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Abstract: Meromictic lakes are permanently stratified lakes that display steep gradients in salinity,
oxygen and sulphur compounds tightly linked to bacterial community structure and diversity.
Lake Seelenvannet is a meromictic lake located south of Bergen, Norway. The 26 m deep lake is connected
to the open sea and permanently stratified into two layers separated by a chemocline. The upper water
layer is brackish with major input from water runoff from the surroundings. The bottom layer consists
of old saline water with low or no oxygen concentrations. Bacteria from phylum Planctomycetes are
reported to be ubiquitous in lake environments. They are involved in the degradation of complex
carbon sources in aquatic environments and are also linked to anaerobic processes such as fermentation
and sulphur reduction. To study Planctomycete distribution along a chemical gradient, we sampled
the water column throughout Lake Seelenvannet in 2012 and profiled the microbial community using
16S rRNA amplicon sequencing (metabarcoding) with 454 pyrosequencing. Planctomycetes related
165 rRNA gene sequences were found to be present both in the oxic and anoxic parts of the lake and
showed an uneven distribution throughout the water column, with the highest relative abundance
of 10% found in the saline anoxic layer at 15 m depth. In a follow-up study in 2014, samples from
eight different depths were collected for enrichment and isolation of novel Planctomycetes. This study
resulted in successful isolation in pure culture of 10 isolates affiliated to four different genera from the
family Planctomycetaceae. One strain closely related to Blastopirellula cremea was isolated from 9 m
depth, and two novel strains affiliated to the genera Stieleria and Gimesia were isolated at 7 and 9 m
depths, respectively. Furthermore, seven isolates with identical 165 rRNA gene sequences were
retrieved from seven different depths which varied greatly in salinity and chemical composition.
These isolates likely represent a new species affiliated to Rubinisphaera. The adaptation of this novel
Planctomycete to water depths spanning the entire chemical gradient could indicate a high phenotypic
plasticity and/or a very efficient survival strategy. Overall, our results show the presence of a diverse
group of Planctomycetes in Lake Seelenvannet, with a strong potential for novel adaptations to chemical
stress factors.
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1. Introduction

Lakes are fundamental parts of life linked to the structure and benefit of society and natural
ecosystems. These ecosystems represent important reservoirs for plants, animals and microbes, and any
changes in their environmental quality and water renewal rates can have wide-ranging ecological
implications. Changes in air temperature, precipitation and catchment area, together with depth,
have direct effects on the physical, chemical and biological characteristics of lakes. A typical lake has
distinct zones of biological communities, closely linked to its physical structures. Lakes are stratified
into three separate sections: the epilimnion, the metalimnion and the hypolimnion. The epilimnion
or surface layer is the top-most layer in a thermal or chemically stratified lake, occurring above the
metalimnion and the deeper hypolimnion. It is warmer and typically has higher dissolved oxygen
concentration than the hypolimnion. The metalimnion is the water layer in a stratified lake which lies
beneath the epilimnion and above the hypolimnion, in which the temperature and/or oxygen decreases
rapidly with depth.

Meromictic lakes are lakes that are permanently stratified, as deeper water masses are not
renewed during seasonal circulation. This is usually due to enrichment of soluble minerals in the
deep water, such as bicarbonate, calcium, magnesium, iron and manganese. These accumulations of
salt and minerals can be due to bacterial activities and processes in the deep water and in sediments,
or from mineral sources in the area. The deep waters containing salt enrichments are referred to as
monimolimnion, whereas the uppermost circulating water masses in a meromictic lake are referred to
as mixolimnion. The transition zone between the two layers are termed the chemocline. The enrichment
of salts in the monimolimnion results in water masses with a high mass density. To mix these heavier
water masses with the lower density mixolimnion, additional energy is required.

Bacteria play a prominent role in lake ecosystems and greatly impact lake water quality, but the
bacterial taxa participating in these activities remain largely undescribed [1]. Globally, the most
predominant freshwater bacterioplankton from the epilimnion are Actinobacteria, Proteobacteria
(Beta- and Alphaproteobacteria), and Bacteroidetes [1,2]. However, the understudied hypolimnion
is teeming with microbes that have not yet been cultured. Recently, oxygenated hypolimnion from
10 deep freshwater lakes with a variety of geochemical characteristics were investigated, and the
bacterioplankton community composition was described [3]. The study identified several predominant
lineages inhabiting multiple lakes and found ubiquity and quantitative significance of bacterioplankton
lineages in the oxygenated hypolimnion of these lakes. They also found that the most abundant
hypolimnion-specific lineages were Chloroflexi, Planctomycetes and Marine Group I Thaumarchaeota,
which exhibited abundances ranging from 1.5-32% of the bacterioplankton community [3].

Planctomycetes are an enigmatic group of bacteria with large genomes that follow complex
lifestyles and display unusual cell biological features. Although Planctomycetes have been isolated
from a variety of environments, including aquatic, marine and freshwater ecosystems, host-associated
systems, sediment, soil and artificial systems, the total number of isolated Planctomycetes is still
limited compared to other phyla [4]. Most of the presently isolated family Planctomycetaceae are
considered (micro-) aerobic chemoorganotrophic microorganisms that are able to degrade complex
organic compounds. In a recent study of lacustrine sediments, 60 Planctomycete metagenome-assembled
genomes (MAGs) were assembled from 10 large metagenomic datasets [5]. These data, together with
spatiotemporal abundance patterns (using CARD-FISH (catalyze reporter deposition fluorescence in
situ hybridization)), were used to elucidate the evolutionary history of lacustrine Planctomycetes and
their genome evolution patterns linked to their lifestyle strategies [5]. According to [6], Planctomycete
abundance ranges from 0 to 11% of the aquatic planktonic prokaryotic community. Due to the relevance
of Planctomycetes in nitrogen and carbon biogeochemical cycles [7-11], their potential role in aquatic
ecosystem functioning is being recognized. The first evidence for Planctomycetes with anaerobic
metabolism was reported by a microbial diversity study of an anaerobic digester of a municipal
wastewater treatment plant that showed that activated sludge contained a highly diverse number of
Planctomycetes that were able to grow under both aerobic and anaerobic conditions [12]. In a recent
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study from a boreal lake in Northern Russia, a new strain PX69" was isolated that was affiliated with
the Pirellula-related Pir4 clade, which is dominated by environmental sequences retrieved from a
variety of low-oxygen habitats [13].

In this study, we focus on Lake Seelenvannet, which is a meromictic lake located south of Bergen,
Norway (60° 20" 4.8” N, 5° 16” 34.3” E). It is permanently stratified in two layers, mixolimnion and
monimolimnion. The bottom layer naturally contains old marine water with a higher salinity than
the brackish upper water layer. The interface between the layers, the chemocline, is a hotspot for
microbial activity.

Previous studies from 1997 of Lake Szelenvannet identified the location of the chemocline to be at
a 5 m depth and found that a distinct shift in community composition followed. The surface layer was
inhabited by a high number of undescribed bacteria, a high abundance of Chlorobium phaeovibrioides
was found in and around the chemocline, and the presence of sulphate reducers and methanogens was
detected below the chemocline [14]. Since 1997, the chemocline of Lake Seelenvannet started to move
upwards in the water column, and in the last years chemocline was found relatively near the surface,
resulting in a severe sulphide smell with evident noxious consequences. To lower the chemocline and
prevent the sulphide smell, the lake has been oxygenated from the bottom since 2010, which may have
altered the bacterial community and distribution.

In this study, two new sampling campaigns were carried out throughout the Lake Szelenvannet
water column. In the 2012 campaign, six layers from all lake zones were analyzed for microbial
community composition using 454 sequencing. As a considerable amount of Planctomycetes were
detected in the mixolimnion and monimolimnion, a follow-up study was done in 2014, with the main
focus to enrich and isolate candidates of the hitherto scarcely studied Planctomycetes. Much of the
diversity of Planctomycetes is still not known, which hampers the understanding of the overall lake
ecology. We hypothesize that the microbial community structure and the composition of the plankton
community will vary depending on the lake chemical and physical parameters. The results will help to
illuminate the association of Planctomycetes in lake system communities and the potential contribution
of these bacteria in the biogeochemical cycles in lake systems.

2. Materials and Methods

2.1. Sampling Site

Water samples were collected from the meromictic Lake Seelenvannet located south of Bergen,
Norway. The lake contains old relict seawater from the surrounding fjords. It has a maximum depth of
26 m and consists of two main basins. The lake is referred to as a meromictic lake as there is a distinct
chemocline separating the aerobic surface layer with freshwater input from the surroundings from the
anaerobic old saltwater found at the bottom of the lake. The lake is connected to Norddsvannet via a
relatively narrow and shallow channel and then further connected to the fjord system and the open
sea. Depending on the amount of freshwater runoff from land, precipitation and climatic variations,
the location of the chemocline varies. Usually, it is located at a depth of 3 to 5 m.

2.2. Water Sampling

In May 2012, water samples were obtained from the mixolimnion (1 m depth), chemocline (5 m)
and the monimolimnion (5.5, 6, 7 and 15 m depth) in Lake Seelenvannet. These samples were used
for microbial community profiling. In October 2014, water samples were collected from 8 depths.
Five samples were from the mixolimnion (1, 4, 7, 8 and 8.5 m depths), and 3 samples were from the
monimolimnion (9, 10 and 15 m depths). These samples were used for enrichment, isolation and
transmission electron microscopy (TEM) characterization. In both years, the samples from the upper
8.5 m were taken with a submersible pump, as described by [15], in which the water was pumped
up from a defined depth through a tube with a manual vacuum pump. The samples from 9 m and
below were taken with a Niskin bottle. One liter of water was sampled from each sampling depth at
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both sampling times. Temperature and salinity were measured with a salinoterm and a YSI model 33
SCT meter (Yellow Springs Instrument Co., Yellow Springs, OH, USA), and dissolved oxygen was
measured with an oxygen electrode and a YSI model 57 oxygen meter (Yellow Springs Instruments,
Yellow Springs, OH, USA).

2.3. DNA Extraction from Environmental Samples and 454 Pyrosequencing

To collect microbial biomass for DNA analysis, water was filtered directly through 0.2 pm Sterivex filter
units (Merck, Millipore, MA, USA) via a peristaltic pump without prefiltration, and stored immediately
at —80 °C until further analysis. DNA was extracted using the CTAB (cetyl trimethylammonium
bromide) method, as described by [16], with the exception that the phenol:chloroform:isoamylalcohol step
was omitted.

Amplicon pyrosequencing of the variable V6-V9 region of the 165 rRNA gene was conducted,
as previously described by Bengtsson et al. [17], using primers 787F (5'-ATTAGATACCCNGGTAG-3’)
and 1492R (5’-GNTACCTTGTTACGACTT-3’) [18]. The PCR was done in triplicate, and the reactions
were pooled. The cleaned PCR products were used as a template for a second nested PCR with
the same primers using unique multiplex identification tags (barcodes). The amplicons were then
pooled in equimolar amounts and stored at —80 °C until they were processed for pyrosequencing
at the Norwegian Sequencing Centre using GS-FLX Titanium technology (454 Life sciences, Roche,
Branford, CT, USA) in Oslo, Norway. The raw sequences were processed, filtered and noise was
removed from the pyrosequencing reads using AmpliconNoise (version 1.1, [19]), which corrected and
compensated for errors introduced during PCR and pyrosequencing, thereby improving the estimation
of bacterial diversity. Denoised sequences were then clustered into Operational Taxonomic Units
(OTUs) using complete linkage clustering, as described by Quince et al. [19], with a similarity cutoff of
97%. To taxonomically classify the OTUs, their representative sequences were aligned to the SilvaMod
database v128 (released 2017; https://github.com/lanzen/CREST) using blastn (v.2.6.0) + task megablast)
and thereafter classified using CREST with default parameters [20]. Sequences unclassified at the
domain level, likely not derived from rRNA genes, as well as mitochondrial or plastid 165 rRNA gene
sequences, were removed from further analyses. Diversity indexes and rarefied richness estimates
were calculated using the R package vegan [21] and relative taxon abundances were plotted using the
R package ggplot2 [22]. The raw data (SFF files) were submitted to the European Nucleotide Archive
with study accession number PRJEB39146.

2.4. Isolation of the Planctomycete Strains

To cultivate Planctomycetes, we used a two-step approach which involved an initial enrichment of
the samples at 1:10 and 1:100 dilutions of lake water in M30 medium [23], followed by plating on solid
M13 media [24]. The M30 medium contained (g per liter) N-acetylglucosamine, 2.0; Na, HPO4 x 2H,0,
0.01; 10x vitamin solution no. 6 [25], 1.0 mL; Hutner’s basal salts [26], 20 mL; 0.1 M Tris:HCL pH 7.5,
50 mL; aged seawater, 700 mL. The M13 medium contained (g per L) Bacto-peptone, 0.2; yeast extract,
0.2; glucose, 0.2; 10x vitamin solution no. 6, 1.0 mL; Hutner’s basal salts, 20 mL; 0.1 M Tris: HCL pH 7.5,
50 mL; ampicillin, 0.2; aged seawater, 700 mL; Gelrite, 5.0. As the majority of previously isolated
heterotrophic Planctomycetes are resistant to several antibiotics [27-29], additional parallel enrichment
cultures in M30 medium for each depth were supplemented with ampicillin (0.2 g/L) and streptomycin
(0.2 g/L) to selectively target the Planctomycetes. Enrichments were initiated under both anaerobic
and aerobic conditions and incubated at room temperature (~22 °C) with a natural light cycle of day
and night. After 7 or 11 days of incubation, all enrichment cultures were diluted in M30 medium
(1:10 and 1:100), and 200 pL aliquots were plated on solid M13 medium. Cultures were incubated
at room temperature. The growth of potential Planctomycetes was visualized using light microscopy,
and promising cultures were examined using transmission electron microscopy on negatively stained
samples. Colonies with pigmentations towards red, pink and orange were regarded as promising, as
well as smaller white round colonies. If these characteristics fell together with microscopy observations
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showing rosette formations, budding reproduction, dense cell aggregates and stalk formations, these
were further processed. Favorable colonies were re-streaked three times on solid M13 medium to
obtain pure cultures, and verified as Planctomycetes by sequencing the 16S rRNA gene using bacterial
specific primers A8f and 1542r, as described by Storesund and Jvreas [30].

2.5. Electron Microscopy of Isolates

Electron micrographs of the communities from different depths in Lake Seelenvannet were prepared
by placing a drop of native sample on top of copper grids (400 mesh Cu grids; Agar Scientific, Ltd.,
Essex, UK) supported with carbon-coated formvar films and let to air dry. Each grid was negatively
stained with 2% uranyl acetate for 30 s, and the cells were inspected using a JEOL 100CX transmission
electron microscope (JEOL Ltd., Akishima, Japan) operated at 80 kV.

3. Results

3.1. Lake Hydrography

Hydrography profiles of the lake differed between the two sampling times (Figure 1 and Table S1).
In May 2012, the mixolimnion was located closer to the surface at 1-5 m depth, whereas it extended
down to 9 m depth in October 2014. The measured oxygen concentrations were also higher overall
in the mixolimnion in 2014 than in 2012. In 2012, the lake was anoxic below 5.5 m depth, whereas in
2014 it was only anoxic below 9 m depth. In 2012, the temperature was very similar between the
different water layers of the lake with the lowest temperature, 8.9 °C, observed at the surface, and the
highest temperature, 10.7 °C, at 7-9 m depth. The salinity profile indicated a gradual increase in salinity
from 3 ppt at the surface to 19.9 ppt at 10 m depth, and 20.4 ppt at 15 m depth. In October 2014,
a different profile was recorded, and an upper halocline at 2 m depth separated cold, well-oxygenated
freshwater from a layer of warmer, more saline water below. Within this water layer, the oxygen content
fluctuated between 3 and 1.5 ppm. At 8.5 m depth, we found the main chemocline separating the
anoxic monimolimnion from the mixolimnion was located at 9-12 m depth. At this depth, the salinity
increased from 17.9 to 20.1 ppt, and the temperature decreased from 16.6 to 12 °C.
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Figure 1. Hydrography profiles from Lake Seelenvannet in May 2012 and October 2014. In May 2012,
the mixolimnion extended down to 5 m depth, and in October 2014, it extended down to 9-m depth.
In 2012, the lake was anoxic below 5.5 m depth, whereas in 2014 it was only anoxic below 9 m depth.
In October 2014, an upper halocline at 2 m depth separated the mixolimnion in two layers consisting
of cold, well-oxygenated fresh water at the surface and a layer of warmer, more saline water below,
with fluctuating oxygen content.
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3.2. Alpha Diversity and Microbial Community Structure

Pyrosequencing of 165 rRNA gene amplicons (metabarcoding) resulted in a total of 181,903 reads
after quality filtering and denoising, distributed over 2278 unique OTUs. The deepest sequenced
sample (15 mA) yielded 6868 reads. Rarefied richness, calculated as the expected richness at these
sequencing depths, ranged from 164 (7 m depth) to 763 (15 m depth). Rarefaction curves indicated that
the diversity did not reach saturation in any of the samples, and that the communities at 15 m were more
diverse than others (Figure 2). The Chaol index, a non-parametric estimator of the lower bound of total
richness that is less dependent of differences in sequencing depth, also indicated considerably higher
richness in the bottom communities compared to other samples (Table 1). Further, the communities at
6 and 7 m depths in the monimolimnion showed a considerably lower Shannon diversity (H" < 1.39 vs.
H’ > 3.39 at other depths) as well as Pielou evenness (J’ < 0.25 at 67 m vs. ]’ > 0.6 at all other depths),
indicating that they were dominated by fewer species and that richness was strongly affected by rare
OTUs, possibly including those from dead cells.
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Figure 2. Rarefaction curves for the seven samples showing the diversity detected compared with
the predicted total diversity. The x-axis represents the number of sequences sampled, while the y-axis
represents a measure of the species richness detected, estimated with the Chaol index.

Table 1. Diversity statistics.

Dataset Reads Singletons  Richness  Rarified Richness Shannon Evenness Chao
Mixo_1m 37,391 148 540 271 3.839 0.610 824
Chemocline_5m 25,382 109 644 416 4.470 0.691 861
Mono_5.5m 32,382 101 695 387 3.391 0.518 988
Mono_8m 42,922 67 499 199 1.379 0.222 774
Mono_7m 24,494 27 321 164 1.390 0.241 522
Mono_15mA 6868 130 688 688 3.951 0.605 1299

Mono_15mB 12,464 271 1011 763 4.252 0.615 1640
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A large core community represented by 169 OTUs (29%) was present in all samples throughout
the water column (illustrated as a Venn diagram in Figure 3). Out of the 495 OTUs detected in the
monimolimnion (the most diverse water mass), 144 were unique for this water mass, while 164
were shared with the community at the chemocline. Only 35 OTUs were unique to the mixolimnion,
and 24 OTUs were unique to the chemocline. Samples from different layers clustered together.

Chemocline
Mixolimion
(1m

Figure 3. Venn diagram showing the distribution of shared OTUs across the different water layers.
White numbers indicate the number of OTUs in each possible subset, adjusted for differences in
sequencing depth.

3.3. Taxonomic Profiles Across Depths

A total of 33 phyla were detected among the 165 rRNNA gene sequences throughout the water
column, with an average abundance of 0.1% or more (Table S2). In the surface layer (mixolimnion),
90% of the detected microorganisms could be attributed to three phyla: Proteobacteria (35%), Bacteroidetes
(40%) and Actinobacteria (15%) (Figure 4a). These findings are consistent with other studies suggesting
the dominance of these three phyla in freshwater systems [1,31,32].

The composition of the mixolimnion was distinctly different from the chemocline and layers
deeper down in the water column in the monimolimnion (Figure 4a). At the chemocline (5 m depth),
Proteobacteria and Bacteroidetes were still predominant, representing 50% of the bacterial community;,
in addition to Thaumarchaeota (16%), Epsilonbacteraeota (7%), Actinobacteria (6%) and Planctomycetes
(6%) that became more abundant.

At 5.5 m, just below the chemocline, the phylum Chlorobi dramatically increased, making up
42% of the community, and predominated together with Proteobacteria (17%) and Bacteroidetes (10%).
A highly distinct shift was also seen at 6 and 7 m depths, where Chlorobi contributed to 87 and 88%
of the community, respectively. Interestingly, this group dramatically decreased again with depth
and made up less than 9% of the community in the water samples close to the bottom. In these
bottom samples, the most predominant phyla were assigned to Proteobacteria (48-51%), along with
Bacteroidetes (8-16%) and Planctomycetes (8-10%) (Figure 4a).
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Figure 4. Bacterial community composition in the different water layers in the meromictic lake based
on high throughput metabarcoding sequencing of the 165 rRNA gene at (a) phylum level and (b)
class level.
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In all samples, Proteobacteria made up a major fraction of the community. However, there was a
distinct shift in their composition, with Alpha- and Betaproteobacteria dominating in the mixolimnion,
Alpha- and Gammaproteobacteria dominating the chemocline, and Deltaproteobacteria dominating at
6 m and below, increasing further in the deepest samples close to the bottom where this class reached an
abundance of nearly 50%. In these deep samples from the monimolimnion, sulfur-reducing bacteria of the
genus Desulfatiglans became highly abundant, constituting up to 11% of total reads. Other abundant classes
in the mixolimnion were the Phycisphaera (phylum Planctomycetes), Sphingobacteria (phylum Bacteroidetes)
and uncultivated Bacteroidetes VC2.1, which all became more abundant in the monimolimnion at 15 m
depth (Figure 4b). Around 72% of the sequence reads could not be assigned to a genus or uncultured
lineage at genus rank, particularly for the samples closest to the bottom.

In summary, very distinct prokaryotic communities were observed in the different water layers.
Also, within Planctomycetes, a distinct pattern along the gradient was seen, with a peak of the
non-cultivated OM190 group in and right below the chemocline, whereas Planctomycetacia and
Phycisphaera dominated in the deep samples (Figure 5).

1m ‘I

2m1
3m

3.5mA

Depth

I Pianctomycetacia
Phycisphaerae

I B omig0
B ~-:

8m+ Other
Q o;mgL!
9m+
10m1
0.0 25 50 75

Relative abundance / 02 mg/L

Figure 5. Relative abundance of major Planctomycete classes and oxygen (mg/L) concentration in
Lake Seelenvannet at selected depths (not to scale) in May 2012. Stippled line indicates that oxygen
concentration was not measured at 5 m depth.

3.4. Planctomycete Distribution along Gradients

Planctomycete related sequences were found both in the oxic and anoxic parts of the lake sampled
in 2012, but showed an uneven and highly variable distribution throughout the water column,
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with the highest relative abundances (8-10%) in the saline anoxic monimolimnion layer at 15 m
depth (Figure 5). At the chemocline at 5 m depth, 6% were assigned to Planctomycetes, whereas the
surface water (mixolimnion) and the area just below the chemocline in the monimolimnion consisted
of 1% or less (Figure 5). In the chemocline, most Planctomycete sequences were affiliated with the
uncultivated lineage OM190, which accounted for 4.2% of the bacterial community. The second-largest
planctomycetal group, with a relative abundance of 1.8%, was the family Planctomycetaceae in the
order Planctomycetales. In the anoxic monimolimnion at 5.5, 6 and 7 m depth, a gradual transition
in the most abundant Planctomycetes was observed, from OM190 at 5.5 m depth, to Phycisphaerae at
7 m depth (Figure 5). In the monimolimnion at 15 m depth, Phycisphaerae was the most common
(3-7% of reads), together with Planctomycetacia (2-3%). The samples closer to the bottom (15 m) also
differed significantly in Planctomycete diversity from the upper water layers and had a higher number
of unique OTUs, especially within the Phycisphaerae (138-168 OTUs at 15 m vs. only 17 OTUs at 1 m,
in spite of only being twice as abundant (see Table S2).

With transmission electron microscopy, a high abundance of magnetotactic bacteria were observed
around the chemocline, in addition to Cholorobium (Figure 6a). By setting up enrichment cultures
aiming for the isolation of Planctomycetes, we obtained 10 confirmed isolates from the different layers.
Only one of the isolates retrieved in pure cultures was detected in the 454 sequence library.

Figure 6. Transmission scanning electron micrographs of the microorganisms from the lake (a);
Cell morphology characteristics of Chlorobia in water from 6 m depth sampled in 2012 (b); Planctomycetacia
isolate SV_10m_w forming aggregates (c), cells of Planctomycetacia isolate SV_15mW (negative staining)
produce long stalks (S); Cells of Planctomycetacia isolate 9ImbW (d) and Planctomycetacia isolate 7mR (e)
with budding reproduction. The thin sectioning of the cells in (d) shows the densely packed DNA of the
cells surrounded by ribosomes and storage vacuole (SV) like structures.
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3.5. Planctomycetes Isolates

Only aerobic conditions resulted in successful enrichment. From the water samples collected in
2014, enrichment cultures were initiated in M30 medium and transferred to Gelrite plates containing
M13 medium after 7-11 days. Colonies appearing on the plates were inspected with light microscopy,
and potential Planctomycete isolates were identified on solid Gelrite medium as cells presenting
typical plantomycetal-like traits such as rosette formation (Figure 6b), stalks (Figure 6c) and budding
reproduction (Figure 6d,e). DNA from potential Planctomycetes were extracted, subjected to sequencing
and compared with known Planctomycetes for confirmation of phylogenetic affiliation. Five of the
isolated strains (9ImWe, 7mR, ImW, 8mW and 15mW) have previously been included in a study of
secondary metabolite production in Planctomycetes [33]. The evolutionary history was inferred by
using the maximum likelihood method, based on the Tamura—Nei model. Evolutionary analyses were
conducted in MEGAG6 (Figure 7).

Ten novel isolates from four different genera related to the family Planctomycetaceae were obtained
in pure culture (Table S2 and Figure 7). Of these, one strain representing a new species within the genus
Stieleria (strain 7mR) was isolated just above the chemocline at 7 m depth. Strain 7mR was genome
sequenced and included in the novel genus Stieleria by Wiegand et al. [34], where it was described
as “Stieleria bergensis SV_7m_r”. Strain 9mWe showed 100% 16S rRNA gene sequence similarity to
Blastopirellula cremea LHWP2. Both of these were found to have budding reproduction (Figure 6e).
No sequences identical to these isolates were found in the 454 library, but seven distantly related
OTUs were seen within the Rhodopirellula clade. Another isolate obtained at 9 m depth was the strain
9mbW. It showed 99% 16S rRNA gene similarity to Gimesia maris, G. algae and G. aquatilis, and was
also identical to one of the OTUs from the 454 library. This isolate also showed budding reproduction,
and by TEM, folded membrane structures could be seen, together with open compartments that
might be storage vacuoles. Seven isolates (strains ImW, 4mW, 7mW, 8mW, 8.5mW, 10mW and 15mW)
were retrieved from seven different depths in all water layers affiliated with 96% 16S rRNA gene
identity to the Rubinisphaera brasiliensis. All strains appeared as 1-2 mm white colonies with stalks
and budding. Folded internal membrane structures and storage globules were also seen in the TEM
images (Figure 6b,c). No sequence similarity to these isolates was seen in the 454 library.
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ﬁl ‘Rubinisphaera brasiliensis’ Gr7 (HQ845477)
Rubinisphaera brasiliensis DSM 53057 (NR_074297)
@ Rubinisphaera sp. strain 8mW (MH916630)
@ Rubinisphaera sp. strain 15mW (MH916631)
® Rubinisphaera sp. strain 1mW (MH916629)
100 ——————— Candiidatus ‘Anammoxoglobus propionicus’ (DQ317601)
L———— Candidatus ‘Kuenenia stuttgartiensis’ (AF375995)
I ‘Saltatorellus ferox’ Poly30 (MK559991)
100 |_: ‘Rohdeia mirabilis’ Pla163 (MK559986)
‘Engelhardtia mirabilis’ Pla133 (MK559985)
I ‘Akkermansia muciniphila’ JCM 30893 (LC071790)
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0.05
Figure 7. Maximum likelihood tree of isolates and affiliated strains. The evolutionary history was inferred by using the maximum likelihood method based on the
Tamura—Nei model. Evolutionary analyses were conducted in MEGAG. Isolates obtained in this study are marked in bold. Strains previously included by Calisto et al. [33],
9IMWE, 8mW, 15mW and 1mW, are marked with e. Strain 7mR was previously included by Calisto et al. and in Wiegand et al. [33,34] and is marked with e. Red asterisks
(*) indicates the name used for the strain [34]. All other strain names are consistent with the name used by Calisto et al. [33] and in NCBI-GenBank. Strains 4mW, 7mW,
8.5mW and 10mW have identical 165 rRNA gene sequences to strains ImW, 8mW and 15mW, but are not included in the tree.



Microorganisms 2020, 8, 1150 13 of 18

4. Discussion

In correspondence with other meromictic lakes, Seelenvannet possesses a simple food web
dominated by planktonic prokaryote and eukaryote microorganisms in the upper aerobic mixolimnion,
clearly separated by a transition zone with a distinctly different community composition in and around
the chemocline (halo-and oxycline). In the lower monimolimnion, where anaerobic conditions appeared,
the observed prokaryote community differed from the one in the upper layers, and sulphate-reducing
and sulphur-oxidizing bacteria were predominant. In the aerobic mixolimnion, aerobe heterotrophic
organisms dominated. One of these was Candidatus Aquiluna, a typical freshwater species within the
Actinobacteria. This is a photoheterotrophic organism containing actinorhodopsin which most likely
benefits from the high light intensities in the surface layers. Other heterotrophic organisms, such as
Loktanella sp., Brevundimonas and MWH.UniP1 aquatic group were also found to be abundant.

Within the chemocline where anoxic conditions were established, green sulphur photosynthetic
bacteria (Chlorobium spp.), which are strict anaerobes, became abundant. These are known from other
studies to replace eukaryotic phototrophs like Euglena sp. [14,15]. In a metagenomic study of the
meromictic Ace Lake in Antarctica by Ng and collaborators from 2010 [35], the functional potential of
the green sulphur bacteria dominating the lake indicated that the dominant species, designated C-Ace,
possessed chlorosomes with extremely efficient light-capturing capabilities enabling phototrophy and
growth potential at very low light intensities. In our study, we found the Chlorobium to be highly
predominant around the chemocline, where the light conditions were optimal for this functional group,
but we also found the Chlorobium to be present throughout the water column all the way to the deep
samples. These efficient light capture capacities might therefore be the explanation why we observed
Chlorobium spp. at all examined depths in Lake Seelenvannet.

Our data further showed that Proteobacteria were a major component of the bacterioplankton at
all depths, but there was a distinct shift from Alphaproteobacteria in the mixolimnion (autotrophs and
heterotrophs) to Delta-, Zeta- and Gammaproteobacteria in the monimolimnion (chemolithotrophs
and sulphate reducers). Further, the Epsilonbacteraeota (formerly “Epsilonproteobacteria”) was more
abundant than Proteobacteria at 5 to 5.5 m depth.

In the anoxic part of Lake Seelenvannet, reductive processes took place. The descriptive sequencing
method may distinguish the microorganisms responsible for these processes. It was therefore surprising
that in the water masses just beneath the chemocline, chemolithotrophic organisms such as sulphur- and
iron oxidizers appeared. For instance, sequences affiliated with the sulphur oxidizing Epsilonbacteraeota
family Thiovulaceae, capable of sulphur oxidation, represented 5% of the abundance at this depth and
6% at the mixolimnion. Further, marine neutrophilic chemolithotrophic bacteria able to oxidize ferrous
iron into ferric iron, Mariprofundus sp. (Zetaproteobacteria), represented 1.1% of the sequence reads
at this depth. This indicated that iron is present in this part of the water column together with the
previously described high concentrations of sulphur [14]. Sequences affiliated with strict anaerobic purple
sulphur bacteria, such as Thiorhodospira, were also present below the chemocline. Sulphate reducing
bacteria are common in the sulphate rich waters of meromictic lakes where they reduce sulphate to
sulphide by means of a number of electron donors, including Hj, fatty acids, alcohols and aromatic
compounds. In the deepest water layers of Lake Szelenvannet, as much as 40% of the sequences were
affiliated to Deltaproteobacteria, with the majority of these being potential sulphate reducers (mainly
Desulfobacteraceae constituting 29-38% and Desulfarculaceae constituting 7-11%).

Previous studies on meromictic lakes have revealed that both bacteria and archaea show a clear
vertical distribution throughout the oxic and anoxic water column and that they play a role in nitrogen
cycling [14,36,37]. In this study, we found that the number of bacteria populations dominated, both in
the oxic and in the anoxic zones. The archaea were more or less absent from the surface and were
found at 6 and 7 m. Interestingly, the archaeal abundance was found to be most predominant at
5 m, constituting 17% of the sequences, then they decreased to 5% at 5.5 m and 3% at the bottom.
Most of these archaeal sequences were affiliated to Thaumarchaeota (Ca. Nitrosopumilales), an important
candidate for the ammonium oxidation process in the lake.
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Our study shows a distinct structure within the microbial community throughout the lake that
has arisen as the result of distinct physic-chemical parameters and profiles in the lake, defining the
individual members of the community. Overall, the phylogenetic analyses show that the prokaryotes
dominating the lake are bacteria, with relatively few archaea in the monimolimnion.

Some recent publications have reported, by massive parallel sequencing approach, that Planctomycetes
represent between 1-22% of the freshwater microbial community [3,38,39]. Thus their presence and
functions might be important to elucidate their role in the ecosystem.

In this study, we enriched specifically for Planctomycetes from samples obtained from all layers of the
water column and isolated 10 strains from seven different depths into the culture. Two of the isolates (strains
7mR and 9ImWe) were affiliated with the genera Stieleria and Blastopirellula, respectively. Most strains in
these clades are characterized as aerobes, with some notable exceptions, such as Blastopirellula marina,
which can also ferment glucose and reduce nitrate to nitrite [23], and one strain isolated from a sulphur-rich
spring which is able to reduce elemental sulfur to sulfide [40]. Isolate 9mWe was retrieved from a 9 m
depth from anaerobic water masses. It is closely related to Blastopirellula marina, based on its 165 rRNA
gene sequence. It is therefore interesting to speculate if they are capable of simply surviving in these
water masses, or if they are involved in one or more anaerobic processes. The majority of the isolates
(n =7) were affiliated with the genus Rubinisphaera, with the closest cultivated isolate being Rubinisphera
brasiliensis, with 96% similarity on 165 rRNA gene. It is notable that these highly similar isolates were
retrieved from seven different depths (1, 4, 7, 8, 8.5, 10 and 15 m), spanning from aerobic to anaerobic
water masses, with significantly different salinities and chemical conditions. Interestingly, a highly similar
clone sequence (99% identity, Gene Bank id; DQO015774) was obtained from the anoxic layer of the
permanently stratified Antarctic Lake Bonney, which display many of the same environmental conditions
as Lake Seelenvannet [41]. This could indicate that some species within the Rubinisphaera genus are
particularly well adapted to the steep environmental gradients that are found in permanently stratified
lakes. Members of Planctomycetia are generally known for having large genomes [5,34,42], which might
indicate large phenotypic plasticity and the ability to quickly adapt to extreme changes in their environment,
such as those found in meromictic lakes. The recent study by Wiegand and collaborators [34] contributes
substantially to our understanding of this enigmatic Planctomycete group of organisms, with 79 functionally
described and genome sequenced isolates, including one of the strains isolated in this study, strain 7mR,
now named Stieleria bergensis.

The 10 isolates that we obtained by cultivation were relatively similar to previously isolated and
cultivated Planctomycetes from aquatic environments. We also see that there was a large difference
in the number of Planctomycetes that we could obtain in pure culture compared to what we could
find in molecular diversity studies, as only one of our isolates, Gimesia sp. strain 9ImbW, was also
found in the 454 library, pointing out the relevance of bacterial isolation for the comprehension of this
phylum. Two interesting results were found in the 454 library. First, the peak of Planctomycetes around
the chemocline were dominated by the uncultured OM190 clade, with Planctomycetacia dominating,
and second was the increase of Planctomycetes at the bottom with an increase of Phycisphaerae
and Planctomycetacia. The most striking difference was the high abundance of OM190 around the
chemocline. In a study by [3], OM190 was detected in half of the lakes studied, indicating that this
clade is one of the most common lineages in the oxygenated hypolimnion. OM190 was also found
in abundance on the surface of kelp [17] (associated with sulphur-rich carbohydrates) in marine and
freshwater sediments [5,30] and associated with particles in marine waters [43,44]. Therefore, this group
of Planctomycetes might be very well adapted to sulphur-rich environments and an important contributor
in the degradation of sulphur compounds and remineralization. Okazaki and colleagues suggested
that OM190 might contribute to remineralization in the oxygenated part of the hypolimnion in lake
environments [3]. This hypothesis is congruent with our observation of their distribution in Lake
Seelenvannet, where they were the most abundant group of Planctomycetes in the transition zone
between oxic and anoxic conditions (Figure 5).



Microorganisms 2020, 8, 1150 15 of 18

Additionally, the high abundance of Phycisphaera sequences at the bottom in the monimolimnion
was interesting, and is consistent with other studies indicating that this group is abundant in freshwater
environments [3,5]. Some members of the Phycisphaera group are known facultative anaerobes [45,46],
and based on their abundance in the anoxic zone in Lake Szelenvannet; we may assume they harbor
a similar niche there. Unfortunately, we were not able to obtain any Phycisphaera isolates from
these samples.

In this study, it was striking to find the same isolates at several different depths, spanning from
aerobic to complete anaerobic conditions. This might be due to a disturbed oxygen profile at the time of
sampling, or due to the sinking of organic particles after a bloom. However, the possibility remains that
these isolates are capable of living (active or inactive) throughout the water column. Overall, our results
contribute to the growing understanding of Planctomycetes as ubiquitous and important contributors to
ecological processes in aquatic environments and highlights the importance of a continued effort to
isolate novel strains.

5. Conclusions

Using environmental DNA barcoding, we found that there was a distinct shift in the microbial
community composition, although Proteobacteria made up the major fraction of the community (up to
90% in the surface layer). A large core community (29%) was present in all samples throughout the
water column. In terms of alpha diversity, rarefaction curves indicated that the diversity did not reach
saturation in any of the samples, and the highest diversity was found in the deepest water layers at
15 m depth. Planctomycetes were found to vary between 2 and 10% of the community, and a distinct
pattern along the gradient was also seen within this phylum, with a peak of the non-cultivated OM190
group in and just below the chemocline. The classes Planctomycetacia and Phycisphaera were found to
dominate in the deeper samples. This study resulted in successful isolation in pure culture of ten novel
isolates affiliated to four different genera from the family Planctomycetaceae. One strain closely related to
Blastopirellula cremea was isolated from 9 m depth, and two novel strains affiliated to the genera Stieleria
and Gimesia were isolated at 7 and 9 m depths, respectively. Interestingly, we retrieved seven isolates
with identical 165 rRNA gene sequences from seven different depths which varied greatly in salinity and
chemical composition. These isolates likely represent new species affiliated to Rubinisphaera. The adaptation
of novel Planctomycetes to water depths spanning the entire chemical gradient could indicate a high
phenotypic plasticity and/or a very efficient survival strategy. Overall, our results showed the presence of
a diverse group of Planctomycetes in Lake Seelenvannet, with a strong potential for novel adaptations to
chemical stress factors.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-2607/8/8/1150/s1,
Table S1: Temperature, salinity and oxygen concentrations measured in Lake Seelenvannet in 2012 and 2014,
Table S2: Taxonomic_classification.
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