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Schizophrenia (SZ) is a severe mental disorder that arises from abnormal

neurodevelopment, caused by genetic and environmental factors. SZ often

involves distortions in reality perception and it is widely associated with

alterations in brain connectivity. In the present work, we used Human

Induced Pluripotent Stem Cells (hiPSCs)-derived neuronal cultures to study

neural communicational dynamics during early development in SZ. We

conducted gene and protein expression profiling, calcium imaging

recordings, and applied a mathematical model to quantify the dynamism of

functional connectivity (FC) in hiPSCs-derived neuronal networks. Along the

neurodifferentiation process, SZ networks displayed altered gene expression of

the glutamate receptor-related proteins HOMER1 and GRIN1 compared to

healthy control (HC) networks, suggesting a possible tendency to develop

hyperexcitability. Resting-state FC in neuronal networks derived from HC

and SZ patients emerged as a dynamic phenomenon exhibiting connectivity

configurations reoccurring in time (hub states). Compared to HC, SZ networks

were less thorough in exploring different FC configurations, changed

configurations less often, presented a reduced repertoire of hub states and

spent longer uninterrupted time intervals in this less diverse universe of hubs.

Our results suggest that alterations in the communicational dynamics of SZ

emerging neuronal networksmight contribute to the previously described brain

FC anomalies in SZ patients, by compromising the ability of their neuronal

networks for rapid and efficient reorganization through different activity

patterns.
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Introduction

Schizophrenia (SZ) is a chronic mental disorder that

affects over 20 million people worldwide (World Health

Organization, 2019). The neurodevelopmental hypothesis of

SZ proposes that an abnormal developmental trajectory

converges into vulnerable brain circuits, leading the

organism prone to an increased likelihood of developing

psychosis when faced with stressful events during

adulthood (Fatemi and Folsom, 2009). Nonetheless, the

mechanisms triggering and predicting the evolution of the

disease remain poorly understood.

Different studies associate SZ symptomatology with an

altered communication across different brain regions

[reviewed in (Fitzsimmons et al., 2013)]. In this context,

functional connectivity (FC) analysis, which calculates the

temporal correlation between spatially remote events of brain

activity, has been widely used to evaluate communication

across the brain. One of the most common techniques used

to measure regional brain activity is functional magnetic

resonance imaging (fMRI) (Schölvinck et al., 2010), which

registers the hemodynamic variation in response to changes in

brain activity. This methodology allows quantifying the

temporal correlation between signals originating from

different parcellated brain nodes (voxels); a measure that

reflects how strongly different brain regions communicate.

fMRI studies have shown abnormal brain FC in SZ patients in

both resting-state (Garrity et al., 2007; Whitfield-Gabrieli

et al., 2009; Sheffield and Barch, 2016; Erdeniz et al., 2017)

and during task performance (Whitfield-Gabrieli et al., 2009;

Sheffield and Barch, 2016; Godwin et al., 2017). Some of the

resting-state studies assumed that FC remains static during

the data acquisition time period (~5–15 min) (Menon and

Krishnamurthy, 2019); however, it has been demonstrated

that brain resting-state FC is a non-stationary phenomenon.

Instead, it characterizes by exploring different connectivity

states (Cabral et al., 2017; Geng et al., 2020). Furthermore, the

flow-through of these configurations is not an arbitrary

process, since discrete connectivity states consistently recur

along with the scans (Hutchison et al., 2013). These findings

promoted high interest in understanding the dynamics of FC

in health and disease, and thus, in the development of novel

analytic approaches to study the variations in FC in the resting

brain [discussed in (Cabral et al., 2017)]. Analysis of the

resting-state FC course in patients with SZ depicted a

pronounced reduction in the number and diversity of

connectivity states when compared to healthy

individuals, reflecting alterations in brain

communicational dynamics associated with SZ (Miller

et al., 2016).

FC measurements in SZ are drawn primarily from fMRI

scanning data obtained from adults diagnosed with the

disease. Since fMRI relies on hemodynamic fluctuations

related to neural activity, it is not suitable for measuring

brain activity with high temporal resolution; thereby, it

may miss fast transitions in brain FC configurations.

Additionally, the spatial resolution of this technique is low.

The typical size of fMRI voxels is around 3 × 3 × 3 mm3,

reflecting the average activity of hundreds to thousands of

neurons (Arthurs and Boniface, 2002). Such volume covers

the entire cortical thickness, containing several cell types with

distinct morphological and functional properties.

Thus, there is still a gap in our understanding

of the cellular mechanisms involved in brain FC anomalies

in SZ.

Synapses are the elementary structural and functional

units supporting information flow between individual

neurons across the brain. Accordingly, the study of

neuronal communication at the cellular level may increase

our understanding of FC alterations observed in patients with

SZ. Human-induced pluripotent stem cells (hiPSCs)-derived

models reflect the entire genetic component of patients with

complex polygenic brain disorders, (Vadodaria et al., 2020)

such as SZ. These cells can faithfully recapitulate neurogenesis

and the evolution of spontaneous network activity during

brain development (Mariani et al., 2012; Brennand et al.,

2014; Kirwan et al., 2015; Paşca et al., 2015; Izsak et al.,

2019; Fair et al., 2020); therefore, these cultures represent a

novel strategy to obtain patient-derived neurons and study the

underlying neuronal mechanisms of developmental

psychiatric diseases. While so far it is not possible to

reproduce the complexity of specific brain regions and their

connectivity patterns, this in-vitro neuronal model could

facilitate the exploration of general properties of FC

dynamics in emerging neuronal networks. With this aim,

we differentiated hiPSCs derived from patients with SZ and

healthy control donors (HC) into long-term neuronal

cultures. Using Ca2+ imaging, we visualized local changes

in fluorescence associated with spontaneous activity in large

neuronal populations and measured the temporal correlation

between signals arising from individual neurons. We adapted

a FC analysis methodology, previously designed to study

time-varying discrete connectivity states at whole brain

level in SZ (Miller et al., 2016), to quantify resting-state

FC dynamics at the cellular level. As compared to the

networks derived from HC, neuronal networks derived

from SZ patients exhibited both a reduced ability to

explore different functional connectivity configurations

and a reduced competence for rapid connectivity

reshaping, suggesting that alterations in neuronal

communicational dynamics are already present during

early development in SZ and may contribute to the brain

FC anomalies described in SZ patients. These observations

could have global implications for understanding the

communicational properties of the brain in patients with

SZ and may open new routes for exploring fundamental
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principles that rule brain communication through different

spatiotemporal scales, in normal and pathological contexts.

Methods and materials

Description of the donors and cell lines

The hiPSCs lines used in this study were obtained from three

healthy controls and four SZ donors, all of whom displayed a

normal karyotype. Detailed information about donors and

samples is presented in Supplementary Table S1. All the SZ

patients presented a high probability of a genetic predisposition

to SZ, based on the existence of relatives with the disease.

Additionally, to decrease genetic heterogeneity among the cell

lines, two of the donors are siblings. SZ#1 is a male with paranoid

schizophrenia, while his sister SZ#2 was diagnosed with

schizoaffective disorder and presented a history of drug abuse

(cell lines are available at Coriell (Brennand et al., 2011)]. Donors

SZ#3 and SZ#4 are males who were diagnosed with SZ according

to the DSM-IV Axis IV criteria, both exhibiting resistance to

clozapine, with a family history of SZ and no major psychiatric

comorbidities, no history of head trauma and no drug or alcohol

abuse. The cell lines from SZ#3 and SZ#4 were reprogrammed at

D’Or Institute for Research and Education (Sochacki et al., 2016).

Considering the high likelihood of a genetic risk component to

the disease within the patients’ family members, the selected

controls are not related to the patients. HC#1 is a female and the

cell line is available at Coriell. HC#2 and HC#3 are both males

and the cell lines were reprogrammed at the D’Or Institute for

Research and Education. The establishment of hiPSCs and

derivation of Neural Stem Cells (NSCs) was carried out

according to the international standards and the approval of

the Research Ethics Council “Comité de Ética em

Pesquisa–Hospital Copa D’Or” [Certificado de Apresentação

de Apreciação Ética (CAAE): 32385314.9.0000.5249].

Differentiation of NSCs to mature
neuronal cultures

hiPSCs-derived NSCs were kindly donated by Dr. Stevens

Rehen from the D’Or Institute and Federal University of Rio de

Janeiro. Differentiation of hiPSCs to NSCs was performed as

described in (Casas et al., 2018). NSCs differentiation to mature

neuronal networks was conducted by adapting the protocol of Shi

et al. (2012). NSCs were thawed and seeded in Geltrex-coated

plastic 60 mm plates and maintained in Neural Expansion Media

(NEM; DMEM/F12 and Neurobasal medium (1:1) plus Neural

Induction Supplement; Thermo Fisher Scientific, Carlsbad, CA,

United States) until they reached 80%–100% confluence. Next,

NSCs were detached from the plate with accutase (7 min/37°C),

centrifugated at 300 g for 4 min and resuspended in NEM plus

10 µM Rock Inhibitor (Y-27632; Merck, Darmstadt, Germany).

1*10̂6 cells were plated in 35 mm petri dishes coated by poly-l-

ornithine/laminin (10 μg/ml and 2.5 μg/ml, respectively). After

48 h, the medium was replaced by Neural Differentiation Media

(NDM; DMEM/F12 and Neurobasal medium (1:1)

supplemented with 1 × N2, 1 × B27 and 2-Mercaptoethanol

100 μM). NDM was changed every 2 days. 14–16 days after

plating, cells were detached with accutase and passed in a 1:

3 ratio into 35 mm poly-l-ornithine/laminin-coated plates.

Medium changes were done every 2 days. Around day 30,

cells were passed into their final coated 35 mm plate, in a 1:

4 ratio (~500.000 cells per 35 mm petri dish). Cells were

maintained in NDM, with medium changes every other day,

for 60 more days and were supplemented with 10 µM Rock

inhibitor for 48 h, after every passage.

Immunofluorescence

At 60 or 100 days of differentiation, cells were fixed with

paraformaldehyde 4%, permeated with Triton-X (Sigma, St.

Louis, MO, United States) 0.2%, blocked with BSA 5% in

PBST (tween-20 0.1% in PBS), and incubated overnight at 4°C

with anti-tau1 (mouse; #MAB3420 Milipore), anti-

synaptophysin (mouse; #101011 Synaptic Systems), anti-

MAP2 (rabbit; #AB5622 Millipore), anti-homer-1 (rabbit;

#160002 Synaptic Systems), anti-GFAP (rabbit;

#G9269 Sigma), and anti-TUJ1 (mouse; Sigma T8660).

Subsequently, cells were incubated with secondary antibodies

(goat anti-mouse Alexa 488, goat anti-rabbit Alexa 555,

Invitrogen). Nuclei were stained with 4′-6-diamino-2-

phenylindole (DAPI) 1 μg/ml for 5 min. Images were acquired

with a Zeiss LSM 710 confocal microscope.

Electrophysiology

Whole-cell voltage-clamp recordings were performed at

60 days of differentiation in HC and SZ derived cultures.

Neurons were selected following morphological criteria. Na+

inward and K+ outward currents were evoked by voltage steps

ranging from −100 to +40 mV in 10 mV increments

(Vhold = −75 mV). Data were acquired at 50 kHz and low-

pass filtered at 2.9 kHz, by an EPC-10 amplifier (HEKA

Elektronik GmbH, Reutlingen, Germany). Patch electrodes

(~4.5 MΩ) were pulled from borosilicate. The internal

solution contained (in mM): 135 K-gluconate, 2 MgCl2,

2 Na2ATP, 0.3 NaGTP, 10 HEPES, 7 NaCl (pH 7.4). The

recording chamber was continuously perfused at 1–2 ml/min

with ACSF solution containing (in mM): 115 NaCl, 2.5 KCl,

1.3 NaH2PO4, 26 NaHCO3, 25 glucose, 5 Na-Pyruvate, 2 CaCl2
and 1 MgCl2 (300 mOsm/kg), gassed with 5% CO2/95% O2

(pH 7.4). Recordings were performed at room temperature
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(20°C–25°C). Series resistance (10 MΩ–40 MΩ) were not

compensated and recordings were discarded for variations

higher than 20% along the experiment.

qPCR

For qPCR analysis, we used neuronal cultures derived from

three SZ (#1,3,4) and three HC (#1–3) cell lines. Cellular cultures

from early differentiated cells (30 days) and late differentiated

cells (range of 70–91 days, herein defined as 90 days) were stored

in Trizol (Thermo Fisher Scientific, Carlsbad, CA, United States)

at −80°C. Samples obtained from the same cell line but from

independent differentiation procedures were pooled together to

extract total RNA. cDNA was synthesized from 1 μg RNA, using

an M-MLV reverse-transcription kit (Promega, Madison, WI,

United States). Primers were specifically designed to measure the

expression of the genes listed in Supplementary Figure S1A.

Relative gene expression was assessed by qPCR (Agilent

Technologies Thermocycler, Santa Clara, CA, United States).

mRNA levels were calculated as the fold-change expression via

2−ΔΔCt and gene expression was normalized to three different

housekeeping genes (B2M, 18S, GAPDH). Fold changes were

assessed relative to a control sample (HC #1) or

differentiation time.

Conditioned medium (CM) collection and
neuro-proteomic profile

The presence of 30 different neuronal growth factors in serum-

free collected CM (48 h) from cell cultures of 75 days of

differentiation [four SZ (#1–4) and three HC (#1–3)], was

evaluated using the Human Neuro Antibody Array II

(#ab211063, Abcam, Cambridge, United Kingdom). Spots

were detected by chemo-luminescence and intensity was

quantified by densitometry (ImageJ, NIH, United States). The

levels of each factor were measured in duplicates and normalized

to internal controls provided by the assay.

Statistical analysis for mRNA expression
and neuro-proteomic profile comparisons

mRNA fold-change normality was assessed with

D’Agostino-Pearson and group comparison was done using

a Nested t-test and linear mixed effect modelling, with a

random intercept for cell line identity (id) (Supplementary

Table S2). Group comparison in terms of the secreted

proteins, measured with the neuro-proteome array, was

also performed with linear mixed effect modelling. To

evaluate the significance of the regression coefficients

associated with the diagnosis (group), we used a Z test and

Bonferroni correction for multiple comparisons. Statistical

significance was set at p < 0.05.

Calcium imaging

Ca2+ transients were recorded from single cells across

different regions of the plate showing high cellular density at

80–90 days of differentiation, using the cell-permeant Ca2+

indicator Oregon Green™ 488 BAPTA-1 (OGB-1 AM; peak

absorption = 493 nm; Thermo Fisher Scientific, Carlsbad, CA,

United States). Epifluorescence imaging was performed with a

mercury arc lamp and using a band pass excitation (450–490 nm)

filter. Emitted light was detected with an electron-multiplying

CCD camera (High Performance CCD Sensicam, PCO Cooke)

with a band pass filter (515–565). Three SZ (#2, 3, and 4) and two

HC (#1 and 2) cell lines were analyzed (2-3 plates per cell line;

3–27 neuronal aggregates per plate). The loading solution

consisted of OGB1 3.2 µM, Cremophor EL (Merck,

Darmstadt, Germany) 0.01% v/v and Pluronic F-127 (Merck,

Darmstadt, Germany) 0.4% in NDM. Cells in the loading

solution were incubated for 1 h in the dark at 37°C and 7%

CO2. After washing twice with NDM, the medium was replaced

with ACSF, and cells were maintained for 30 min before imaging.

The regions of interest were recorded for ~4.7 min at 6.64 Hz

(T = 0.1506 s; 1877 frames in total). TTX (0.2 µM) was added to

the bath to confirm the AP-dependence of Ca2+ transients.

Imaging analysis

Data pre-processing
Bleach correction was conducted for all recordings with the

ImageJ Bleach Correction Macro Package (Miura, 2020).

Contrast and brightness were adjusted manually using ImageJ

tools. Motion correction and active neurons identification were

performed with the CaImAn Constrained Nonnegative Matrix

Factorization algorithm (Giovannucci et al., 2019). We will use

the term “network” to refer to all the identified active neurons by

CaImAn within the recorded visual field. Therefore, within each

plate, several networks were recorded. Ca2+ transients (Figures

2C,D) in every active neuron were obtained by subtracting the

neuron baseline fluorescence (quantile 8), and a fluorescence

intensity matrix was built per network with rows corresponding

to the different neurons and columns indicating the Ca2+ signal at

every frame (point in time) during the recording time.

Network topology analysis
The Pearson’s correlation index between the signals of every

pair of neurons in each network (rows in the fluorescence

intensity matrix) was calculated. A FC matrix (with shape:

neuron identity, neuron identity) was created with these

correlations (Figure 2E). Two neurons were considered as
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connected if the absolute value of the correlation index was >0.4
(Figure 2F).

Frequency distribution of neuronal connectivity
degree

For the Poisson and the Binomial fitting of the number of

functional connections per neuron (connectivity degree;

Figure 2G), we first built a histogram with binned

connectivity degree data (11 bins). Then, the fitting was

performed on the binned data with nonlinear least-squares

regression using the curve_fit() function of SciPy python

library, with poisson.pmf() for Poisson and binom. pmf() for

Binomial fitting. For the power-law fitting (Figure 2H), the slope

(scaling exponent) in each network was estimated by linearly

regressing the logarithm (log10) of neurons connectivity degree

on the logarithm of its frequency. The code employed to obtain

the scaling exponents of each network is available at https://

github.com/sofiapuvogelvittini/neuronal_functional_connectivity.

Then, a linear mixed effect model, adjusting for the number of

neurons and number of possible connections in the network

(described in Eq. 1), was used to compare the scaling exponents

between SZ and HC.

Identification of individual calcium transient
events

Individual events were detected using TaroTools

extensions (https://sites.google.com/site/tarotoolsregister/)

implemented in Igor Pro (Wavemetrics, Lake Oswego, OR,

United States). After a first automatic round using an

amplitude threshold-based detection of 40% of the

maximum amplitude for each trace, we visually confirmed

the selection of events before subsequent analysis. The half-

width was measured in 5 246 detected events and a histogram

was built to visualize the distribution of individual events

kinetics (Figure 3A.I)

Functional connectivity dynamics
To identify the different connectivity configurations

occurring in the network during the recording period, we

applied a sliding-time-window correlation method to the

fluorescence intensity matrix (Cabral et al., 2017). This

consists in calculating the Person’s correlation index for the

signals of every pair of neurons in the network within a defined

number of frames (width of the time-window). The window is

then shifted in one step, to frame t + 1, repeating the procedure

until all frames are covered (Figure 3A.II). Thereby, a FC matrix

is obtained per step (wFC(t); Figure 3B.I). After measuring the

kinetics of all detected calcium transients (see half-width

histogram of Figure 3 A.I), we chose a width for the time-

window of 70 frames (~10.5 s), to capture the vast majority of

different connectivity configurations while minimizing random

correlations within the signal noise. To assess the sensitivity of

our framework to changes in this parameter, we repeated the

procedure using longer time-windows of 100 and 200 frames. As

the wFC(t) matrices are symmetrical, we reshaped them into a

one-dimensional vector containing only the values below the

diagonal. FC dynamics matrices (FCD) were then obtained by

computing the Pearson’s correlation coefficient between every

pair of wFC(t) vectors (Figure 3B.II).

Functional connectivity meta-states
To quantify and compare the dynamics of FC in our

networks, we adjusted a method designed by Miller et al.

(2016) for fMRI data that allows both identification of discrete

connectivity configurations and extraction of relevant features of

FC dynamics. For each network, we conducted an independent

component analysis (ICA) along the whole set of wFC(t) vectors,

using the FastICA algorithm (Hyvärinen et al., 2000). Setting the

same number of independent components across all the

networks, we reduced the dimensions of all wFC(t) to a same

number. The number of independent components was set to

four, allowing algorithmic convergence in most recordings. Each

wFC(t) vector was regressed on the four independent

components or “correlation patterns” (CP; note that each

network had its own specific CP basis) and the original vector

was then described by the four corresponding regression

coefficients or “weights”, each one associated with a CP

(Figure 3B.III). Next, the weights were discretized into

quartiles (Figure 3B.IV). As weights could be positive or

negative, we treated them separately during the discretization

process. We replaced CP weights by a value in ± (1,2,3,4),

according to their signed quartile. A meta-state was then

defined by a particular combination of four discretized

weights and, while all networks presented the same number of

potential meta-states, each network would typically visit a subset

of them.

Functional connectivity-related variables
After obtaining the set of visited FC meta-states per network,

we calculated the following FC-related variables describing the

dynamics of the network connectivity:

• Number of visited meta-states: total number of different

meta-states realized by each network.

• Number of change-points: number of transitions through

the visited meta-states.

• Meantime in a meta-state: mean number of consecutive

frames that the network remained in a meta-state,

translated to units of time.

• Maximumdistance between successivemeta-states: maximum

Manhattan distance (L1) between two consecutivemeta-states.

• Traveled distance: sum of the distances between

successively visited meta-states along the entire

recording time.

• Dynamic range: Manhattan distance (L1) between the most

distant visited meta-states.
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• Number of hubmeta-states: total number of different meta-

states visited at least twice during the recording time.

• Meantime in a hub: mean number of consecutive frames

that the network remained in the same hub meta-state,

converted to units of time.

• The number of visits to hub states: number of times that the

network visited any hub meta-state.

The number of frames was translated to units of time by

multiplying it by the camera delay (~0.1506 ms). The

identification of meta-states and quantification of FC-related

variables were performed using customized code written in

Python, which can be found at https://github.com/

sofiapuvogelvittini/neuronal_functional_connectivity. Since the

FC-related variables were quantified in each different network,

multiple measurements were obtained per cell line. Therefore,

the “SZ effect” (diagnosis effect) was evaluated with a mixed

linear regression model, including a random intercept for the cell

line identity (id) to account for the internal variability within the

different cell lines. As in most cases the FC-related variables

correlated with the number of active neurons (see Results,

Supplementary Figure S5B), we used deviance statistics to

evaluate the necessity to adjust for the number of neurons

and number of possible connections. In such cases, the

variables were previously centered. We used the Statsmodels

package of Python to fit the following model:

y ~ βdiagnosisXdiagnosis + β(#ofneurons)X(#ofneurons)
+ β(#ofneurons)2X(#ofneurons)2 + (1|cell line id) (1)

y represents the dependent variable and can took the value of any

FC-related variable, as well as the value of the scaling exponent

obtained from the connectivity degree power-law fitting. βi are

the coefficients associated with the Xi predictors. Xdiagnosis is a

binary variable, coded as “1” for SZ neurons and as “0” for HC.

Thus, the “SZ effect” corresponds to the value of βdiagnosis and was

considered statistically significant when its Z-score-associated

p-value was <0.05. βdiagnosis > 0 indicates a positive correlation of

the variable y with the SZ condition, and the opposite for

βdiagnosis < 0.

More details and specifications of the regression models are

presented in Supplementary Tables S3–S5.

Results

Molecular profiling of long-term hiPSCs-
derived neuronal cultures from SZ and HC

Given the relative scarcity of studies on functional

maturation in long-term hiPSCs-derived neuronal cultures, we

first aimed to validate and characterize the differentiation

process. We used hiPSCs-derived NSCs cultures from HC and

SZ patients, displaying clear staining for NESTIN and PAX6, two

well-known markers for NSCs (Casas et al., 2018). We modified

the protocol of Shi et al. (2012) to induce long-term neuron-

enriched cell cultures from four SZ and three HC NSCs lines (see

Supplementary Table S1 for details). We omitted the use of

antibiotics, as they may affect neuronal excitability (Bahrami and

Janahmadi, 2013) and modify the expression of several genes

(Ryu et al., 2017). HC and SZ patient-derived NSCs aggregated

and formed neuronal rosettes that became larger and defined

along the differentiation process (Izsak et al., 2019). After

30 days, 3D neuronal aggregates were already easily identified

(Figures 1A–D), exhibiting unique structures that vary in size

and shape within each culture plate. At 60 days, neurons

expressed specific dendritic and axonal markers (MAP2 and

TAU, respectively); MAP2 was expressed in the perikarya and

dendrites (Figures 1E,G), while TAU was mainly expressed in

axons (Figures 1F,H). Also, the expression of the pan-presynaptic

vesicle-associated protein synaptophysin (SYP) (Figures 1E,G)

and the postsynaptic scaffolding protein (HOMER1) (Figures

1F,H) confirmed the presence of synaptic structures. In addition,

hiPSCs-derived neurons from bothHC and SZ displayed voltage-

dependent Na+ and K+ currents (Figures 1I,J). Consistent with

Shi et al. (2012), at 100 days of differentiation we observed the

presence of GFAP+ astrocytes, mostly in the surrounding area of

the neuronal aggregates (Supplementary Figure S2).

The functional competence of our differentiated cell cultures

was further assessed by analyzing their conditioned medium

(CM). The expression profile of different cytokines and growth

factors related to neuronal differentiation and signaling was

evaluated in the serum-free CM, collected from SZ and HC

cell lines (Figure 1K) at 75 days of differentiation. The complete

set of targeted proteins was identified in the CM (although

Eotaxin-3 and Interleukin-18 were barely detected;

Supplementary Figure S3) of SZ and HC neurons, and

quantification of the secreted proteins revealed a similar

secretion profile between the two groups. Altogether, these

results validate the correct establishment of HC and SZ

mature neuronal cultures.

Altered expression of genes involved in
synaptic function and network
establishment during SZ
neurodevelopment

We analyzed the expression of a set of genes involved in

synaptic function, cytoskeleton organization, and cellular

metabolism in our neuronal cultures. Gene expression was

quantified with qPCR at two different time points during the

differentiation process: 30 and 90 days in culture

(Supplementary Figures S1A,B). We evaluated genes

encoding selected proteins expressed in glutamatergic

synapses, including the glutamatergic NMDA-receptor
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subunit 1 (GRIN1) and HOMER1 (Xiao et al., 1998); as well as

genes encoding GABAergic synapse markers, such as the

GABAergic postsynaptic anchoring protein (GEPHYRIN),

associated with GABA receptors (Choii and Ko, 2015), and

the glutamic acid decarboxylase 67 (GAD67), involved in the

synthesis of GABA (Lau andMurthy, 2012). Also, we quantified

the expression of SYP. SZ and HC neurons did not display

significant disparities in the expression of the mentioned genes

when compared at the same period of differentiation

(Supplementary Figure S1B). To explore how potential

glutamatergic and GABAergic synapses evolved over time in

both conditions, we quantified the change in mRNA expression

of the mentioned genes between 30 and 90 days in-vitro (90/

30 days ratio; Figures 1L–P; for details on statistical tests and

FIGURE 1
Profiling of hiPSCs-derived neurons obtained from HC and SZ patients. (A–D) Representative images for HC- (A,B) and SZ- (C,D) derived
neuronal cultures, captured with phase-contrast microscopy at 30 (A,C) and 90 (B,D) days of differentiation. Arrows indicate 3D neuronal aggregates
where spontaneous activity was recorded. Calibration bar: 200 µm. (E–H) Representative immune staining for the dendritic and axonal markers
MAP2 (E,G) and TAU (F,H), respectively, as well as for the pan-presynaptic and glutamatergic-postsynaptic proteins synaptophysin (SYP) (E,G)
and HOMER1 (F,H), respectively. DAPI staining is shown in blue. Calibration bar: 36 µm. (I,J) Representative voltage-clamp electrophysiological
recordings at 60 days of differentiation, for HC and SZ-derived neurons. (K)Quantification of neurogenic proteins level (mean ± SD) in the CM of four
SZ (#1–4) and three HC (#1–3) cell lines at 75 days of differentiation. (L–U) Fold-change in mRNA expression levels of different genes related to
central nervous system development, in the period from 30 to 90 days. Data is presented as the log2 of the 90/30 days ratio for three SZ (#1, 2, and 3)
and two HC (#2 and 3) cell lines, and every observation is reported independently. B2M was used as housekeeping. Excepting SYP in SZ#1, all
measurements were performed in duplicates per cell line; p-value (p), from nested t-test.
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p-values, see Methods and Materials and Supplementary Table

S2) and compared this change between SZ and HC networks.

The change in HOMER1 expression along differentiation was

significantly different between both conditions (Figure 1L);

while its expression decreased in HC, it increased in SZ

(Supplementary Table S2). A difference between groups was

also detected for GRIN1, with a significant decrease of GRIN1

expression activity during differentiation in HC and no change

in SZ (Figure 1M, Supplementary Table S2). These results

suggest a divergent evolution in the number, or strength, of

excitatory synapses during early neurodevelopment in SZ, as

compared to HC networks. On the other hand, expression of

the GABAergic marker GPHN was reduced in both conditions

along this period of time (Supplementary Table S2), suggesting

a decline in GABAergic communication during differentiation,

and no difference was observed in GPHN expression change

during the assessed period between SZ and HC neurons

(Figure 1N). Also, no difference in GAD67 expression

change during differentiation was observed in SZ as

compared to HC networks (Figure 1O). Conversely, the

expression of SYP remained unaltered in HC neurons during

the evaluated time period, whereas it increased in SZ networks

(Figure 1P). Considering the increase in HOMER1 and GRIN1

expression in SZ networks during the differentiation process,

the increase in SYP might reflect an increased number/activity

of excitatory synapses in SZ, further supporting an altered

evolution of synaptic connectivity over time in SZ. In this

same line of evidence, a recent work using

immunofluorescence staining indicated a higher density of

SYP puncta in hiPSCs-derived neurons from patients with

SZ (Yamamoto et al., 2021). Altogether, these observations

support previous hypotheses proposing an altered excitatory/

inhibitory balance in SZ (Allen et al., 2019), with a trend to

develop hyperexcitability, and suggest that this imbalance may

have its origin in the early stages of neurodevelopment.

We also evaluated expression changes during

differentiation of CDK5R1 and RELN, both involved in

neurodevelopment. CDK5R1 codes for p35, the neuronal-

specific activator of cyclin-dependent kinase 5 (CDK5)

regulatory subunit 1 (Ko et al., 2001). CDK5 contributes

orienting neuronal network structure during

neurodevelopment via cytoskeleton remodeling (Nguyen

et al., 2002). Expression of p35, and hence CDK5 activity,

varies cyclically along with brain development (Wu et al.,

2000). During the assessed period, we found a reduction in

CDK5R1 expression in both conditions (Supplementary Table

S2). Nonetheless, this decrement was significantly lower in SZ

than in HC cultures (Figure 1Q).

The extracellular-matrix glycoprotein RELN plays a critical

role in neuronal migration during early development (Wasser

and Herz, 2017). Later in life, it modulates dendritic and axonal

outgrow and spine maturation, by regulating cytoskeleton

dynamics. In our neuronal cultures, the change in RELN

expression between the 30 and 90 days of differentiation was

similar for SZ and HC (Figure 1R).

Since metabolic anomalies were associated with SZ (Kumar

et al., 2019), we also evaluated the expression of ATP5, coding for

mitochondrial-membrane ATP synthase. ATP5 expression

decreased throughout the evaluated period in HC networks,

but remained unchanged in SZ (Supplementary Figure S1,

Supplementary Table S2). An abnormal energy metabolism

during early neurodevelopment might have multiple

consequences on network establishment and function (Hahn

et al., 2020).

Finally, we did not detect changes in gene expression level of

glucose transporter 1 (GLUT1), nor in the expression of the

semaphorin family SEMA3A, along differentiation

(Supplementary Table S2, Figures 1T–U).

Calcium imaging in hiPSCs-derived
neuronal networks

Spontaneous spiking activity of hiPSCs-derived

populations of neurons was registered at single cell

resolution, by monitoring changes in intracellular Ca2+

concentration (Ali and Kwan, 2020). Cell cultures were

loaded with the cell-permeant version of the Ca2+ indicator

OGB1 (Figures 2A,B) and 4.7 min length videos (1877 frames

per video; T = 0.1506 s) were recorded across different regions

of interest (ROIs) within the cell plates. As previously

described (Izsak et al., 2019), higher neuronal density and

spontaneous activity was more likely to be found in cell

aggregates protruding from the base of the plate

(Supplementary Figure S4 and yellow arrows in Figures

1B,D). Therefore, we considered them as the ROIs to study

local neuronal network activity. We identified the active

neurons within these ROIs using the open-source tool

CaImAn software, considering a signal-to-noise ratio above

2.5 (Giovannucci et al., 2019), and the set of active neurons in

the aggregate was defined as a neuronal network

(134 networks in total, 3–27 networks per plate, 2-3 plates

per cell line, 3 SZ and 2 HC cell lines). Then, Ca2+ transients

were obtained from every neuron in the network (Figures

2C,D). The number of active neurons within each network

varied from 15 to 250; however, regression analysis revealed

no difference in the mean number of active neurons per

network between SZ and HC (Supplementary Figure S5A,

mixed regression model detailed in Methods Eq. 1).

Voltage-gated Na+ channels are responsible for the initiation

and propagation of action potentials in neurons (Noebels et al.,

2012). To probe the action-potential dependency of the

spontaneous Ca2+ events observed in the networks, we added

the selective Na+ channel blocker toxin tetrodotoxin (TTX;

0.2 µM) to the bath during recordings. Ca2+ transients were

abolished by the blockage of the voltage-gated Na+ channels
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(Supplementary Figure S6), corroborating the neuronal origin of

the detected activity.

Network topology analysis of hiPSCs-
derived neuronal cultures based on
functional connectivity measurements

Previous studies assessed neuronal structural connectivity in

hiPSCs-derived neurons using trans-neuronal spread of rabies

virus (Brennand et al., 2011; Kirwan et al., 2015). Neuronal

cultures derived from SZ patients presented a decrease in trans-

synaptic tracing (Brennand et al., 2011), which might be related

to a decrement in the number of synaptic connections. However,

contrary to this hypothesis, electrophysiological recordings

indicated similar total spontaneous synaptic activity between

SZ and HC neuronal cultures (Brennand et al., 2011). In the

present work, we addressed neuronal network connectivity from

a functional perspective by quantifying the co-variation in

neurons activity patterns, registered with Ca2+ imaging, in SZ

and HC. Since the underlying network topology frames neuronal

interactions, assessing FC in this in-vitro system represents both

an indirect approach for revealing the structure of the networks

and a direct way to interrogate their emerging functional

properties.

To quantify neurons FC, we calculated the Pearson’s

correlation index for the Ca2+ signals from each pair of

neurons in every network. As a first approach, we considered

the entire recording time (4.7 min) and generated a FCmatrix (or

correlation matrix) displaying the correlation indexes between

each pair of neurons (Figure 2E). Then, the number of functional

connections per neuron was obtained from this FC matrix, by

considering a pair of neurons as functionally connected when the

correlation index was above 0.4 or below −0.4. For an absolute

correlation value of 0.4 as a cut-off point, the pairs of functionally

connected neurons reached 25% of the total possible

connections, considering all networks (Figure 2F). If the total

number of connections per neuron was randomly determined,

FIGURE 2
Functional connectivity (FC) and topology analysis in HC and SZ networks. (A,B) Representative ROI images of HC and SZ neuronal cultures
loaded with the Ca2+ indicator OGB-1. (C,D)Ca2+ transients (fluorescence intensity after baseline correction) of 5 randomly selected neurons in a HC
and a SZ network. (E) Representative static FCmatrix displaying the Pearson’s correlation indexes (color bar) between the Ca2+ signals from each pair
of neurons in a HC network, considering the whole recording time. (F) Frequency plot of the absolute Pearson’s correlation coefficients from
every pair of neurons, considering all networks. The dotted red line indicates the threshold beyond which we considered a pair of neurons as
functionally connected. (G) Probability density of finding a neuron with x functional connections (connectivity degree). The connectivity distribution
does not fit to a Poisson (λ= 8) nor to a Binomial (n = 1,000, p=0.008) distribution. (H) Scatter plot of the connectivity degree logarithm (log10) vs. the
probability logarithm. Data fit a scale-free or long-tailed distribution, with a scaling exponent of −1.4. (I) Scale-free fitting of neurons connectivity
degree in SZ and HC networks. Connectivity scaling exponents were fitted with a mixed effect regression model detailed in Methods. The scaling
exponents did not significantly differ between the two groups. p-value (p).
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the probability for a neuron to have “x” connections

(connectivity degree) would follow a binomial distribution

and for large enough populations, a Poisson distribution

(Figure 2G). In contrast, the probability distribution for the

number of connections per neuron was right-skewed,

resembling a “scale-free” distribution (Figure 2H; also known

as “long-tailed” or “power-law” distribution). This suggests that a

large number of neurons had few active connections, while a

small number were hyper-connected (Figures 2G–I).

Interestingly, this connectivity organization has been proposed

for the CNS across different species, including humans (Bullmore

and Sporns, 2009; Zhang et al., 2021), and our results add

evidence suggesting that it might be conserved in early

neurodevelopment.

The scale-free fitting of neurons connectivity degree followed

a power-law with a scaling exponent of −1.4 (Figure 2H). Using

trans-neuronal spread of rabies virus, a previous analysis of

network topology in hiPSCs-derived neurons demonstrated

that the number of structural connections of the neurons also

followed a scale-free distribution, with power -2 (Kirwan et al.,

2015). Taken together, these observations support the suitability

to explore topological properties of hiPSCs-derived neuronal

networks through FC analysis, by establishing a link between

structural and functional communication.

To test for differences in the functional topology between

SZ and HC, we fitted a mixed linear model for the networks

power-law scaling exponents, including a varying random

intercept for cell line id and adjusting for the number of

neurons and number of total possible connections in each

network (see Methods Eq. 1). The functional topology of SZ

networks did not deviate significantly from the HC networks

topology (Figure 2I).

FIGURE 3
Dynamics of the resting-state FC and definition of connectivityMeta-states. (A)Graphical representation of the sliding time-window correlation
method. (A.I) Histogram showing the distribution of the transients half-widths for all detected Ca2+ events (n = 5,246). The cumulative distribution
(red curve) depicts that no events with a half-width longer than 10s were detected. (A.II)Ca2+ signals of 5 randomly selected neurons in a HC network
composed of 32 active neurons. A sliding time-window of width 10.5 s (70 frames) is represented by a pink rectangle, within which the
correlation between the signals originating from each pair of neurons is calculated. The time-window scrolls through the entire recording time
(1877 frames), advancing one frame at each step, and a windowed correlation matrix (wFC) of shape number of neurons, number of neurons, is
obtained at each step (t). (B) Windowed correlation matrices and definition of Meta-states. (B.I) A wFC(t) is obtained for each time step (t), with t
running from 1 to 1808. (B.II) A representative Functional Connectivity Dynamics matrix (FCD) obtained from a HC network. This time versus time
FCD matrix is obtained by calculating the Pearson’s coefficient between every pair of wFC(t) in the network. Periods of lasting FC patterns are
reflected by square blocks around the FCD diagonal (black dotted squares) and reoccurring patterns by square blocks distant from the diagonal (red
dotted squares). (B.III) For every recorded network, an independent component analysis (tICA) is performed along the temporal axis of the whole set
of wFC(t), and four independent connectivity patterns (CP) are obtained. Then, each wFC(t) can be described as a linear combination of these four CP
and (B.III) showswFC(48) as an example. The coefficients (weights) multiplying eachCP are obtained by linearly regressingwFC(48) on theCPs. (B.IV)
To have a finite number of states (meta-states, MSs), theweights associatedwith the CPs are discretized and assigned to their respective quartile. The
combination of these four discretized coefficients describes a MS.
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Functional connectivity in hiPSCs-derived
neuronal networks is dynamic and goes
through reoccurring configurations

The FC analysis of resting networks described so far represents

the average connectivity among pairs of neurons along the entire

recorded time (4.7 min). However, this approach does not allow to

explore dynamic fluctuations of connectivity that could occur within

shorter periods of time.

The temporal dimension of the FC in the hiPSCs-derived

networks was addressed with a sliding-time-window correlation

method (Cabral et al., 2017) (Figure 3A). To choose an

appropriate width for the time-window, we first built a histogram

depicting the distribution of the half-width of all detected Ca2+ events

(n = 5,246; Figure 3A.I). As no events with a half-width longer than

10 s were detected, we used a sliding time window of width = 10.5 s

(70 frames, Figure 3A.II) to capture most of the different connectivity

configurations while minimizing random correlations within the

signal noise. For each network, we obtained a set of windowed FC

matrices (wFC(t); where t is the time step, running from 1 to 1808)

(Figure 3B.I). Then, we computed the correlationmatrix for every pair

of wFC(t), obtaining a time versus time functional connectivity

dynamics matrix (FCD) (Figure 3B.II). The FCD diagonal results

from comparing the same time points, thus displaying full correlation.

Points located adjacent to the diagonal (Figure 3B.II, black dotted

squares) are also expected to present high correlation, since they

correspond to nearby, partially overlapping, time-windows. However,

the squared blocks far away from the diagonal (Figure 3B.II, red dotted

squares) suggest the reappearance of previously visited FC

configurations in a distant time point. This reveals that, during the

recording time, the network resting-state FC went through numerous

and reoccurring configurations, rather than evolving in an arbitrary

way. Remarkably, this observation resembles previously described FC

dynamics in the human brain at rest (Hutchison et al., 2013).

FIGURE 4
Functional connectivity-related variables. (A) Schematics represent four possible functional connectivity meta-states (MSs), corresponding to
particular activity configurations of the neurons conforming the network. Each circle represents a neuron and color intensity the strength of its
activity (low red = low activity, high red = high activity). The thickness of the straight lines connecting the neurons reflects the strength of the
correlation between the signals emitted by the neurons (thicker = higher correlation). (B)Diagram illustrating an example of the resting-state FC
flow of a network, with a description of all measured FC-related variables. Blue circles represent the different visited MSs. Each MS inhabits a 4-
dimensional space, determined by the 4 weights associated with the independent connectivity patterns. However, for visualization purposes, in this
scheme each MS is represented in a 2-dimensional space with arbitrary units. Circle size denotes the uninterrupted time (dwell time) spent by the
network in each configuration. Purple lines represent successive transitions between different MSs. The length of the lines corresponds to the
Manhattan distance between two connectedMSs (in the space where the MSs reside) and reflects how different are successive MSs, with longer lines
indicating higher dissimilarity. As a measure of network flexibility, we evaluated the ability of SZ and HC networks to switch in just one step between
two configurations that are as different as possible, a transition represented by the maximum distance achieved between two successive MSs (green
line). The pink circles represent recurringMSs (HubMSs), which are connected bymore than two lines, meaning that the network visited them at least
two times. The grey area corresponds to the dynamic range, a global indicator of the potential diversity of accessible MSs. The length of the trajectory
of the purple line corresponds to the total traveled distance. Panels (A and B) were not generated from real data and constitute solely graphical
illustrations.
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Next, we developed a quantitative framework to evaluate and

compare the dynamics of FC between SZ and HC networks, by

modifying a previously published method that was designed to

evaluate whole brain functional connectivity dynamics in

patients with SZ (Miller et al., 2016). To reduce the

dimensions of the wFC(t) matrices, obtained from the

different networks, to the same number of dimensions (note

that the dimensions of the wFC matrices depend on the number

of active neurons in the particular network), we ran an

independent component analysis (ICA) (Hyvärinen et al.,

2000) per network, throughout the temporal dimension of its

FC [Figure 3B.I, tICA on the set of wFC(t)]. This computational

method allows the separation of a complex signal into additive

components (Hyvärinen et al., 2000). Four different and

independent FC configurations, defined here as correlation

patterns (CP), were identified per network. To describe each

of the wFC(t) in terms of these four CP, we obtained four

coefficients or “weights” by linearly regressing every wFC(t)

on the CPs (Figure 3B.III). Then, to capture a finite number

of FC configurations and to define the same maximum number

of different FC states across all the networks, the weights were

discretized into quartiles, allowing similar connectivity

configurations to be grouped together (Figure 3B.IV). The

unique combination of four discretized weights defined a

Meta-state (MS), borrowing the term coined by Dr. Robyn

Miller (Miller et al., 2016).

Resting-state functional connectivity in SZ
networks is less flexible and slower in
rearranging different configurations
compared to HC

By studying neuronal functional relationships in our in-vitro

model, we aimed to test whether some features of the resting-state FC

dynamics observed in SZ patients (Miller et al., 2016) might also be

FIGURE 5
FC in SZ networks is less dynamic than in HC. (A) SZ networks visit a lower number of different meta-states (MSs) and (B) change fewer times
from one MS to another during the recorded time, spending longer uninterrupted time at the same MS (C). (D) The maximum distance, Manhattan
distance (L1), between successiveMSs is reduced in SZ neuronal networks. (E) A graphical representation of how FC travels within the space inhabited
by the MSs, in terms of the L1 distance between successive visited MSs. The plot indicates the cumulative traveled distance, measured as the
total traveled distance at each time point. (F) The overall distance traveled through theMSs space, calculated as the sum of all L1 distances across the
visited MSs, is reduced in SZ networks. (G) The intrinsic dynamic range, measured as the L1 distance between themost distant MSs, is also reduced in
SZ networks. Each single data is plotted independently on the boxplots and its symbol indicates the cell line of the particular network. For each
dependent variable (Y-axis), the p-value (p) associated with the effect of the diagnosis from the regression model (Supplementary Table S3) is
indicated. A time-window of width = 70 frames (~10.5 s) was used for capturing the visited MSs.
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observed in neural networks resembling early neurodevelopmental

stages in SZ. Using the methodology described in Figure 3, we

obtained the FCMSs visited by each network and quantified a set of

FC-related variables (listed and defined in Methods) in both

conditions. Figure 4 aims to clarify the meaning of these variables,

with Figure 4A illustrating examples of different possible MSs visited

by a network and Figure 4B including a graphical explanation of the

measured variables.

Differences in FC-related variables between SZ and HC

networks were assessed using mixed linear regression

modeling. Even though the average number of active neurons

did not differ between SZ and HC networks (Supplementary

Figure S5A), in most cases the measured FC-related variables

correlated with it (Supplementary Figure S5B). Therefore, we

included the number of active neurons as a covariable in almost

all the multiple regressions (Supplementary Table S3).

We observed a reduction in the number of different MSs

visited by SZ networks (Figure 5A), suggesting a more limited

repertoire of accessible configurations in SZ, as compared to

HC networks. We also measured the number of times that

networks changed from one MS to another (Figure 5B), and

the mean uninterrupted time spent in an MS (Figure 5C). SZ

networks switched fewer times from one MS to another and

remained longer at the same MS, evidencing a reduced

dynamism. In addition, HC networks were capable to

transit to more different (distant) configurations in one

step (maximum distance between successive MSs,

Figure 5D) than SZ networks, suggesting that SZ networks

have less potential to fast switching between distant FC

configurations, reflecting reduced flexibility. We also

calculated the total traveled distance within the MSs

inhabited space, defined as the sum of the distances

between successive MSs through the whole recorded time

(Figure 5E), finding that it was reduced in SZ (Figure 5F).

Finally, we evaluated the dynamic range by calculating the

Manhattan distance between the farthest MSs visited along

the whole trajectory, which is formally a measure of the size of

the space containing the different visited MSs (Figure 5G).

We must bear in mind that the dynamic range is relative to

the specific CPs of each network. Therefore, this

measurement reflects how much the space where the

different MSs inhabit is exploited with respect to the

network intrinsic “motion possibilities” and can be

interpreted as the potential of the network to flow through

diverse connectivity configurations. We observed a reduced

FC dynamic range in SZ networks compared to HC

(Figure 5G), which is consistent with the lower number of

different visited MSs and the reduced total traveled distance

in SZ networks, since a lower dynamic range would imply a

decrease in FC motion potential.

Considering that the value of the FC-related variables

might be sensitive to the width of the time-window, used to

capture the visited MSs, we repeated the complete procedure

for obtaining the MSs using two different time-windows of

widths 100 and 200 frames (15.1 and 30.1 s, respectively), and

compared the estimated FC-related variables between SZ and

HC. The results of these analyses are depicted in

Supplementary Tables S4, S5. All the results were

replicated for larger time-window widths (Supplementary

Tables S4, S5).

Summarizing, our observations suggest that resting-state SZ

networks have fewer available FC configurations, explore them

less thoroughly and reorganize their activity patterns less rapidly

as compared to HC networks. Overall, these findings point to a

reduction in FC dynamism and flexibility in SZ networks,

involving speed and exploration potential.

SZ networks display a reduced number of
recurrent functional connectivity meta-
states (hub MSs) as compared to HC
networks

As mentioned before, neuronal networks went through

different FC configurations that reoccurred during the

acquisition time (Figure 3B.II, FCD matrix). Therefore,

we quantified the number of different MSs that were

revisited by each neuronal network. In whole brain fMRI

FC analysis, these recurrent MSs have been named as “hub

meta-sates” (Miller et al., 2016), and here we named them in

the same way. SZ networks displayed a lower number of

different hub MSs (Figure 6A) and visited these hub MSs less

often than HC networks (Figure 6B), but spent longer

uninterrupted time in them (Figure 6C). These results

were replicated when a larger time-window width of

100 frames (15.06 s) was used for obtaining the visited

MSs (Supplementary Table S4). However, the differences

between SZ and HC networks in terms of the number of

different visited hub MSs and the number of visits to hub

MSs were no longer observed for a time-window width of

200 frames (Supplementary Table S5).

Discussion

Cognitive functions require the integration of neural activity

through different scales, from neurons and local circuits to large-

scale brain networks. Considering the evidence pointing to FC

alterations in patients with SZ (Garrity et al., 2007; Whitfield-

Gabrieli et al., 2009; Miller et al., 2016; Sheffield and Barch, 2016;

Erdeniz et al., 2017), this study aimed to evaluate whether FC

differences between SZ patients and HC subjects could be

explored during early nervous system development in-vitro,

using hiPSCs-derived neuronal networks. Our data indicate

that FC in SZ neuronal networks is characterized by a

narrower diversity of connectivity configurations, impaired
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dynamism and lower flexibility, compromising the ability of the

networks for a rapid and efficient reorganization of their activity

patterns. Remarkably, the altered FC dynamics in our hiPSCs-

derived neuronal networks followed the same direction as the

resting-state connectivity dynamics observed in the brain of

patients with SZ (Miller et al., 2016).

We observed that resting-state FC in long-term neuronal

cultures is a dynamic but not random phenomenon that exhibits

recurrent configurations, resembling what has been described in the

human brain using fMRI, which characterizes by a much lower

spatial and temporal resolution as compared to our in-vitro

methodology (Cabral et al., 2017). This observation is consistent

with the concept of a “default mode” of neural activity, detected in

different brain areas in resting condition, which may contribute to a

basal activity state that provides an adequate starting point for

efficient response to environmental changes (Raichle and Snyder,

2007). Hence, addressing the differences and similarities of activity

configuration dynamics in resting-state across different

spatiotemporal domains, could contribute to understanding the

neurobiological bases of brain integration in both health and

disease. With this in mind, we explored possible fundamental

differences associated with SZ in the dynamics of neuronal

network auto-organization, by evaluating FC-related variables in

hiPSCs-derived cultures resembling early neurodevelopment.

According to our results, SZ networks visited fewer different FC

meta-states (MSs), exhibited a reduced number of transitions and

spent longer uninterrupted periods of time in the same connectivity

configurations, as compared to HC. In addition, the maximum

change in a single step that the FC configuration could achieve was

reduced in SZ networks, evidencing alterations in FC fast switching

associated with SZ. Also, the decreased dynamic range observed in

SZ networks suggests that the possibility of different FC

configurations in SZ neuronal networks is more restricted than

in HC circuits, which is consistent with the lower number of

different MSs visited by SZ networks. These early developmental

alterations in neural communicational dynamics described in SZ

might be jeopardizing the ability of the nervous system for fast and

efficient reorganization and converging into a more vulnerable

organism to harmful or stressful external factors, leveraging it to

SZ development during adulthood (Maynard et al., 2001).

An important observation was the presence of recurrently

visited FC MSs (hub MSs) in hiPSCs neuronal networks. SZ

networks showed a reduced repertoire of hub MSs and visited

hub MSs less frequently, but remained longer periods of time

trapped at the same hub configuration. It has been proposed that

long-term potentiation (LTP; a widely studied model of synaptic

plasticity) could constitute the neurophysiological basis for the

formation of brain hub states (Stampanoni Bassi et al., 2019). The

reduction in the number of hub MSs in SZ networks might be

related to an altered plasticity mechanism for reinforcing certain

neuronal connections during neurodevelopment, resulting in

fewer different configurations strengthened in SZ networks.

Actually, genome wide-association studies (Kirov et al., 2012;

Fromer et al., 2014; Purcell et al., 2014) and a recent single-

nucleus RNA sequencing analysis of SZ post-mortem brain tissue

(Batiuk et al., 2020), evidenced alterations in the sequence and

expression of genes involved in signaling pathways related to

plasticity in SZ (Hall et al., 2015).

Interestingly, the reduction in the number of different hub MSs

and total visits to hubMSs displayed by SZ networks, was no longer

detected when increasing the width of the time-window to ~30 s

(200 frames). An overall decrease in the number of visited MSs was

observed while the time-window width was extended

(Supplementary Tables S3–S5). A plausible interpretation of

FIGURE 6
SZ networks visit a lower number of different hubMSs but remain longer uninterrupted time in them. (A) The number of different visited hubMSs
is lower in SZ networks. (B) SZ networks visit hubMSs less often thanHC networks, but (C) spend longer uninterrupted time in the same hubMS. Each
single data is plotted independently on the boxplots and its symbol indicates the cell line of the particular network. For each dependent variable
(Y-axis), the p-value (p) associated with the SZ effect from the regression model (Supplementary Table S3) is indicated. A time-window of
width = 70 frames (~10.5 s) was used for capturing the visited hub MSs.
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these results may be a progressive reduction in the ability to

discriminate some populations of visited MSs when using longer

time windows. Presumably, the MSs that could no longer be

detected were short-lived connectivity configurations. In this line,

a possible explanation for the loss of statistical differences in the

number of hubMSs and total visits to hubMSs between SZ andHC,

when using the longest time-window, could be that SZ networks

have a lower proportion of short-lasting hub MSs compared to HC.

Thereby, the percentage of missed events would be smaller in SZ

networks as compared to HC when using the longest time-window,

which might reduce the differences in the number and total visits to

hub MSs between the groups. This possibility is consistent with the

reduced dynamism of FC in SZ networks. Overall, these results

highlight the relevance of improving the time resolution for

acquisition and analysis of FC data.

Several genes related to neurodevelopment and synaptic

function have been implicated in the pathophysiology of SZ

[discussed in (Birnbaum and Weinberger, 2017)]. We observed

that the expression of genes encoding key glutamatergic

postsynaptic proteins presented an altered evolution during early

development in SZ networks. The decreased expression of excitatory

synaptic components in HC neurons along with differentiation

contrasted with the rising trend observed in SZ, whereas the

expression of the gene encoding the GABAergic synaptic scaffold

GEPHYRIN similarly decreased in SZ and in HC neurons during

differentiation. Taken together, these results suggest an impairment

in the excitation/inhibition balance in SZ networks during early

development, with a possible trend to develop hyperexcitability.

This is consistent with previous observations in patients with SZ

(Whitfield-Gabrieli et al., 2009; Allen et al., 2019; McHugo et al.,

2019) and also with transcriptomic analysis of cerebral organoids

derived from SZ patients (Kathuria et al., 2020). It could be

hypothesized that a shift in the excitation/inhibition balance

producing neuronal hyperexcitability might cause the network to

approach saturating levels of activity, which might lead to a more

restricted set of possible connectivity configurations. This would be

consistent with the lower network dynamism observed in SZ

networks. However, as we only evaluated the expression of a few

synaptic genes, we cannot establish an overall view of the number/

activity of potential inhibitory and excitatory synapses in the

networks. Instead, we can only estimate, according to the genes

we evaluated, that there seems to be a tendency to hyperexcitability

in SZ networks.

The observed difference in ATP5 expression pattern between

SZ and HC neurons during differentiation might reflect

alterations in the cellular metabolism during early

developmental stages in SZ. Interestingly, Hahn et al. (2020)

described the intimate relationship between brain metabolic

demands and FC during cognitive tasks. It would have been

informative to evaluate relationships between network gene

expression and the measured FC-related variables; however, to

collect enough material to quantify gene expression, we pooled

cell cultures from different plates. Therefore, we cannot relate

gene expression with functional characterization derived from

the same plate.

The expression and activity of CDKR5, and so the activity of

CDK5, is tightly regulated and cyclically varies during

development and adulthood (Delalle et al., 1997; Nguyen

et al., 2002). According to our data, the reduction in CDK5R1

expression during neuronal differentiation was less pronounced

in SZ networks as compared to HC, contrasting with post-

mortem examinations of brain tissue from SZ patients

indicating reduced expression of CDK5R1, as compared to

control tissue (Engmann et al., 2011; Ramos-Miguel et al.,

2013). Together, these findings may indicate a dysregulation

in the upstream molecular mechanisms that control CDK5R1

expression in SZ, leading to divergences in CDK5R1 expression

throughout development and adulthood.

We are aware that additional factors might be influencing our

results and thus it is necessary to be cautious in their

interpretation. The main limitation is perhaps the low number

of cell lines and replicates used to generate the data. In addition,

the incomplete information available on the life history of the

donors could be misleading the interpretation of our results,

since other covariates might contribute to the differences

between the groups. Future experiments including larger

samples are crucial to validate our observations in SZ. A

technical limitation of our methodology is the arbitrary

definition of the focus during calcium imaging. As our

cultures were composed of multiple cellular layers of

overlapping neurons, the focus election defined the spatial

limits of the analyzed networks, which may have influenced

the resulting MSs and the inference of FC-related variables.

FC in neuronal cultures has also been evaluated using

extracellular microelectrode arrays (MEAs). MEAs allow

monitoring of electrical activity at many sites of a network.

Nowadays, the development of high-density MEAs allows

discrimination of electric signals near the single-cell resolution

in cellular cultures (Poli et al., 2015). In addition, MEAs

recordings exhibit higher temporal resolution than calcium

imaging, allowing more precise delineation of the activity

transients, and thereby, a more precise estimation of FC. Our

analysis designed to quantify FC dynamics could be applied in

MEAs data; thereby, the focus limitation inherent to calcium

imaging would be improved and the increase in temporal

resolution may contribute to identify short-lived connectivity

configurations. Furthermore, due to the high temporal resolution

achieved withMEAs, point-processes, such as spike trains, can be

estimated from the time-serial records obtained with this

technique. In that case, the directionality of FC could be

estimated with a cross-correlation analysis, which would allow

identifying a greater diversity of connectivity MSs by

discriminating between neurons acting either as effectors or

receptors of the activity.

Regarding the functional topology of the networks, positive

as well as negative correlations were identified, suggesting the
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influence of excitatory and inhibitory synapses on the diversity of

networks connectivity patterns. This was supported by the

expression of excitatory (HOMER1 and GRIN1), as well as

inhibitory (GPHN and GAD67) synapses marker genes in the

networks. However, the slow time course of the calcium

transients makes the interpretation of the negative correlation

indexes not straightforward, due to possible mono and multi-

synaptic influences. Here, we used a similar differentiation

procedure as Kirwan et al., 2012 (Kirwan et al., 2015), who

showed that while GABA-A and B receptors are functional,

application of a GABA-A receptor antagonist had no effect on

the highly synchronized activity, indicating no significant

influence of inhibition on this form of coordinated activity.

However, authors did not check the effect of GABA inhibitors

in a form of recurrent activity where massive synchronization

was less frequent or absent (Kirwan et al., 2015), as was the

activity presented in our networks. Therefore, the effective

participation of inhibitory synapses in the generation of

negative correlations in our networks cannot be ruled out and

requires further investigation.

Collectively, our findings support previous hypotheses

proposing that the brain is a complex system that may

possess spatiotemporal scale-invariant principles governing its

structure and function through development (Witvliet et al.,

2021) [discussed in (Bullmore and Sporns, 2009; Zhang et al.,

2021)], and add evidence suggesting that these principles are

expressed at very early stages of development, when neuronal

networks are in an emerging state. Of note, we were able to

detect aberrant neural communicational dynamics already in

the developing neuronal networks of SZ patients that may

contribute to the altered FC described in the SZ brain. The

integration of our methodology, aiming to evaluate network

functional performance, with genome-wide transcriptomic

analysis may further contribute to understanding the

molecular and cellular mechanisms underlying FC

impairments in SZ.
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