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Viscoelastic Properties of Confluent MDCK II Cells
Obtained from Force Cycle Experiments
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1Georg-August-Universit€at Göttingen, Institute of Physical Chemistry, Göttingen, Germany
ABSTRACT The local mechanical properties of cells are frequently probed by force indentation experiments carried out with
an atomic force microscope. Application of common contact models provides a single parameter, the Young’s modulus, to
describe the elastic properties of cells. The viscoelastic response of cells, however, is generally measured in separate micro-
rheological experiments that provide complex shear moduli as a function of time or frequency. Here, we present a straightfor-
ward way to obtain rheological properties of cells from regular force distance curves collected in typical force indentation
measurements. The method allows us to record the stress-strain relationship as well as changes in the weak power law of
the viscoelastic moduli. We derive an analytical function based on the elastic-viscoelastic correspondence principle applied
to Hertzian contact mechanics to model both indentation and retraction curves. Rheological properties are described by stan-
dard viscoelastic models and the paradigmatic weak power law found to interpret the viscoelastic properties of living cells
best. We compare our method with atomic force microscopy-based active oscillatory microrheology and show that the method
to determine the power law coefficient is robust against drift and largely independent of the indentation depth and indenter ge-
ometry. Cells were subject to Cytochalasin D treatment to provoke a drastic change in the power law coefficient and to demon-
strate the feasibility of the approach to capture rheological changes extremely fast and precisely. The method is easily adaptable
to different indenter geometries and acquires viscoelastic data with high spatiotemporal resolution.
INTRODUCTION
Cell mechanics has become a major research field due to its
relevance for many biological processes comprising cell
adhesion, division, growth, locomotion, and its biomed-
ical impact on tissue formation, embryogenesis, and tumor-
igenesis (1–9). Changes in cell elasticity have become an
indicator for cytotoxicity, malignancy, and abnormalities.
Strong correlation with various diseases were proposed
comprising cancer, vascular diseases, cardiomyopathies,
etc. (10–13). In this context, Otto et al. (14) introduced a
diagnostic tool based on real-time deformability cytometry
to categorize cells based on their elastic properties and
enable mechanical phenotyping. It is therefore of great in-
terest to understand how cells respond mechanically to
(bio)chemical and physical stimuli (1,5,6). In the case of an-
imal cells, the cell’s mechanical response to deformation
originates mainly from the plasma membrane firmly
attached to a contractile actomyosin network composed of
cross-linked actin filaments as well as motor proteins
such as myosin II (7,15–17). Living cells are soft composite
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materials that actively contract under consumption of chem-
ical energy and exhibit both solidlike elastic and fluidlike
viscous properties. In response to external stress cells
show typical viscoelastic phenomena such as creep and
stress relaxation (18–20). In contrast to polymers and other
soft matter, however, living cells were found to exhibit a
weak power law dependence of their viscoelastic moduli
on frequency (21–24). This power law confirms the absence
of discrete relaxation times in the system and is often inter-
preted in terms of soft glassy materials (25,26). While the
biophysical interpretation of power law behavior is intricate,
its existence simplifies data analysis tremendously because
only a single parameter describes the energy dissipation
associated with deformation. Experimental timescales can
be rather narrow and still sufficient to extract the power
law coefficient with high precision.

Experimental techniques suitable to probe mechanical
properties of individual cells can be roughly classified into
optical, magnetic, or mechanical methods. Highest force
resolution is usually obtained with magnetic tweezers (fN-
pN) followed by optical tweezers (pN-nN) and rounded
off by atomic force microscopy (AFM; pN-mN), which
also covers the largest force range (27–29). Numerous
studies exist where conventional atomic force microscopy
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was used to produce force distance curves subject to
nonlinear fitting of classical contact models that give access
to the Young’s modulus of adherent cells (27,30–38). The
main advantage of this approach is its versatility, as AFM
can be used for imaging simultaneously to force transmis-
sion and force measurement (27,39). Spatiotemporal resolu-
tion is very high and tip geometry or chemistry can readily
be altered to meet the demands of the sample (7). For
instance, this technique can gather data quickly enough to
capture motile cells and to exert mechanical stimuli over a
wide force range (40). A multitude of both local and
whole-cell studies can be performed on living cells in their
native environments using a large portfolio of modes
ranging from force distance curves to microrheological
studies in which the oscillation frequency of the cantilever
is changed (21,41–43). Commonly, Young’s moduli ob-
tained from indentation experiments with different indenter
geometries range between 0.1 and hundreds of kPa depend-
ing on the cell type (27,44). Brain cells are among the softest
and osteoblasts and chondrocytes among the stiffest. Cell
stiffness is highly correlated with the thickness and number
of attachment sites of the actomyosin cortex to the mem-
brane, the amount of excess area stored in the plasma mem-
brane, adhesion, and osmotic pressure (7,8,15,16). Severing
actin filaments as well as arresting myosin motors can have
a drastic effect on the estimated Young’s moduli (7,8,34).
Shroff et al. (45) were among the first to investigate the fre-
quency-dependent viscoelastic properties of samples using a
method that applies small-amplitude oscillations of the
AFM cantilever in contact with the cell body. They were
able to determine the apparent dynamic modulus, the ratio
between applied force and sample indentation, of single
cardiomyocytes during contraction. Mahaffy et al. (21)
and Alcaraz et al. (41) worked out the theoretical and exper-
imental details allowing us to cover a broad frequency range
giving access to the quantitative viscoelastic properties
of cells with a controlled nondestructive stress range
(100 Pa–10 kPa). Lu et al. (46) investigated the viscoelastic
properties of individual glial cells and neurons in the central
nervous system finding that in all cells of the central nervous
system, the elastic behavior dominates over the viscous
behavior and that surprisingly glial cells are even softer
than their neighboring neurons. Rother et al. (42) examined
the correlation between malignancy of tumor cells with their
rheological properties. Darling et al. (20) employed the
elastic viscoelastic correspondence principle to describe
stress relaxation experiments performed on chondrocytes.
More recently Hecht et al. (47) introduced an AFM imaging
technique for mapping the viscoelastic power law parame-
ters with submicrometer resolution. The new AFM mode
combines conventional force mapping with additional
force-clamp phase during each force-distance curve. The
creep behavior during the force-clamp phase is analyzed ac-
cording to a weak power law providing both the Young’s
modulus and the power law coefficient.
Here, we introduce a more general approach to imple-
ment viscoelasticity in the analysis of conventional force
distance curves by fitting the entire force cycle with an
appropriate viscoelastic model. We show that this method
is highly robust, fast, and precise. It does not require any
change in experimental design, is compatible with findings
from conventional microrheology, and captures the impact
of actin disintegrating Cytochalasin D on the mechanical
properties of cells.
MATERIALS AND METHODS

Cell culture

Madin-Darby canine kidney cells, strain II (MDCK II; Health Protection

Agency, Salisbury, UK) were maintained in minimum essential medium

with Earle’s salts, 2.2 g/L NaHCO3, 10% fetal bovine serum, and 4 mM

L-glutamine in a humidified incubator set to 37�C and 5% CO2. Cells

were released using trypsin/EDTA (0.05%/0.02%) and subcultured three

times per week. During experimentation, medium additionally contained

penicillin (0.2 mg/ml), streptomycin (0.2 mg/mL), amphotericin B

(0.5 mg/mL), and HEPES (15 mM). Cytochalasin D ready-made solution

(Sigma-Aldrich, Steinheim, Germany) was diluted with cell culture me-

dium to a concentration of 10 mM. Cells were incubated with drug-con-

taining medium for 15 min at 37�C.
AFM

Force cycle experiments

Cells were grown in Petri dishes (m-Dish; ibidi, Martinsried, Germany)

for 2 days until confluence was reached. Force indentation curves were

recorded using a JPK NanoWizard II or NanoWizard 3 AFM (JPK Instru-

ments, Berlin, Germany) mounted on an inverse fluorescence microscope

(IX 81; Olympus, Tokyo, Japan) equipped with a CCD-camera (XM 10)

and a 40� objective (LUCPLFLN) (all from Olympus) and a PetriDish-

Heater (JPK Instruments) to keep the cells at 37�C. Force indentation

curves were only recorded in the center of the cell to reduce the variance.

Pyramidal cantilevers (MLCT, knom ¼ 0.01 pN/nm; Bruker AFM Probes,

Camarillo) with a slight asymmetry (front angle 15�, side angle 17.5�,
and back angle 25�) at a tilt of 11� or spherical probes (CP-PNPL-

SiO-A, R ¼ 1 mm, knom ¼ 80 pN/nm; sQube, Bickenbach, Germany)

were used. For simplicity, we chose an average angle of a ¼ 17.5� in

our calculations. The spring constant of each cantilever was determined

before the experiment using the thermal noise method according to Hut-

ter and Bechhoefer (48), refined by Butt et al. (39) and Butt and Jaschke

(49). The calibration factor (inverted optical lever sensitivity) is obtained

from a force curve recorded on a rigid substrate (Petri dish). The canti-

lever velocity was set to 2 mm/s and force curves were corrected by base-

line correction. Data reduction was carried out with a self-written

MATLAB script (The MathWorks, Natick, MA) that also allows fitting

of the contact point. In most cases, however, we rely on a manual assign-

ment of the contact point. A comprehensive overview of how to deter-

mine the contact point is given by Gavara (50).

Oscillatory microrheology

AFM active microrheology experiments were carried out as described in

Rother et al. (43). In brief, a MFP-3D-BIO set-up equipped with a Bio-

Heater (both Oxford Instruments Asylum Research, Santa Barbara, CA),

mounted on an inverted light microscope (IX 51; Olympus) was used.

Pyramidal cantilevers (MLCT, knom ¼ 0.01 pN/nm; Bruker, Camarillo,

CA) were used. All experiments were performed at 37�C. The spring
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constant, the lever sensitivity, and the hydrodynamic drag force acting

on the cantilever in different distances from the surface were determined

before each experiment on a stiff glass substrate. After the system was

well calibrated and thermally equilibrated, force maps of 32 � 32 force

distance curves were collected (cantilever velocity: 3 mm/s; trigger

point: 500 pN). The cantilever was held in this indented position for

0.5 s before starting an oscillation protocol with oscillation frequencies

ranging from 5 to 100 Hz at small amplitudes (A ¼ 40 nm, peak to

peak). After another 0.5 s without oscillation, the cantilever was re-

tracted from the cell. From the overall 1024 force-indentation curves,

only those obtained from the center of the cell were chosen for further

mechanical analysis to avoid artifacts from the stiffer cell boundaries.

Force-distance curves showing mechanical instabilities or artifacts

were disregarded as well. A power law structural damping model was

fit to the averaged storage (G0) and loss modulus (G00) providing the

fit parameters for the power law coefficient b and the scaling factor

of stiffness G0.

F-actin staining and confocal laser scanning microscopy

Cells were grown to confluence on Petri dishes (m-Dish; ibidi, Martinsried,

Germany), manipulated as desired and fixed afterwards by incubation with

paraformaldehyde solution (4% (weight/volume) in phosphate buffered sa-

line without calcium and magnesium (PBS��)) for 20 min. To permeabi-

lize the cellular plasma membrane and to block unspecific binding sites,

cells were incubated with blocking buffer (5% (weight/volume) bovine

serum albumin, 0.3% (volume/volume) Triton X-100 in PBS��) for

30 min. F-actin labeling was performed using AlexaFluor 488- or Alexa-

Fluor 546-phalloidin (Life Technologies, Carlsbad, CA), diluted with

PBS�� to a concentration of 165 nM. The cells were incubated at room

temperature for 45 min. Cell nuclei were labeled with 40,6-diamino-2-phe-

nylindole (Life Technologies), diluted to a concentration of 50 ng/mL. In-

cubation time: 15 min at room temperature. Between every labeling step,

cells were rinsed three times with PBS�� for 5 min each on a vibratory

plate (75 rpm). Fluorescence imaging was performed using a confocal

laser scanning microscope (FluoView1200; Olympus) equipped with a

100� oil immersion objective (UPLFLN100�O2PH, NA ¼ 1.3;

Olympus).
Theory

Elastic contact

Awidely accepted way to quantify the elasticity of cells from force inden-

tation curves measured with an AFM is using Hertz’s theory of elastic con-

tacts to model the data (51–53). Although contact mechanics based on

Hertz’s theory is strictly valid only if the indentation depth is <10% of

the sample thickness, which in the case of cells is often not more than a

few hundreds of nanometers, the model is very popular because the exper-

iment is condensed to a single parameter, the so-called Young’s modulus

(30,54). The Hertz model also requires that the material is an isotropic

and fully elastic continuum (51–53), which might not be the case for all

cell types (7,17). Depending on the indenter geometry different functions

how the force depends on the indentation depth are obtained. For instance,

the force-indentation relationship for a conical punch indenting an elastic

half-space is given as (55):

f ¼ 2E tan a

pð1� n2Þh
2; (1)

while for a spherical indenter one obtains the well-known Hertz solution

(51):

f ¼ 4E
ffiffiffi
R

p

3ð1� n2Þh
3
2: (2)
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For a cylindrical flat punch with constant contact area the relationship be-

tween force and indentation depth is linear (56):

f ¼ 2acpE

1� n2
h; (3)
where f is the force response of the cantilever, h is the indentation depth, R is

the radius of the spherical probe, acp is the radius of the flat cylindrical

punch, and a is the half opening angle of the conical indenter. The values

E and n are the Young’s modulus and Poisson’s ratio of the material that

is being indented, respectively. While the validity of these solutions of

the contact problem in the absence of adhesion is limited to elastic solids,

they are nonetheless routinely applied to elastic-plastic indentations by

assuming that the initial unloading segment of the load-displacement curve

is linearly elastic. In an elastic indentation, where the loading and unloading

curves follow the same path, Eqs. 1–3 and subsequent derivations are valid

at all h.

Cells, however, possess both viscous and elastic properties in varying

degrees (57). For any viscoelastic material, internal stresses are a func-

tion not only of the instantaneous deformation, but also depend on the

history of deformation (58). Surely, the most recent history has the high-

est impact. Linear viscoelasticity is the simplest possible description of

any viscoelastic material. If a material is subject to deformations or

stresses so small that its rheological response functions are independent

of strain or stress, the response is in the linear viscoelasticity regime

(58). As far as AFM experiments are concerned, Darling et al. (20)

were among the first to employ the elastic-viscoelastic correspondence

principle to investigate the viscoelastic behavior of chondrocytes. Peng

et al. (59) address the contribution of plastic deformation using a three-

step loading profile in which viscoelastic contributions are present mainly

in the holding segment. This procedure allowed the authors to study plas-

tic and viscoelastic deformations separately and eventually permits us to

determine the shear creep compliance of linear viscoelastic-plastic solids.

Recently, Chyasnavichyus et al. (60) used a Johnson-modified Sneddon

(55) approach in a combination with the standard linear solid model to

describe the viscoelastic behavior of polymers. Because appropriate

models to describe the situation of unloading correctly, i.e., where the

contact radius decreases, are cumbersome and often require numerical so-

lutions, most researchers use the method of Oliver and Pharr (61) that al-

lows the evaluation of mechanical properties by concentrating on the

earliest stages of the unloading curve, where the restoring material

behavior is assumed to be purely elastic and the contact area not yet

decreasing.

The following section briefly reviews how viscoelasticity can be inte-

grated into common contact models extending the parameter space and cor-

recting the elastic moduli that are now a function of loading history.

Viscoelastic contact

The relation between an increasing loading force f ðtÞ of a rigid indenter that
is penetrating a linear viscoelastic body and the corresponding indentation

depth hðtÞ was first derived by Lee and Radok (62) for spherical indenters.

The hereditary integrals are only valid if the contact area increases mono-

tonically with time, i.e., in the time interval 0< t < tm, in which tm is the

time corresponding to maximal contact radius aðtmÞ ¼ amax. Generally,

we obtain for the indentation depth hðtÞ as long as 0< t < tm:

hnðtÞ ¼ ~C

Z t

0

Jðt � tÞ d f ðtÞ
dt

dt (4)
or conversely (through ds ¼ ðEðt � tÞ=ð1� n2ÞÞdg) for the force f ðtÞ:

f ðtÞ ¼ ~C
�1
Z t

0

Eðt � tÞ dhðtÞ
n

dt
dt; (5)
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with JðtÞ ¼ J0fðtÞ the creep function and EðtÞ ¼ E0jðtÞ the corresponding
relaxation function connected via the Laplace transform (jðsÞfðsÞ ¼ s�2,

with s the Laplace variable). fðtÞ and jðtÞ are the normalized creep and

relaxation functions, respectively. For a conical indenter geometry, we

have hðtÞ ¼ ðp=2ÞaðtÞcota, ~C ¼ ~Cc ¼ ðpð1� n2Þ=ð2 tan aÞÞ, and n ¼ 2

(55). A four-sided pyramidal indenter requires a slightly different geomet-

rical prefactor ~Cc ¼ ð1:342ð1� n2Þ=tan aÞ (47,63). For a spherical indenter
we find hðtÞ ¼ ða2ðtÞ=RÞ, ~C ¼ ~Cs ¼ ð3ð1� n2Þ=ð4 ffiffiffi

R
p ÞÞ, and n ¼ 3=2

(51), while for a flat cylindrical punch the contact radius does not

depend on indentation depth and therefore we can simply write
~C ¼ ~Ccp ¼ ð1� n2=ð2acpÞÞ and n ¼ 1 (52,56). Note that, surprisingly, the

elastic solutions for hðaðtÞÞ remain valid if t< tm. A more general treatment

has been suggested by Popov relating the contact radius to indentation

depth for any shape of the axisymmetric indenter with shape function

s(r) (64):

hðtÞ ¼ aðtÞ
Z aðtÞ

0

s0ðrÞdrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2ðtÞ � r2

p ; (6)
and for the force:

f ðtÞ ¼ 2E0

Z t

0

jðt � tÞ v

vt

0
@Z aðtÞ

0

s0ðrÞr2drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2ðtÞ � r2

p
1
Adt: (7)
The hereditary integrals can be solved for any loading conditions, such as

creep at fixed load after a step load, linear ramping of force (constant veloc-

ity), or indentation at constant loading rate, and creep after monotonically

increasing ramp loading as long as the contact radius is nondecreasing (58).

However, this excludes analysis of the retraction curve in AFM experi-

ments. Fortunately, Graham (65) and Ting (66) proposed a general solution

to the problem, which will be also adapted here to describe the full force

cycle.

In AFM experiments, ramps in hðtÞ ¼ n0t with constant velocity n0 are

usually prescribed and the force response f(h) is measured. We will first

derive the theoretical force-indentation curve assuming a monotonically

increasing contact radius. In the second section, we provide an analytical

solution for the unloading case, for which hðtÞ ¼ v0ð2tm � tÞ pertains.
Studies using a variety of techniques have shown that the rheological

properties of cells are best captured by a power law creep function

f ¼ ðt=t0Þb with 0%b%1. The dimensionless power law coefficient b char-

acterizes the degree of fluidity and energy dissipation upon deformation,

where b ¼ 0 represents an ideal elastic solid and b ¼1 a Newtonian liquid.

For cells, b is often found to be in the range of 0.2–0.3 indicative of a visco-

elastic solid (23,42). Accordingly, the relaxation function is j ¼ ðt=t0Þ�b

with the timescaling parameter t0. Note that due to EðsÞJðsÞ ¼ 1=s2 we

have in the time domain EðtÞ ¼ ð1=ðJ0Gð1þ bÞGð1� bÞÞÞðt=t0Þb. The po-
wer law prefactor E0 ¼ ð1=ðJ0Gð1þ bÞGð1� bÞÞÞ is a measure of the

cell’s stiffness at the time t ¼ t0. Because E0 and t0 are not independent

due to the scaling invariance of the power law, the timescaling parameter

t0 can be chosen arbitrarily and is usually set to t0 ¼ 1 s (47). Therefore

E0, the scaling parameter for the cell’s modulus, is the apparent Young’s

modulus at a timescale of 1 s and might deviate from Young’s moduli ob-

tained from elastic models that are time-independent. In the remainder of

the text, we will explicitly work with these power law creep and relaxation

functions to derive an analytical expression for loading and unloading con-

ditions describing the viscoelastic behavior of cells subject to indentation.

In general, any other conceivable expression for J(t) and E(t) such as those

from standard linear mechanical models can also be used.

Indentation curve—linear ramp with increasing h(t). Assuming a conical

or pyramidal indenter that penetrates the cell with a constant rate hðtÞ ¼ n0t,

we obtain for the force as a function of time as long as 0< t < tm:
f ðtÞ ¼ n20
~Cc

Z t

0

E0

�
t � t

t0

��b

tdt ¼ n20E0t
b
0

~Cc

�
2� 3bþ b2

�t2�b

¼ EðtÞ
~Cc

�
2� 3bþ b2

�h2ðtÞ:
(8)

For a spherical indenter, we find:

f ðtÞ ¼ n
3=2
0

~Cs

Z t

0

E0

�
t � t

t0

��b

t
1
2dt

¼ n
3=2
0 E0t

b
03

ffiffiffi
p

p
Gð1� bÞ

~Cs4G
�
5
2
� b
� tð3=2Þ�b

¼ 3EðtÞ ffiffiffi
p

p
Gð1� bÞ

~Cs4G
�
5
2
� b
� h3=2ðtÞ; (9)

with the gamma function GðtÞ ¼ RN
0

xt�1e�xdx.

For a flat cylindrical punch, the force indentation curve is linear:

f ðtÞ ¼ n0
~Ccp

Z t

0

E0

�
t � t

t0

��b

dt ¼ n0E0t
b
0

~Ccpð1� bÞt
1�b

¼ EðtÞ
~Ccpð1� bÞ hðtÞ:

(10)

Note that, in AFM experiments, one usually has control only over the

z-piezo movement and the assumption of a linear ramp of h(t) has to be veri-

fied carefully. In Appendix A, we show that the assumption holds well for

stiff cantilevers compared to the Young’s modulus of the cells.

Retraction curve—linear ramp with decreasing a(t). While indentation of

a viscoelastic material with monotonically increasing contact area does

not change the relation between contact radius and indentation depth,

as it is known from the elastic case following Eq. 6, the situation

becomes more intricate for a decreasing contact radius. In their seminal

articles, Graham (65) and Ting (66) have devised a theory that permits

to compute force, indentation, and contact area for arbitrary a(t).

The key step is, however, to find the time t1 < tm at which aðtÞ ¼ aðt1Þ
for t > tm, which might involve numerical integration and differentiation.

In 2010, Greenwood (67) proposed a straightforward method of analysis

by superposition of an assembly of viscoelastic punch indentations

avoiding some of the involved mathematics connected with the approach

of Ting (66). The method of Greenwood (67) leads to a more conve-

nient form to describe the unloading case. In our case, due to the

simplified creep and relaxation functions, we can find an analytical

expression for t1(t) based on Ting’s original article (66) that in turn en-

ables us to compute the force acting on the cantilever in the same fashion

as before:

fbðtÞ ¼ 2E0

Z t1ðtÞ

0

jðt � tÞ v

vt

0
@Z aðtÞ

0

s0ðrÞr2drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2ðtÞ � r2

p
1
Adt:

(11)

In most AFM experiments the indentation is prescribed and the load

force on the cantilever measured. Typically, linearly increasing ramps

of h(t) up to t ¼ tm are applied and unloading occurs with the same

rate until h(t) ¼ 0 is reached again, giving rise to force cycles (Fig. 1,

top panel). For 2tm > t > tm, the rate for retraction is therefore prescribed
Biophysical Journal 112, 724–735, February 28, 2017 727
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as hðtÞ ¼ n0ð2tm � tÞ. Importantly, the linear ramp also leads to a

maximal contact radius at t ¼ tm and therefore, the contact radius de-

creases monotonically if t > tm. The value t1 is obtained from the

condition (66) Z t

t1ðtÞ
jðt � tÞ vhðtÞ

vt
dt ¼ 0; (12)

leading toZ tm

t1ðtÞ
jðt � tÞ vn0t

vt
dt ¼

Z t

tm

jðt � tÞ vn0ð2tm � tÞ
vt

dt:

(13)

Solving the integrals for jðtÞ ¼ ðt=t0Þ�b provides t1ðtÞ:

t1ðtÞ ¼ t � 2
1

1þb

�
ð�tm þ tÞ1þb

� 1
1þb

: (14)

For a conical indenter, the force fb upon retraction is therefore:

fb ¼ ~C
�1

c n20

Z t1ðtÞ

0

E0

�
t � t

t0

��b

tdt: (15)

Together with Eq. 14, the integral can be solved analytically:
fbðtÞ ¼ n20E0t
b
0

~Cc

0
BBBBBBBBB@

2t2�b

b2 � 3bþ 2
þ

2
1

1�bð1� bÞ2
�
ðt � tmÞ1�b

� 1
1�b þ ðb� 2Þt

ð1� bÞð2� bÞ
�
2

1
1�b

�
ðt � tmÞ1�b

� 1
1�b

�b�1

1
CCCCCCCCCA
: (16)
Fig. 1 illustrates how the viscoelasticity of the sample changes the time

dependency of the contact radius of a conical indenter and the corre-

sponding load response if a linear indentation ramp is applied. Note

that only in the advancing phase is the relation between indentation

and contact radius solely given by the indenter shape—a surprising

finding (66). Later, upon retraction the contact radius also depends on

the material properties. The panel at the top shows the prescribed inden-

tation ramp, the center panel the change in contact radius for two

different values of b (continuous line, b ¼ 0.3; dotted line, b ¼ 0.1),

and the plot at the bottom shows the corresponding force response

(load) ðf ~C=ðn20E0t
b
0ÞÞ for a conical indenter. The green curve represents

Sneddon’s solution (55) in the absence of viscous losses with no hyster-

esis (energy dissipation) between approach and retraction. The receding

contact area drops quicker to zero in the case of larger values for b

because the highly viscous material does not follow the retracting

indenter on its way from the surface to its initial position. The viscous

contribution increases the relaxation time and therefore keeps the mate-

rial from immediately adopting a given shape. The more elastic the ma-

terial is, the more symmetric increasing and decreasing a(t) becomes.

Consequently, an increasing b generates a larger hysteresis between

approach and retraction in the load (force) curve. Upon retraction, the

force immediately drops due to the memory kernel in the viscoelastic
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Eq. 15, i.e., the material’s response is delayed compared to the move-

ment of the indenter. Fig. 2 A illustrates the impact of b on the energy

dissipation (hysteresis) visible in force cycle measurements (same

parameters as in Fig. 1). Notably, the apparent stiffness also increases

with higher values of b, although E0 is constant because the overall

resistance to indentation comprises elastic and viscous contributions.

Therefore, neglecting energy dissipation leads to a systematic overesti-

mation of cell stiffness. Fig. 2 B shows a fit of Eqs. 8 and 16 to

experimental data obtained on a single MDCK II cell of a confluent

monolayer.

Generally, the applicability of this approach relies on the assumption

that the indentation as a function of time is precisely known. However,

in conventional AFM experiments the only control variable is the z-piezo,

and a linear ramp in h(t) can only be ensured for stiff cantilevers compared

with the stiffness of the sample and for low velocities. For cell experi-

ments with sufficiently stiff cantilevers compared to the cell’s Young’s

modulus and low indentation depth, this condition is usually fulfilled

(see Appendix A).
RESULTS AND DISCUSSION

As a test bed for our viscoelastic description of adherent
cells, we chose to examine the viscoelastic properties of
confluent MDCK II cells cultured on petri dishes. The
elastic and viscoelastic properties of this cell line have
been thoroughly investigated in the past (7,8,30). To study
changes of the power law coefficient b, we treated the cells
with Cytochalasin D, which disintegrates the actin cortex
and is known to increase b considerably but at the same
time softens the cells. Our results from fitting both approach
and retraction curves are directly compared with other es-
tablished methods such as AFM-based microrheology using
the same cells and cantilevers. In addition, we varied the
indentation depth and indenter geometry (Figs. S1–S5; Ta-
ble S1) to examine the influence of nonlinear contributions
and to determine the validity and robustness of our
approach, i.e., fitting the full force cycle using Eq. 8 for
the indentation (t % tm) and Eq. 16 for retraction (t > tm)
away from the cell.

Fig. 3 A (left) shows microrheological data (G0, G00) ob-
tained from a confluent MDCK II monolayer subject to an
oscillating pyramidal indenter placed at a given maximal
restoring force (500 pN) and excited to a peak-to-peak
amplitude of ~40 nm at each frequency (5–100 Hz). The
force f(u) is measured as a function of frequency and the



FIGURE 1 Impact of applying a linear indentation ramp (top) of a

conical indenter up to tm ¼ 1 s (vertical black line) on the contact radius

(center) and on the response (dimensionless load) of the cantilever (bot-

tom). The blue traces describe the approach until the maximal indentation

depth is reached, and the red traces describe the retraction. Two different

values for b (b ¼ 0.3: continuous lines; b ¼ 0.1: dashed lines) were used

to illustrate the effect of viscoelasticity on the force response. For compar-

ison, the purely elastic case is shown in green (b ¼ 0). To see this figure in

color, go online.

Force Cycle
following expression for the complex shear modulus G* is
obtained (41):

G�ðuÞ ¼ G0 þ iG00 ¼ 1� n

3h0tana

�
f ðuÞ
hðuÞ � iubðh0Þ

�
; (17)
where b(h0) is the drag coefficient at an extrapolated tip-sur-
face in direct contact and u is the angular frequency in ra-
dians per second. Many microrheological measurements
performed on tens of different cells are compiled in Fig. 3
A. G* increases with frequency following a weak power
law with an exponent b of ~0.27 (Fig. 3 A), while G00 ex-
hibits lower values than G0 in the low-frequency regime
(<50 Hz). In this regime, the cells behave more like an
elastic solid as the loss tangent (h ¼ G00/G0) stays <1. At
larger frequencies, cells adopt more fluidlike properties.
An attempt to explain this power law behavior in the micro-
rheological spectra of living cells has been suggested by
Kollmannsberger and Fabry (23,26). By describing the
cell as an active soft glassy material, some rheological fea-
tures can be assigned to cytoskeletal organization and re-
modeling. This is based on the soft glassy rheology model
first described by Sollich (25) and assumes that the cytoskel-
eton of the cell consists of many disordered elements, which
are held together by weak attractive forces between neigh-
boring elements trapping the elements in energy wells
(25,26). These weak interactions allow the elements to occa-
sionally jump between the potential wells. A large distribu-
tion of energy-well depths leads to a scale-free (power law)
behavior of the lifetime distribution and thus results in a po-
wer law rheological behavior (26). The obtained frequency-
dependent data of the complex shear modulusG* were fitted
with the power law structural damping (Eq. 18) using a com-
plex nonlinear least-squares fitting routine:

G� ¼ G0Gð1� bÞcos
�p
2
b
��

1þ i tan

�
bp

2

���
u

u0

�b

þ ium;

(18)

with G0 as the scaling factor describing the stiffness of the
sample, b as the same power law coefficient as used in the
time domain, u0 as the scaling factor of the frequency (set
to 1 rad/s), and m is the viscosity. G0 can be easily converted
FIGURE 2 (A) Normalized load as a function of

normalized indentation depth corresponding to the

time-dependent loading and unloading shown in

Fig. 1 employing Eqs. 8 and 16. Two different values

for b (b ¼ 0.3: continuous lines; b ¼ 0.1: dashed

lines) were used to illustrate the effect of viscoelas-

ticity on the force response (n0 ¼ 1 mm/s). For

comparison, the purely elastic case (Eq. 1) is

shown in green (b ¼ 0). (B) Nonlinear fit (red line,

b ¼ 0.2635 0.002, E0 ¼ (7645 4) Pa) according

to Eqs. 8 and 16 to force-cycle data (gray dots) ob-

tained from indentation of a single MDCK II cell

with a pyramidal indenter at n0 ¼ 2 mm/s. To see

this figure in color, go online.
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FIGURE 3 (A–C) Rheological information obtained from force measure-

ments performed on confluent MDCK II cells. (A) Microrheology data ob-

tained from forced oscillatory experiments. Storage (G0, triangles) and loss
(G00, squares) moduli are shown in a frequency regime between 5 and

100 Hz; (solid lines) power-law structural damping fit (Eq. 18) to the

data. (B and C) Representative force curves of either untreated cells (or-

ange, B) or Cytochalasin D-treated cells (15 min, 10 mM, blue, C) using a

pyramidal indenter. (Left) Force response during indentation-retraction ex-

periments over time used to fit the model to the data. (Right) Force response
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in the apparent Young’s modulus E0 by E0 ¼ 2G0(1 þ n),
where n is Poisson’s ratio, which we set to 0.5 as incompres-
sibility is typical for soft biological matter (47). On the
right-hand side of Fig. 3 A, viscoelastic spectra of cells
treated with Cytochalasin D for 15 min are shown. It be-
comes immediately clear that cells soften considerably after
administration of Cytochalasin D because both G0 and G00

decrease and the cells adopt more liquidlike mechanical
properties as the loss tangent is >1 in the full frequency
range. Moreover, the power law coefficient b, which is a
good indicator for this transition from an elastic solid to a
viscous liquid, is close to 0.5 after incubation with Cytocha-
lasin D. Note that for b/ 1, cells would behave like a New-
tonian liquid, while for an elastic solid, b ¼ 0 holds. The
reason for this fluidization is loss of the actomyosin integrity
because Cytochalasin D inhibits actin polymerization and
therefore leads to disintegration of the F-actin cytoskeleton.
Consequently, cells soften, become more roundish, loosen
cell-cell contacts, and then eventually detach from the sur-
face. The loss of network elasticity reduces the elastic con-
tributions and the cells behave like a liquid droplet
surrounded by a membrane.

Fig. 3 B shows typical force cycle experiments (approach
and retraction, orange lines) as a function of time (f(t), left)
and as a function of indentation depth (f(h), right) using a
pyramidal indenter approaching with a linear ramp at a con-
stant velocity of 2 mm/s. The direction of the movement was
immediately reversed with the same velocity at t ¼ tm, the
time where the maximum indentation depth is reached.
The obtained f(t) curves were subject to fitting using Eq. 8
for t % tm and Eq. 16 if t > tm. The corresponding indenta-
tion depth was later computed from h(t) ¼ n0t if 0 < t % tm
and h(t) ¼ n0(2tm � t) for t > tm, giving rise to the panels on
the right-hand side of Fig. 3 B. Fits are shown as dashed
dark-red lines. Fig. 3 C shows the impact of Cytochalasin
D on the force distance curve (thick blue lines). Cells
become softer because the slope of the approach curve be-
comes smaller resulting in lower E0 and the hysteresis be-
comes more pronounced indicative of a larger power law
coefficient b.

Fig. 4 compiles the results obtained fromAFM-based oscil-
latory microrheology (OMR) and force cycle experiments
as a function of indentation depth h(t). Two different indentation depths are

shown exemplarily. (Dashed lines) The corresponding fits of Eqs. 8 and 16.

For untreated cells, we obtain for the force cycle with low maximal force:

E0 ¼ (1633 5 26) Pa, b ¼ 0.183 5 0.006, and for high maximal force:

E0 ¼ (1258 5 9) Pa, b ¼ 0.233 5 0.003, respectively. For Cytochalasin

D-treated cells we obtain for low maximal force: E0 ¼ (354 5 3) Pa,

b ¼ 0.436 5 0.003, and for high maximal force: E0 ¼ (496 5 2) Pa,

b ¼ 0.373 5 0.002, respectively. (D) Confocal fluorescence images of

AlexaFluor488-Phalloidin F-actin-labeled MDCK II cells before and after

Cytochalasin D treatment (15 min, 10 mM). (E) AFM height (left) and

deflection (right) images of MDCK II cells before and after Cytochalasin

D treatment (15 min, 10 mM). (D and E) Scale bar, 10 mm. To see this figure

in color, go online.



FIGURE 4 Viscoelastic properties of confluent MDCK II cells measured

by different techniques. (A) Power law coefficients and (B) Young’s moduli

E0 obtained from different experimental methods (OMR and FCE), cell

treatments (orange, control cells; blue, after Cytochalasin D incubation

with 2–10 mM, 15 min), and variable indentation depths. To see this figure

in color, go online.

Force Cycle
(FCE) in the absence and presence of Cytochalasin D. In the
case of force cycle experiments the data is classified into low
indentation depth (h0 % 1 mm) and high indentation depth
(h0> 1 mm). The actual values of indentation depth at a given
force are shown in Fig. S6 (Supporting Material). Oscillatory
microrheological experiments of untreated confluent MDCK
II cells provide a narrowdistribution of power law coefficients
centered atb¼ 0.2685 0.003 (median5 SEM). Force cycle
experiments performedwith a pyramidal indenter on the same
cells up to indentation depths of h0% 1mm, led tob¼ 0.325
0.02. Deeper indentation (h0> 1 mm) leads to slightly smaller
values of b ¼ 0.255 0.01. Already at visual inspection of a
series of force cycle measurements with increasing maximal
force, it becomes clear that indentation depth has only aminor
impact on the rheological parameters (Fig. S7). Essentially,
we found that the power law coefficient measured by OMR
can be reproduced using full force cycle fits using Eqs. 8
and16.Thevalue forb only slightly depends on themaximum
indentation depth h0 leading to smaller values for b if h0 >
1 mm (Fig. 4 A). Using a small spherical indenter and modi-
fying Eqs. 8 and 16 accordingly, we obtain essentially iden-
tical b-values (Fig. S5). Therefore, we conclude that b is
robust against indentation depth and indenter geometry.

Treatment of confluent MDCK II cells with actin disinte-
grating Cytochalasin D leads to a substantial increase of the
power law coefficient compared to that found for control
cells regardless of the type of rheological measurement
(FCE or OMR). Force cycle experiments up to indentation
depths of 1 mm result in b ¼ 0.45 5 0.02 or b ¼ 0.39 5
0.01 if h0 > 1 mm, respectively. Using OMR, we obtain a
median value of b ¼ 0.46 5 0.01.

Generally, we found that E0 values determined by OMR
and FCS are also in very good agreement. We found an
average apparent Young’s modulus of E0 ¼ (0.85 0.1) kPa
(h0 % 1 mm) and E0 ¼ (0.705 0.04) kPa (h0 > 1 mm) using
FCE, while OMR provides slightly smaller values of
E0¼ (0.575 0.05) kPa, however, with a skewed distribution
toward larger E0 values (Fig. 4).

After incubation with Cytochalasin D for 15 min, E0

drops to E0 ¼ (100 5 7) Pa in OMR measurements and
to E0 ¼ (247 5 29) Pa in FCE if h0 % 1 mm and E0 ¼
(296 5 9) Pa if h0 > 1 mm.

The fits according to Eqs. 8 and 16 describe the experi-
mental data usually very well, especially if the prestress is
not too high (Fig. 2). In some curves, however, deviations
from the model are observed at low indentation depth
(Fig. S8). These deviations are attributed to substantial
cortical tension giving rise to a prestress, as a consequence
of actomyosin contractility. This could, in principle, easily
be accounted for by adding a linear term to the force as a
function of indentation depth (Fig. S8). However, here we
refrain from adding a linear term without derivation from
first principles because it has neither been used by others
nor in our microrheological data evaluation and has only a
small impact on the energy dissipation, i.e., the hysteresis
between loading and unloading.

Compared with data found in literature, our measured
values for b fall into the same range usually reported for
adherent cells. Also, the treatment with Cytochalasin D liq-
uidizes the exposed cells marked by an increase in b as re-
ported by others using mainly OMR (21–24). Notably, using
a spherical indenter (2 mm diameter) instead of the pyrami-
dal indenter, identical values for b are obtained for confluent
MDCK II cells (Fig. S5). The values found for the Young’s
modulus E0 assuming essentially b¼ 0 are more widespread
ranging from 400 Pa to several kPa for MDCK II cells
(7,30,43). Compared with actual values provided by Harris
and Charras (68) (400 Pa for wt MDCK and 147 Pa after
Cytochalasin D treatment), our values obtained by FCE
and OMR are in the same scope. Notably, cellular elasticity
depends also on the culture conditions and passage number,
a possible source of variance. The indenter geometry might
also be important because contact models do not capture the
shell-like structure of cells correctly (7), which might lead
to an apparent geometry dependence of the Young’s
modulus (7). Interestingly, here the power law coefficient
b was found to be indenter-geometry invariant (Fig. S5).

It is therefore important to recognize the general limita-
tions of contact models in the context of describing cellular
mechanics. First, the composite, shell-like structure of the
Biophysical Journal 112, 724–735, February 28, 2017 731
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cell-cortex subject to deformation is not captured by contact
models assuming that the cells can be treated as a semiinfin-
ite viscoelastic continuum, where details of the structure are
lumped into a single parameter, the Young’s modulus. Sec-
ond, surface structures (roughness) displayed by the cell,
cortical tension, and area dilatation at large indentation
depth are not explicitly considered by most contact models,
albeit this might be fixed. Third, morphology and shape of
the cells is usually heavily simplified because the cells
were either considered to be planar or assumed to adapt
the shape of a spherical cap. More complex geometries devi-
ating from axisymmetry are typically ignored. Considering
that at low indentation depth the indenter is sufficiently
small compared with the cell, the effect of morphology is
probably rather small. Despite the above-mentioned short-
comings of contact models based on Hertzian mechanics,
these models have proven to be highly suitable to charac-
terize the stiffness of the cells, especially if data from
different laboratories are compared or cells are exposed to
external stimuli such as cytoskeletal drugs. Here, our main
goal was to provide an analytical function that permits us
to obtain another independent parameter that reports on
the energy dissipation associated with indentation experi-
ments. The power law coefficient b turns out to be very
robust against variation of indentation depth and indenter
geometry. This way, cumbersome microrheological experi-
ments can be substituted by force cycle experiments.

In summary, we derived analytical solutions for the visco-
elastic contact of a conical indenter with adherent cells for
increasing and decreasing contact radius. Therefore, both
indentation and retraction can be described, giving access
to the creep and relaxation function of cells. We found
that the power law coefficient b is a robust parameter to clas-
sify the viscoelastic properties of cells independent of
indentation depth, indenter geometry, and chosen microme-
chanical method. This might not be the case for a larger fre-
quency range as pointed out by Stamenovi�c et al. (69), but is
valid for most experimental timescales (23,42). Because
force cycle experiments are the standard way to measure
elastic properties of cells or soft matter in general with an
AFM, our approach to provide explicit analytical functions
to describe both indentation and retraction curves not only
permits us to determine the power law coefficient b but
also provides quantitative values for the Young’s moduli
corrected for viscous effects (see Eq. 8). In comparison
with the method of Hecht et al. (47), which also allows
the mapping of the power law coefficient b on adherent cells
based on force clamp after indentation, our approach is
faster because no dwell time is needed and it is more robust
against drift.
CONCLUSION

Broad consensus exists that the viscoelastic properties of
cells can be described by power law creep and relaxation
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functions over a wide frequency range (10�2–103 Hz) result-
ing from timescale-invariant processes reminiscent of soft
glass rheology. Cells’ frequency-dependent shear modulus
is typically inferred either from deformation in response to
an applied force or passively from the motion of associated
tracer particles following the stochastic motion of a general-
ized Langevin equation. Although there might be a cell-spe-
cific transition of power laws at low and high frequency as
predicted from microrheology of artificial networks, it is
clear that a purely elastic description of cells can lead to a
flawed interpretation. Elastic moduli are no longer constants
but scale with the time and frequency of loading according to
a single weak power law (bz 0.2). This implies that a single
parameter, the power law coefficient, alters elastic moduli
and captures the energy dissipation apparent in a hysteresis
between approach and retraction of an indenter in force cycle
experiments. The mechanical properties of adherent cells are
conveniently probed with an AFM by raster scanning.
Recording force distance curves at high spatial resolu-
tion—often termed ‘‘force volumemeasurement’’—provides
images based on material contrast. Although it is indisput-
able that cells are viscoelastic entities, this fact is usually
ignored in AFM-based experiments and instead time-inde-
pendent elastic moduli are used to describe the data. Our
approach enlarges the parameter space of conventional
AFM experiments comprising indentation and retraction
by describing the full force cycle and thereby providing a
corrected Young’s modulus E0 and the power law coefficient
b. Proof-of-principle data is provided using the well-estab-
lished cell line MDCK II subject to an actin disintegrating
agent and comparison with AFM-based oscillatory micro-
rheology. An analytical solution to the problem of indenta-
tion and unloading of cells with a conical indenter is
provided, which can be easily adapted to other geometries
and viscoelastic functions.
APPENDIX A: LINEAR INDENTATION RAMPS IN
AFM EXPERIMENTS

An important prerequisite for this analysis of force cycle measurements in

the time domain is the validity of the assumption that the indentation depth

h(t) changes with time in a linear fashion. Typically, in AFM experiments

we only have control over the piezo movement and not the indentation

depth. The following paragraph shows that the assumption h(t)z n0t holds

for stiff cantilevers compared to the stiffness of the sample.
Elastic solids

We know that the piezo movement is strictly prescribed to be linear in time

(zp ¼ v0t) and the force measured by cantilever deflection zc ¼ n0t � h is

f ¼ kcðn0t � hÞ. Plugging the force acting on the cantilever, which is in

equilibrium with the force experienced by the soft substrate, into the consti-

tutive equation of a conical indenter we obtain:

f ¼ kczc ¼ E0

~Cc

h2: (19)



Force Cycle
Rearranging Eq. 19 gives:

h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

E0

~Cckc
n0t

r
�1

2
E0

~Cckc

z

E0

~Cckc
n0t�

�
E0

~Cckc

�2

ðn0tÞ2þOðn0tÞ3

E0

~Cckc

:

(20)

For kc >> E0, the approximation h z v0t holds for short times. Assuming

a Young’s modulus of E0 ¼ 1000 Pa for the cells, a spring constant of

kc ¼ 0.01 N/m for the cantilever, and a nominal indentation depth

of h ¼ 500 nm, we arrive at a deviation at maximum indentation depth

of z5% compared to zp ¼ v0t. On the backside, however, this requires a

sensitive measurement of zc. This is warranted in most AFM experiments

because nanometer changes in deflection are usually detected without dif-

ficulty. Fig. 5 shows the measured indentation depth h as a function of

time, confirming that the assumption of a linear ramp together with decent

sensitivity is fulfilled.
Soft glassy material

In the case of cells indented with a cylindrical indenter (flat cylindrical

punch), we obtain:
FIGURE 5 (A) Indentation depth h measured as a function of z-piezo

movement zp (black dots). The ramp is linear in time as indicated by the

linear fits (shown in red). Velocity of piezo movement during approach

and retraction was set to 2 mm/s and maintained at (1.99 5 0.01) mm/s

as inferred from fitting a straight line (red line). The label cp denotes the

contact point with the surface. (B) Corresponding force distance curve

(approach, black curve; retraction, red curve). To see this figure in color,

go online.
hðtÞ ¼ ð1� n2Þ
2acp

Z t

0

J0

�
t � t

t0

�b
vðkcðn0t � hðtÞÞÞ

vt
dt:

(21)

Note that we set t0 ¼ 1 s. Rewriting Eq. 21 gives:

hðtÞ ¼ ~Ccpkcn0

Z t

0

Jðt � tÞdt � ~Ccpkc

Z t

0

Jðt � tÞ _hðtÞdt;
(22)

which, subject to Laplace transformation Lfg, simplifies to:
hðsÞ ¼ ~Ccpkc

�
n0
JðsÞ
s

� JðsÞhðsÞs
�
; (23)

with LfhðtÞg ¼ hðsÞ, Lf R t
0
JðuÞdug ¼ JðsÞ=s, and the convolution

Lf R t Jðt � tÞ _hðtÞdtg ¼ JðsÞhðsÞs. Because the relation between creep

0

function J(t) and relaxation function (E(t)) in Laplace space is

EðsÞJðsÞ ¼ 1

s2
; (24)

we obtain for hðsÞ:
hðsÞ ¼
n0

s2

EðsÞs
~Ccpkc

þ 1

; (25)

or as a geometric series:
hðsÞ ¼ v0
s2

 
1� EðsÞs

~Ccpkc
þ
 
EðsÞs
~Ccpkc

!2

�/

!
: (26)

Inverse Laplace transform L�1fg of the truncated series (second term)

gives:

hðtÞ ¼ n0t þ n0t
E0b

~Ccpkc

�
t

t0

��ð1þbÞ
¼ n0t þ E0n0b

~Ccpkc

�
t

t0

��b

:

(27)

Note that L�1f1=s2g ¼ t. For stiff cantilevers kc >> E0 and low veloc-

ities, we can assume that h(t) is linear in time. This means that for very

high velocities and extremely soft cantilevers, the approximation might

not hold. In cell experiments, we usually encounter Young’s moduli of cells

at ~100–1000 Pa, approaching velocities at ~1000 nm/s and spring con-

stants of 0.01–0.1 N/m, rendering h(t) z v0t a reasonable assumption.
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Supporting Materials and Methods, eight figures, and one table are available

at http://www.biophysj.org/biophysj/supplemental/S0006-3495(16)34338-7.
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