
heterogeneous enough to describe metastable as
well as intermediate states. These ensembles are
first validated by performing a quantitative compari-
son against available solution nuclear magnetic res-
onance (NMR) data of a set of RNA tetranucleotides.
Notably, the agreement is better with respect to
the one obtained by comparing NMR with exten-
sive all-atom molecular dynamics simulations. We
then propose a procedure based on diffusion maps
and Markov models that makes it possible to ob-
tain reaction pathways and their relative probabilities
from fragment ensembles. This approach is applied
to study the helix-to-loop folding pathway of all the
tetraloops from the GNRA and UNCG families. The
results give detailed insights into the folding mecha-
nism that are compatible with available experimental
data and clarify the role of intermediate states ob-
served in previous simulation studies. The method
is computationally inexpensive and can be used to
study arbitrary conformational transitions.

INTRODUCTION

Despite its simple four-letters alphabet, RNA exhibits an
amazing complexity, which is conferred by its ability to en-
gage and interconvert between a variety of specific inter-
actions with itself as well as with proteins and ions (1). A
delicate balance between many different factors, such as
hydrogen bonding, stacking interactions, electrostatics and
backbone/sugar flexibility, determines structure and dy-
namics of RNA. These interactions are explicitly described
in atomistic molecular dynamics (MDs) simulations, that
represent an important computational tool for the investi-
gation of RNA dynamics. Since the first MD simulation on
tRNA (2), the accuracy of atomistic force fields has steadily

improved, to the point that it is nowadays possible to ob-
tain stable trajectories on the microsecond time scale for A-
form double helices and tetraloops (3,4). MD simulations
have also proven useful to aid the interpretation of exper-
imental data for structured RNAs (5,6) and protein–RNA
complexes (7–9). However, models used for nucleic acids are
still significantly less accurate compared to those used for
proteins (10). Recent simulations on systems amenable to
converged sampling showed that none of the current atom-
istic force fields correctly reproduces the behavior of sin-
gle stranded RNA tetranucleotides in solution (11,12). As a
consequence, understanding the folding dynamics of small
motifs such as RNA tetraloops is extremely challenging us-
ing MD, both because of the force-field limitations and of
the high computational cost.

From a different perspective, structural bioinformatics
approaches to study RNA exploit the empirical relation-
ship between sequence and three-dimensional (3D) struc-
ture. These methods typically proceed by first extracting lo-
cal conformations from a database of experimental struc-
tures, which are then assembled together to form complete
models. This idea lead to the development of successful
fragment assembly algorithms for RNA (13–16) and pro-
teins (17). Fragment assembly methods often rely on the
working hypothesis that frequencies of appearance in solved
structures can be considered as an approximation to the un-
derlying Boltzmann distribution. While this latter statement
is in general not true, the statistics obtained from protein
structures in the protein data bank (PDB) were shown to re-
produce distributions as measured by nuclear magnetic res-
onance (NMR) spectroscopy (18) as well as quantum me-
chanical calculations (19,20). Additionally, the successful
applications of statistical potentials to different RNA struc-
ture prediction problems suggest this approximation to be
in practice acceptable (21).

By pushing these assumptions further, one could imag-
ine the possibility to use fragment libraries to predict not
only the most stable conformations but also intermediate
and excited states (22), so as to provide a description of
reactive pathways. For example, the conformational varia-
tions observed in crystal structures of RNA triloops have
been linked to their internal dynamics (23), and a simple
isomerization process occurring in the backbone of a small
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peptide was recently rationalized by analyzing high-energy
structures trapped in the PDB (24).

A further methodological step is however required to re-
construct the dynamics of systems undergoing large con-
formational changes, possibly involving multiple pathways,
when only an ensemble of structures at equilibrium is given.
Of particular interest in this context is the concept of diffu-
sion map (25), which describes the long timescale dynamics
of a complex system using a transition matrix directly calcu-
lated from the data. This important theoretical tool was ap-
plied to characterize the dynamics of proteins systems (26).
Interestingly, the slow eigenmodes of the transition matrix
have been shown to be consistent with an analysis based on
transition networks of long MDs simulations (27). This re-
sult suggests that the reactive pathways of macromolecular
systems can be obtained from equilibrium ensembles alone.

In this paper, we show that the structural ensemble of
RNA fragments extracted from the PDB exhibits remark-
ably good agreement with available NMR experimental
data for five tetranucleotides. We then consider the frag-
ment ensembles of the two most important families of RNA
tetraloops: GNRA and UNCG (R = A/G and N =any).
By using a formalism related to diffusion maps, we build a
random walk on a graph in which each node is an experi-
mental 3D fragment and edges are weighted with an appro-
priate measure of similarity (28). The properties of the re-
sulting random walks are then analyzed using the standard
machinery of Markov state modeling (29) to obtain detailed
folding trajectories.

We call the method for obtaining folding pathways from
experimental fragments stop-motion modeling (SMM), in
analogy with the animation technique that produces the im-
pression of motion through juxtaposition of static pictures.
SMM is a very general tool for obtaining transition path-
ways, it is computationally inexpensive, and it is therefore
ideally suited to complement MD simulations and to aid
the interpretation of NMR spectroscopy data and kinetic
experiments.

MATERIALS AND METHODS

Stop motion modeling

We here describe how to set up the SMM procedure.

(i) Pairwise distances. We first calculate all pairwise dis-
tances between all 3D structures within an ensemble
as di j = ERMSD(xi , x j ). Here xi and x j are the coor-
dinates of structures i and j and ERMSD is an RNA-
specific metric based on the relative orientation of nu-
cleobases only (28). This measure has the important
property of being highly related to the temporal dis-
tance: this means that when two structures are close in
ERMSD distance, then they are also kinetically close.
In a previous work (28), we have shown that this prop-
erty is satisfied to a larger extent by ERMSD com-
pared to standard RMSD after optimal alignment (30)
as well as distance RMSD measures. Additionally, we
have proven ERMSD to be accurate in recognizing
known RNA motifs within the structural database.
ERMSD is also highly correlated with interaction net-

work fidelity (31), and thus distinguishes structures
with a different pattern of base–base interaction.

(ii) Transition matrix. We build a graph on an ensemble of
structures by constructing the adjacency matrix K with
Gaussian kernel Ki j = exp (−d2

i j/2σ 2). Here, we set �

= 0.2, which is ≈1/3 of the typical ERMSD thresh-
old used to consider two structures significantly simi-
lar. This ensures that the transition probability among
structures that exhibit a different pattern of base–base
interaction is vanishingly small. Following a procedure
similar to the diffusion maps approach (25), and com-
mon in graph theory (32), we construct the Markov
matrix T dividing by the diagonal degree matrix D,
defined as Dii = ∑

jKij. To obtain a T matrix that is
simultaneously normalized and symmetric we intro-
duce here an iterative normalization procedure T(t+1) =
D−1/2

(t) T(t) D−1/2
(t) . Here the matrix product is implicit, the

subscript (t) indicates the iteration, and T(0) = K. At
convergence, this procedure yields a matrix T that can
be interpreted as a transition probability matrix. Here
Tij is the probability of observing a direct transition
from state i to state j. T is normalized (

∑
jTij = 1)

and has an uniform equilibrium distribution over the
ensemble of fragments (

∑
iTij = 1). This procedure is

closely related to the most common version of graph
Laplacian normalization. However, we notice that in
the usual procedure the transition matrix is made non
symmetric by normalization, and thus has an equilib-
rium distribution that is not necessarily uniform. The
advantage of our formulation is that the averages com-
puted from the random walk are by construction iden-
tical the to ensemble averages obtained from the origi-
nal set of structures.

(iii) Transition pathways between states. Dynamical prop-
erties of the system are calculated from the transition
matrix T as described in Ref. (29), and briefly reported
in Supporting Information 1 for clarity. The flux cal-
culations are performed using pyEMMA (33). To fa-
cilitate the analysis of the fluxes, nodes are lumped to-
gether using a standard spectral clustering procedure
(34) on the transition matrix T. Notice that the lump-
ing is only used to compute the aggregate fluxes, and
does not influence in any way the underlying Markov
model. We set the number of clusters to 25 and 45 for
UNCG and GNRA tetraloops, respectively. We empir-
ically verified that the fluxes are robust with respect to
the number of clusters. The flux between distant struc-
tures (compared to the Gaussian width �) depends on
the number of transition pathways connecting them.
If the overall transition requires crossing intermedi-
ate states with very low population, corresponding to
high free-energy barriers, the resulting flux will be very
small. In the limit of missing intermediates, the graph
becomes disconnected and the resulting flux is zero.

(iv) Low-dimensional embedding. For the sake of visualiza-
tion, folding pathways and clusters are projected on a
low-dimensional space. To this aim we use the diffusion
map technique, where the top eigenvectors of the ma-
trix T are interpreted as coordinates that provide a low-
dimensional embedding in which the local structure



Nucleic Acids Research, 2016, Vol. 44, No. 12 5885

(small distances) is preserved (25,26). We empirically
found that to make the visualization clearer it is con-
venient to use a value of � 3-4 times larger compared
to the one used to calculate the fluxes. This choice only
affects the two-dimensional projection, and not the cal-
culated pathways and clusters.

Molecular dynamics simulations

MDs simulations were performed using the GROMACS
software package (35). RNA was modeled using the Am-
ber99 force field with parmbsc0 and � OL3 corrections and
was solvated in explicit water and ions (3,36–39). Parame-
ters are available at http://github.com/srnas/ff. Temperature
replica exchange MD was used to accelerate sampling (40).
For each system 24 replicas in the temperature range 300–
400K were simulated for 2.2 �s per replica. More details are
available in SI2.

RESULTS

We extract all the fragments with a given 4-nucleotide se-
quence from high-resolution crystal structures in the PDB.
We consider all RNA-containing structures with resolution
3.5Å or better available in the PDB database as of 19 Au-
gust 2015, for a total of 1882 structures. A complete list is
provided in Supplementary Information 3. This procedure
yields a collection of structures (fragments ensemble) com-
posed by 2–15 thousands fragments, depending on the se-
quence.

Comparison against NMR data

Recent NMR spectroscopy studies on RNA tetranu-
cleotides showed AAAA, CCCC, CAAU and GACC to be
mostly in A-form in solution, while data for UUUU were
compatible with more disordered, partially stacked confor-
mations (11,41). In all cases, no evidence of intramolecular
hydrogen bonding was found.

In this section we compare available NMR data with
ideal A-form helices, with ensembles of fragments from the
PDB, and with MD simulations. As a term of reference,
we first set out to compare available experimental NMR
data with the prediction obtained from ideal A-form he-
lices. Figure 1 shows the agreement of nuclear overhauser
effect (NOE) data with the values predicted from A-form
helices in terms of (i) root mean square deviation (RMSD),
(ii) percentage of NOE distance violations and (iii) num-
ber of non-local false positives, i.e. distances between pro-
tons in non-consecutive nucleotides predicted to have av-
erage NOE distance ≤5 Å but not visible in the experi-
ment. These definitions are consistent with those used in
Ref. (11). The deviation between predicted and experimen-
tal data is in general low (Figure 1A). However, since flex-
ible tetraloops can adopt non-A-form structures, a large
fraction of predicted distances falls outside the experimen-
tal range (Figure 1B). Furthermore, systematic discrepan-
cies between NMR spectroscopy and X-ray crystallogra-
phy have been discussed (42) and contribute to the frac-
tion of NOE violations. In all cases, no false positive is
observed. Compatibly with its more disordered behavior
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Figure 1. Comparison between calculated and experimental NMR data.
Calculations were performed on a single ideal A-form helix (A-form), on
the ensemble of fragments extracted from the PDB (Fragments), and on
replica exchange molecular dynamics simulations (REMD). (A) RMSD
between calculated and predicted average NOE distances. (B) Percentage
of predicted NOE average distance outside the experimental range. (C)
Number of false positives, i.e. predicted distances below 5 Å not observed
in experimental data. (D) RMSD between experimental and predicted
3J1′2′ ,3 J2′3′ ,3 J3′4′ scalar couplings, reporting on sugar pucker geometry.
(E) RMSD between experimental and predicted 3J5′/5′′ P,3 J4′5′/5′′ ,3 J3′ P
scalar couplings, reporting on backbone geometry.

in solution, the predicted NOE distances for the A-form
UUUU is poorer compared to the other tetranucleotides.
In Figure 1 we show the agreement between experimental
and predicted 3J scalar couplings, considering data report-
ing on sugar pucker (panel D) and on backbone conforma-
tion (panel E). As observed for NOE, experimental scalar
couplings are compatible with A-form helices, with the ex-
ception of UUUU. In the latter case, the experimental data
suggest high sugar mobility, with significant deviation from
the common C3′-endo sugar pucker conformation.

The accord of the fragment ensembles with experimental
data is very similar to what observed for the A-form helix
(Figure 1). This can be rationalized at least for the first four
tetranucleotides by considering that Watson–Crick dou-
ble helices are the dominating conformations in the crys-

http://github.com/srnas/ff
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tal structures deposited in the PDB database. In the case
of the UUUU tetranucleotide, the conformational ensem-
ble obtained from the fragments improves the agreement
with NMR data when compared with the ideal A-form he-
lix. This highlights the importance of using a diverse ensem-
ble of structures to describe a flexible molecule in solution.

Figure 1 also reports the agreement between experimen-
tal data and temperature replica exchange molecular dy-
namics (REMD) (40) at atomistic resolution. In terms of
RMSD, NOE distances predicted by REMD simulations
are comparable with those obtained from the fragments en-
semble. However, a high number of non-local NOE false
positives can be observed for all the systems (Figure 1C)
. As reported in recent MD studies, AMBER force fields
over-stabilize intercalated structures with stacking between
bases 1–3 and 1–4 (11,12). These structures, which are also
observed in our simulations, cause the appearance of spu-
rious contacts that are not compatible with experimental
NOE distances (i.e. false positives). The wrong pattern of
stacking interactions observed in REMD simulations af-
fects the backbone conformation as well, resulting in a poor
agreement with backbone 3J scalar coupling data (Figure
1E). With respect to sugar pucker, instead, it is worth not-
ing that for UUUU both C3′-endo and C2′-endo conforma-
tions are significantly populated in REMD simulations, in
accord with scalar coupling data (Figure 1D). Scatter plots
of experimental versus predicted NOEs and 3J scalar cou-
plings are shown in Supplementary Information 4 and 5.

Taken together, these results show that the fragments en-
sembles are overall in accord with NMR data. For tetranu-
cleotides which in solution adopt the A-helix form, the
agreement is comparable with what obtained from a sin-
gle structure. On the contrary, noticeable artifacts are ob-
served in MD simulations, in agreement with previously re-
ported results where all the state-of-the-art force fields were
tested (11,12). The most striking discrepancy between sim-
ulations reported here and NMR is caused by the pres-
ence of intercalated structures. This indicates that results
obtained sampling the fragment ensemble could be poten-
tially more accurate than expensive MD simulations in re-
producing biomolecular dynamics, at a fraction of the com-
putational cost.

Stop-motion modeling: mimicking dynamics using static
snapshots

The results described above show that the conformational
ensemble of fragments on five different systems is in agree-
ment with NMR data. Building upon this result, we use the
fragments ensemble to study the dynamical properties of
arbitrary RNA sequences. First, we assume that the frag-
ments ensemble for a given sequence represents the equilib-
rium distribution at some temperature. We then construct
a Markov matrix on all the fragments within the ensemble.
Following a procedure closely related to the one used in the
construction of diffusion maps (25), we calculate transition
probabilities as Gaussian function of their distance. In the
present context, distances are measured using the ERMSD
(28), which is based on the relative position and orientation
of nucleobases only. The resulting Markov matrix contains
kinetic information, from which it is possible to either gen-

erate reactive trajectories with a stochastic procedure or to
analyze the associated fluxes as it is customarily done for
Markov state models (29,43). We call this procedure SMM.
In the next section we present the results of the SMM on dif-
ferent tetraloops, while we refer the reader to the ‘Materials
and Methods’ section for an in-depth, technical description
of the algorithm.

Folding pathways of RNA tetraloops in stop motion

We use the SMM approach described above to study the
helix-to-loop transition of UNCG and GNRA tetraloop
families (see Table 1). When stabilized by additional
Watson–Crick base pairs, these sequences are known to
adopt specific stem-loop structures (44). The correspond-
ing fragments ensembles are indeed typically composed by
(i) fully stacked structures in A-form conformations, (ii)
folded tetraloops and (iii) other conformations that are dis-
tant from both loop and A-form.

Here, we assume that the folding mechanism is deter-
mined by the tetraloop only, and we do not model the full
stem-loop sequence. As a consequence, our investigation
only provides insight on the folding mechanism of the ana-
lyzed tetraloop sequences, without considering possible ef-
fects of the stem sequence.

UNCG Tetraloop. The UNCG is one of the most abun-
dant and well-characterized families of tetraloops (45).
NMR and X-ray structures of these tetraloops revealed that
their high stability is conferred by a peculiar trans-Watson–
Crick/sugar-edge (tWS) base pair (46) between G4 and U1,
together with extensive U2-G4 stacking and a U2-C3 base–
phosphate interactions (47,48). In Figure 2, we show the
main folding pathways obtained from SMM connecting the
A-form helix (cluster 1) to the UNCG tetraloop (cluster
7). For visualization purpose, the folding pathways are pro-
jected on the first two diffusion coordinates, that describe
the slowest directions of propagation of the Markov chain
(25).

Additionally, we project the folding pathways on the U1-
G4 distance and on the value of the � torsion angle in G4,
reporting respectively on U1/G4 base-pair formation and
on the anti/syn transition of the G4 glycosidic bond (Fig-
ure 2B). For UUCG we found three dominant folding path-
ways. In the first one (36% of the total flux) we observe
an initial elongation phase, during which U1/U2 unstack
(cluster 2), followed by the loss of U2/C3 stacking inter-
action (cluster 3). The loop then undergoes a major rear-
rangement, in which G4 flips into syn conformation (clus-
ter 4), U1 and G4 approach (clusters 5–6), until the for-
mation of the tetraloop, featuring the characteristic G4-U1
tWS base pair (cluster 7). The second pathway (23% of the
flux) is qualitatively similar to the first one, as most of the
intermediates are in common. In the third pathway (17%
of the flux), instead, unstacking first occurs at the 3′ end.
A stochastic trajectory representing the folding process is
shown in Supplementary Movie 1.

UACG tetraloop folding proceeds through a similar
mechanism, although G4 flipping can also occur after loop
compaction, as shown in Supplementary Information 6.
The SMM analysis could not be performed on the UCCG
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Figure 2. (A) UUCG Helix to loop folding pathways projected on the first two diffusion coordinates. Clusters corresponding to A-form helix and to the
loop are colored in blue and red, respectively. On-pathways are shown in colors, while gray points correspond to clusters not contributing to the folding
pathway. Arrows show the dominant folding pathways (≈75% of the total folding flux). Line width is proportional to the flux. (B) Helix to loop folding
pathway projected on the distance between atom O2 in base U1 and atom N1 in base G4 versus the glycosidic torsion angle in G4. The distance reports
on the formation of a signature interaction of the tetraloop. (C) Centers of the clusters in the main folding pathway, numbered and colored as in panels A
and B.

Table 1. Number of fragments within each ensemble

Sequence # of structures Loop (%) A-form (%)

UACG 3674 9 37
UCCG 6673 3 67
UGCG 5872 0 61
UUCG 3969 15 17
GAAA 12 908 16 8
GAGA 7596 10 27
GCAA 7835 14 23
GCGA 10 946 7 17
GGAA 12 395 3 24
GGGA 16 764 0.7 46
GUAA 8100 6 15
GUGA 11 432 10 10

The fraction of loops and A-form helices is calculated considering all struc-
tures with E RMSD < 0.6 from the consensus loop/ideal helix.

and UGCG sequences because none or very few of the frag-
ments analyzed adopt the tetraloop conformation (Table 1).

It is worthwhile observing that the remaining ≈25% of
the reactive flux visits not only the clusters discussed above,
but also other fragments (shown as gray dots in Figure 2).

It is however possible to calculate the contribution of path-
ways visiting specific conformations of interest. In a pre-
vious MD simulation study it was identified a metastable
UUCG tetraloop in which G4 is in anti conformation (49).
This structure was discussed in terms of its similarity to loop
32–37 in PDB ID: 3AM1 (50). In our analysis, this specific
structure from the PDB is assigned to one of the least pop-
ulated clusters (Supplementary Information 7). The path-
ways visiting this cluster only contribute to a very small
fraction of the reactive flux (≈0.2%), suggesting that this
could be an off-pathway intermediate.

GNRA tetraloop. Contrary to UNCG, GNRA tetraloops
often mediate RNA tertiary interactions (51). GNRA
tetraloops are characterized by a trans sugar/Hoogsteen
(tSH) G1-A4 non-canonical base-pair, and by N2-R3-A4
stacking (52). We show in Figure 3 the folding pathways ob-
tained from SMM on the GAAA tetraloop. Starting from
a fully stacked A-form helix (cluster 1), the main folding
pathway consists in two steps, namely G1 unstacking at 5′
end (cluster 2) followed by a rotation around the � dihedral
angle in A2 (53), leading to the formation of the tSH G4-
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Figure 3. (A) GAAA A-form helix to loop folding pathways projected on
the first two diffusion coordinates. The first folding pathway, contributing
for more than 90% of the total flux, is indicated as a solid line. Only the part
of the diffusion map containing the clusters that contribute significantly to
the folding pathways is shown. See Supplementary Information 8 for the
full two-dimensional projection. (B) Centers of the clusters in the main
folding pathway, numbered and colored as in panel A.

A1 base pair (cluster 3). For GAAA, as well as for GAGA
tetraloops (see Supplementary Information 8 and 9) this
pathway contributes for 90% of the flux.

When considering the third most common GNRA
tetraloop sequence (GCAA) a folding mechanism similar
to the one described above is observed, with the additional
presence of stacking/unstacking dynamics between C2 and
A3, as shown in Figure 4, clusters 1-3. More generally, we
systematically observe significant unstacking dynamics in
all GYRA tetraloops (Y = C or U) which is absent in
GAAA and GAGA tetraloops (see Supplementary Infor-
mation 9). This is expected, as purine-pyrimidine stacking is
less strong compared to purine–purine stacking. Note that
the high resolution structures used here do not contain a sig-
nificant percentage of GGGA and GGAA sequences form-
ing the consensus GNRA tetraloop (Table 1), thus making
it difficult to perform the SMM on these two sequences.

Diffusion maps identify kinetically distant motifs. The Eu-
clidean distance on the diffusion map is related to the rate of
connectivity of the points in the Markov chain (25). There-
fore, the diffusion map can be used to identify structures
which are kinetically far from each other, irrespectively of
their relevance in the helix-to-loop transition. As an exam-
ple, we report the presence of structures in the GAAA frag-
ment ensemble featuring the typical signature interactions
of the UUCG tetraloop (see Supplementary Information

Figure 4. (A) GCAA helix to loop folding pathways projected on the first
two diffusion coordinates. Clusters corresponding to A-form helix and to
the loop are colored in blue and red, respectively. On-pathways are shown
in colors, gray points correspond to fragments not contributing to the fold-
ing pathway. The first three folding pathways, contributing for ≈80% of the
total flux, are indicated with black arrows. Line width is proportional to
the flux. (B) Centers of the clusters in the main folding pathway, numbered
and colored as indicated in panel A. The three-dimensional structures of
the A-form helix (cluster 1) and tetraloop (cluster 6) are not shown, as they
are equivalent to clusters 1 and 3 in Figure 3.

8). This similarity has not been reported before and sug-
gests that some tetraloops with GNRA sequence could have
a functional role similar to the one of UNCG tetraloops.

DISCUSSION

In this paper, we present a method to build RNA folding
pathways based on the analysis of the ensemble of frag-
ments in the available structural database. The different
conformations and their frequencies are dictated by many
factors: the available experimental structures, the crystal-
lization conditions, the crystal packing, and the non-local
interactions with proteins, ions, and other RNA bases. All
these differences act as perturbations that stabilize interme-
diate states and alternate minima.

Firstly, we show that the fragments ensembles quanti-
tatively agree with available NMR spectroscopy data for
five selected RNA tetranucleotides. This result is compati-
ble with a previous study showing that the structural ensem-
bles of proteins in the PDB provide a representative sam-
pling of the heterogeneity of their native states as probed by
various NMR measurements (18). The agreement is a non
trivial result since the PDB has an intrinsic database bias,
in which A-form helices are likely over-represented with re-
spect to other structures. It is important to mention that
this bias could be alleviated or removed by using filtering
procedures based on available experimental data (54,55). In
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principle, one could even extrapolate the structural ensem-
bles to different temperatures or ionic conditions, provided
that enough overlap between distributions exists. We also
performed extensive, fully atomistic MD simulations show-
ing instead artifacts not compatible with NMR data for the
same tetranucleotides. This confirms the results obtained in
recent simulation studies (11,12).

Secondly, we extend the scope of fragments ensemble
from thermodynamics to dynamics. More precisely, we in-
troduce a procedure, called SMM, for analyzing struc-
tural ensembles, so as to produce reaction pathways for
generic conformational transitions in RNA. This proce-
dure finds its theoretical underpinnings in the framework of
transition-path theory (43) and Markov-state models (29),
widely used in the protein simulation community (56). Here,
however, we introduce two significant modifications. First,
we use experimental crystal fragments instead of MDs to
construct the Markov states. Second, we calculate transition
probabilities from structural distances instead of estimating
rates from many, short MD simulations. This latest idea is
borrowed from the framework of diffusion maps, where a
transition matrix is obtained from structural distances (26).

We employ SMM to study the helix-to-loop transition of
UNCG and GNRA tetraloop families, leading to a detailed
description of their folding pathways. This study would be
very difficult or not possible using atomistic MD simula-
tions as well as other structural bioinformatics approaches
(13,57), due to the known issues in properly modeling RNA
tetraloops. Note that the stability of the full tetraloop struc-
tures is known to be dependent on the length and sequence
of the stem. Here we combined fragments with a fixed se-
quence in the loop without explicitly considering the nu-
cleotides of the stem, as our procedure relies on the fact that
the heterogeneity of sequences observed in the PDB acts as
a perturbation apt to stabilize the most accessible interme-
diate states. As an example, by exclusively considering frag-
ments with sequence cUUCGg, the ensemble would consist
almost entirely of folded tetraloops. The inclusion in the en-
semble of fragments with sequence cUUCGc has the net ef-
fect of destabilizing the loop, making it possible to observe
extended conformations.

For the UUCG tetraloop we observe a folding mech-
anism characterized by a progressive unstacking followed
by a concerted movement involving anti to syn flip of the
glycosidic bond and loop compaction. T-jump experiments
suggested a four-states sequential folding model character-
ized by unstacked (S), unfolded (U), frayed (E) and native
(N) state (58,59). We hypothesize the unfolded (yet stacked)
state U to correspond to clusters 2–3 in Figure 2, and the
frayed state to correspond to the compact clusters 5–6. In
T-jump experiments the unfolded and unstacked state S
is populated only at high temperatures. Consistently, this
state is not observed in the fragment ensemble. Our anal-
ysis also shows the G4 anti→syn flip to occur concertedly
with stem formation, with no direct evidence suggesting the
tetraloop folding to occur from a misfolded, compact struc-
ture. It is important to observe that structures where the
stem is formed and G4 is in anti were observed in previ-
ous MD simulation studies (49,60). Although similar struc-
tures were also present in the PDB and thus included in our
fragment ensembles, the pathways visiting these conformers

contribute to a small extent to the reactive flux, suggesting
these structures to be off-pathway intermediates.

Tetraloops of the GNRA family show a simpler folding
mechanism, in which G1 unstacks from N2 and then forms
a base pair with A4. Fluorescence decay experiments (61)
as well as NMR measurements (62) strongly suggest that
GNRA tetraloops undergo significant conformational dy-
namics, in which N2 and R3 can interconvert between dif-
ferent stacking arrangements. In particular, C2 in GCAA
tetraloop was found to be much more dynamic with respect
to A2 in GAGA and GAAA. This is completely consistent
with our analysis that shows significant stacking dynamics
in GCAA (Figure 4), and more generally in sequences where
N2 is a pyrimidine.

The results presented in this paper show fragment en-
sembles to provide a quick and realistic manner to generate
equilibrium distributions for short RNA sequences compat-
ible with solution experiments. The introduced SMM pro-
cedure makes it possible to obtain reaction pathways from
these ensembles at a small computational cost. This allows
us to provide a detailed description of the folding mecha-
nism for the most common RNA tetraloops that is compat-
ible with available experimental data and clarifies the role of
intermediate states observed in previous MD studies. In this
work we focused on systems for which the statistics of frag-
ments extracted from the PDB is sufficient to generate paths
between relevant metastable conformations. The SMM pro-
cedure can be straightforwardly applied to larger systems
provided that meaningful ensembles are available. We envi-
sion the possibility of using SMM to analyze ensembles gen-
erated by MD or fragment-assembly techniques (13,14) for
the characterization of conformational dynamics in larger
molecules.
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