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ABSTRACT: Background: Ubiquitous digital tech-

nologies such as smartphone sensors promise to fun-

damentally change biomedical research and treatment

monitoring in neurological diseases such as PD, creat-

ing a new domain of digital biomarkers.
Objectives: The present study assessed the feasibility,

reliability, and validity of smartphone-based digital bio-

markers of PD in a clinical trial setting.
Methods: During a 6-month, phase 1b clinical trial with

44 Parkinson participants, and an independent, 45-day

study in 35 age-matched healthy controls, participants

completed six daily motor active tests (sustained pho-

nation, rest tremor, postural tremor, finger-tapping, bal-

ance, and gait), then carried the smartphone during the

day (passive monitoring), enabling assessment of, for

example, time spent walking and sit-to-stand transitions
by gyroscopic and accelerometer data.
Results: Adherence was acceptable: Patients completed
active testing on average 3.5 of 7 times/week. Sensor-
based features showed moderate-to-excellent test-retest
reliability (average intraclass correlation coefficient 5
0.84). All active and passive features significantly differ-
entiated PD from controls with P < 0.005. All active test
features except sustained phonation were significantly
related to corresponding International Parkinson and
Movement Disorder Society–Sponsored UPRDS clinical
severity ratings. On passive monitoring, time spent walk-
ing had a significant (P 5 0.005) relationship with average
postural instability and gait disturbance scores. Of note,
for all smartphone active and passive features except
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postural tremor, the monitoring procedure detected

abnormalities even in those Parkinson participants scored

as having no signs in the corresponding International Par-

kinson and Movement Disorder Society–Sponsored

UPRDS items at the site visit.
Conclusions: These findings demonstrate the feasibil-

ity of smartphone-based digital biomarkers and indi-

cate that smartphone-sensor technologies provide

reliable, valid, clinically meaningful, and highly sensitive
phenotypic data in Parkinson’s disease. VC 2018 The
Authors. Movement Disorders published by Wiley Peri-
odicals, Inc. on behalf of International Parkinson and
Movement Disorder Society.

Key Words: digital health; digital biomarkers; Par-
kinson’s disease; clinical trial; remote patient monitoring

There is a growing anticipation that digital telemedi-
cine technologies that measure Parkinson’s disease (PD)
signs will revolutionize clinical research and treatment
monitoring.1 These tools can provide frequent and
mobile measurement of clinically relevant signals using
electronic sensors that combine active (i.e., performing
specific testing protocols) and passive protocols (i.e.,
monitoring movement during daily life), to quantify
and/or predict health-related outcomes and support
diagnostic processes. This approach promises to mod-
ernize clinical trial endpoints, improve clinical study
design, and advance treatment monitoring.2,3

Digital biomarkers offer three main advantages com-
pared with status quo in-clinic testing. First, by using
objective multivariate sensor data with apps designed
to measure clinical signs and symptoms, they can
potentially quantify symptom severity with greater
sensitivity and objectivity than clinical rating scales.4

Second, with daily active tests and continuous passive
monitoring, they enable even daily testing throughout
longitudinal studies, a test frequency that was
unthinkable just a few years ago. This promises
greater measurement accuracy compared with data
collected from clinic visits spaced weeks or months
apart. This is particularly key for diseases with vari-
able symptom severity such as PD. Last, with passive
monitoring, the effects of PD on patients’ daily lives
can now be monitored and quantified in their usual
home settings,5 providing ecologically valid metrics to
assess disease status and treatment effects.

Although numerous commercial digital biomarker
devices are available,6-8 common consumer technolo-
gies such as smartphones have the advantages of wide-
spread availability, low cost, and high sensor quality.
Several pilot research studies have successfully devel-
oped smartphone applications for PD.1,9-17 In these
pilot studies, proof of concept was typically estab-
lished in a clinical setting by demonstrating significant
differences between individuals with PD and healthy
controls, and/or significant relationships between the
sensor-based measures and the International Parkinson
and Movement Disorder Society–Sponsored Revision
of the Unified Parkinson’s Disease Rating Scale (MDS-
UPDRS) clinical gold standard.14,18-24 For example,
Kassavetis and colleagues18 tested 14 PD participants

(mean disease duration 5 3.7 years) with the MDS-
UPDRS25 and a custom Android application with the
following active tests: resting, postural and kinetic
tremor, pronation-supination, leg agility, and finger-
tapping. For all tasks, the extracted sensor feature
data significantly correlated with corresponding MDS-
UPDRS25 item scores (e.g., item 3.17, rest tremor
amplitude).

Remote deployment of digital biomarker testing
suites has been reported in far fewer studies. Arora
and colleagues19 deployed an Android smartphone to
10 individuals with PD (mean motor MDS-UPDRS
score 5 19.6 [standard deviation {SD} 5 6.7]) and 10
controls, who performed four active tests (sustained
phonation, gait, finger-tapping, and reaction time)
four times daily for 1 month. Adherence was accept-
able at 69%, and random forest machine-learning suc-
cessfully discriminated PD participants from
controls.27 Using a similar approach on iPhones
(Apple Inc., Cupertino, CA), the mPower app was
launched with Apple’s Research Kit platform (Apple
Inc.) in March 201528,29 with surveys and the same
tasks developed by Arora and colleagues.19 In this
study, 1,087 self-declared persons with PD and 5,581
self-declared persons without PD completed at least
one active test or survey.28 Adherence dropped sharply
after the first few days post-download; 898 individuals
contributed� 5 days’ data during the first 6 months
following download. Data analysis of these results is
pending. The Parkinson@home study26,30 deployed the
Fox Wearable Companion app to 953 participants in
the Netherlands (13-week study) and North America
(6-week study) to passively monitor behavior and rate
the severity of selected symptoms. Adherence was
68% in the Netherlands and 62% in North America,
and not affected by demographics, clinical characteris-
tics, or attitude toward technology.26,30 Further data
analyses are pending. These preliminary findings repre-
sent major milestones in the development of digital
biomarkers, and at the same time highlight the chal-
lenges yet to be overcome for the successful use of dig-
ital biomarker approaches in clinical research or
patient monitoring, namely long-term adherence, con-
sistency of sensor-derived feature data, and clinical
validity of long-term, remote patient testing.
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The present study, which began in September 2015,
determined the feasibility, reliability, and validity of
digital biomarkers in a 6-month clinical trial of indi-
viduals with PD. These findings will provide a founda-
tion for the future use of digital biomarkers in clinical
trials and treatment monitoring of PD.

Materials and Methods

We report data from two independent smartphone-
based remote monitoring studies: a 6-month, phase 1b
clinical drug trial of RG7935/PRX002 with 44 PD par-
ticipants (NCT02157714); and a 6-week observational
study of 35 age- and sex-matched controls. The effects
of RG7935/PRX002 are not the focus of this study
and are not reported here. Both studies were approved
by the respective local ethics committees and written,
informed consent was obtained from all participants
(patient study: IRB00010809, H-35018, WOR1-14-
143; control study: EKNZ-BASEC-2016-00596).

Participants

Forty-four individuals with PD participated. Data
from 1 patient was lost because of a lost phone. Thirty-
five age-/sex-matched healthy controls were recruited
from the Registry of Research-Interested Healthy Indi-
viduals at the Memory Clinic, University Center for
Medicine of Aging Basel, Felix-Platter Hospital, Swit-
zerland. All controls scored�26 points on the Mon-
treal Cognitive Assessment (MoCA) 32 and were free of
cardiovascular, neurological, or psychiatric conditions
and had no first-degree relative with PD. The partici-
pants’ baseline characteristics (including PD subtype33)
are described in Table 1.

MDS-UPDRS

The MDS-UPDRS25 (defined as gold standard for
validation) was administered by trained raters (parts I
and II) and physicians (part III) to PD participants
during screening (study day 242 to 21) and days
8 and 64. Trained raters tested controls at baseline
and day 42.

Smartphone Testing

Procedures were identical for the PD and control
studies. At initial in-clinic visits, all participants
received a smartphone (Galaxy S3 mini; Samsung,
Seoul, South Korea) with the Roche PD Mobile Appli-
cation v1 (Roche, Basel, Switzerland) preinstalled, and
a belt containing a pouch in which to carry the phone.
Smartphones were locked-down (i.e., configured so
patients could only run the Roche PD Mobile Applica-
tion v1 and WiFi connection software). Training on
the active tests was provided by site staff. Participants
were instructed to complete the active tests at home
once daily (ideally in the morning) and carry the
phone with them throughout the day, recharging the
phone overnight. The time of patients’ medication
intake was not consistently collected. Battery charge
lasted on average 7 hours per day.

Active Tests

An Android custom application (Roche PD Mobile
Application v1) was designed to measure cardinal PD
motor signs (tremor, bradykinesia, and rigidity/pos-
tural instability) with inertial measurement unit sensor
data (i.e., accelerometer, gyroscope, and magnetome-
ter) and voice recorded with microphone (see Fig. 1).

TABLE 1. Baseline demographic and clinical characteristics of the PD and control participants

Characteristic PD Controls Difference (P Value)

N 43 35
Age (yr) 57.56 8.45 56.236 7.83 0.5
Male Female 35 8 27 8 0.64
H & Y stage 1.916 0.48 n/a
Total MDS-UPDRSa 45.416 17.22 3.176 2.7 <0.001
MDS-UPDRS I 6.916 4.71 1.806 2.08 <0.001
MDS-UPDRS II 9.216 6.10 0.236 0.73 <0.001
MDS-UPDRS III 27.676 11.22 1.146 1.06 <0.001
MDS-UPDRS IV 1.636 2.65 06 0 <0.001
MoCA 26.866 2.46 28.346 1.35 0.001
Mean disease duration (yr) 3.516 2.86 n/a
Proportion of patients taking dopaminergic medication 81% n/a
Experiencing fluctuations (%)b 37% (30% experience at least a slight impact) n/a
MDS-UPDRS-defined TD and PIGD PD subtypes 29 TD; 9 PIGD; 5 indeterminate n/a
Experiencing dyskinesia (%)c 9.3% n/a

Data are mean 6 SD or proportions.
aTotal MDS-UPDRS 5 MDS-UPDRS I 1 MDS-UPDSR II 1 MDS-UPDRS III.
bProportion of patients with MDS-UPDRS 4.3 “time spent in the off state >0.”
cProportion of patients with MDS-UPDRS 4.1 “time spent with dyskinesia >0.” A total of 1 PD had functional impact of dyskinesias, indicated by MDS-
UPDRS 4.2 > 0.
TD, tremor dominant. n/a, not applicable.
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The app included the following six active tests (see
Supplementary Data available online for detailed
instructions).

1. Sustained phonation: making a continuous “ahh”
sound for as long as possible.

2. Rest tremor: seated, holding the phone in the
palm of the hand resting on the lap.

3. Postural tremor: seated, holding the phone in
their outstretched hand.

4. Finger-tapping: with the smartphone on a flat
surface (e.g., table) alternately tapping two
touchscreen buttons as regularly (i.e., not as
quickly) as possible.

5. Balance task: standing still while having the
smartphone in the trouser pocket or a specially-
designed belt pouch.

6. Gait task: with the smartphone in the trouser
pocket/belt pouch, walking 20 yards, turning
around, and returning to the starting point.

Each task was preceded by a screen which named
and explained the task. Participants pressed a button
to start the task, after which a brief countdown
appeared, then a start tone, followed by 30 seconds
for the task concluding with a tone that signaled the
end of the task. Participants were instructed to go out-
side to complete the gait task if they had no unob-
structed 20-yard path to walk in their homes. The
sustained phonation task recorded from the built-in
microphone, and the finger-tapping test recorded all
touchscreen events.

Passive Monitoring

Participants were instructed to carry the phone with
them throughout the day (e.g., in the trouser pocket

or provided belt pouch) enabling passive monitoring
of daily activity via smartphone sensors.

Data Transfer

The inertial measurement unit sensors sampled non-
uniformly (accelerometer and gyroscope: 66 6 10 Hz;
magnetometer: 66 6 7 Hz; microphone: 44.1 kHz),
with comparable averages and SDs across phones.
These time-stamped data were collected continuously
while the smartphone battery was active (i.e., during
active tests and passive monitoring). Participants
received instructions on how to connect the smart-
phone to the Internet at home. If their home had no
Internet, data were uploaded during site visits. All
data were stored in encrypted files on the smartphone
and sent by WiFi to a cloud storage facility each time
the smartphone connected to the Internet.

Data Processing

Data underwent quality control to ensure usability
(e.g., sufficiently long sustained phonation; no walking
during balance test). This resulted in the removal of
15% of sustained phonation data and 3% of all other
active test data. Comparable amounts of data were
discarded from PD and controls for each test. The fol-
lowing active test features were selected, based on pre-
vious literature and their relevancy to PD: (1)
Sustained phonation: mel-frequency cepstral coefficient
2 (MFCC2) 34,35; (2) Rest tremor: skewness36-39; (3)
Postural tremor: total power40,41; (4) Finger tapping:
intratap variability18,42; (5) Balance: mean velocity43-

47; and (6) Gait: turn speed46,48-50 (Table 2; see Sup-
plementary Data available online and Cheng and col-
leagues51 for additional details). For PD participants,
feature data were averaged over the 2-week period

FIG. 1. Screenshots of the smartphone application and workflow for the daily assessments. The smartphone (Galaxy S3 mini; Samsung, Seoul,
South Korea) was provided with a single, preinstalled custom application (Roche PD Mobile Application v1; Roche, Basel, Switzerland). The applica-
tion requested the completion of six active tests daily and subsequently recorded sensor data during daily living (“passive monitoring”), whereby
participants were instructed to carry the smartphone in their trouser pocket, or a small bag around the waist.
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corresponding to the weeks before and after the site
visits with the MDS-UPDRS. For controls, feature
data were averaged over the first 2 study weeks and
compared to baseline MDS-UPDRS.

A machine-learning algorithm based on a Human
Activity Recognition (HAR) model52 was used to clas-
sify passive monitoring accelerometer data into labeled
activities (e.g., walking, climbing stairs, standing, and
sitting).50

The HAR model was trained on two independent
public data sets of everyday activity from normal indi-
viduals53,54; of these data, 90% were used to train the
HAR model and 10% for model validation (see Cheng
and colleagues51 for details). To test the model’s
robustness and its appropriateness for the PD sample,
two independent validations were performed: First,
the model was tested on the validation data sample,
where it reached 98% accuracy in distinguishing sta-
tionary from gait activities; second, the model’s accu-
racy was tested on the unlabeled PD active test data,
where it reached 99.5% and 96.9% accuracy when
classifying PD balance and gait active test data,
respectively. The HAR model was then applied to
label human activities using a 5-second moving aver-
age, from which the following features were extracted:
activity ratio50,55-57 (i.e., time walking divided by total
passive monitoring time), sit-to-stand transi-
tions,45,50,58 and turn speed46,48-50,59,60 (Table 2).50

One averaged summary score for each feature and
participant was calculated over the whole observation
period.

Statistical Analyses

Adherence was quantified as the percentage of active
tests completed for each study week (maximum: seven
tests completed in 7 days; 100% adherence) per par-
ticipant. Test-retest reliability of active test feature
data from PD participants was assessed using the
intraclass correlation coefficient (ICC) between the
first and second 14-day testing periods.61 Because of
their non-normal distributions, Mann–Whitney U tests
were used to compare passive monitoring features
between PD and control participants.

Clinical validity of active test features was tested by
relating each feature score, averaged over 2 weeks, to the
corresponding MDS-UPDRS25 item score (Table 1, col-
umns 1-2 and 3). Thus, for each MDS-UPDRS item or
subscale score for each patient, we compared an active
test feature score comprised of the average performance
estimate from all active test sessions conducted within
the 2-week period surrounding (during the trial) or
adjacent to (beginning and end of trial) the site visit at
which the MDS-UPDRS was administered. The postural
instability and gait difficulty (PIGD) 33 subscore
(i.e., MDS-UPDRS 2.12 1 2.13 1 3.10 1 3.11 1 3.12)
was selected as the comparator for the turn speed

feature. No direct comparator was available for the
sustained phonation feature; therefore, speech (item 2.1)
was used as the closest correlate. Linear mixed-effects
models tested for significant relationships between
each active test feature and the corresponding MDS-
UPDRS item score, with individuals as random effects
(to control for repeated MDS-UPDRS measurements per
subject) and sex and age as covariates. Homoscedasticity
was evident for all models. We report t values and
associated P values from the models to quantify these
relationships.

The ability of each active test feature to detect PD
signs was tested by comparing feature scores between
controls and all PD participants. Moreover, the ability
to detect subtle or variable PD signs was tested by
comparing features scores between controls and those
PD participants whose corresponding MDS-UPDRS
score or PIGD subscale score was 0 (Table 2, column
7). These analyses used linear mixed-effects models
which covaried age and sex. Homoscedasticity was
apparent for all models.

Results

Adherence

PD participants completed a total of 5,135 active
tests, adhering to 61% of all possible test sessions dur-
ing the 6-month trial period. Sixty-four percent of PD
participants completed all active tests at least once
every other day and 90% at least once every 4 days.
Even in the last week of the 6-month study, PD partic-
ipants completed all tests on average 3 of 7 days per
week. A total of 1,542 active tests were completed by
controls during their 6-week study, corresponding to
an overall adherence of 100% in the shorter protocol.
A total of 24,104 hours of passive monitoring data
was collected from PD participants and 8,614 hours
from controls.

Reliability of Testing

Active test features demonstrated “excellent” (pos-
tural tremor) or “moderate to good” (all remaining
features) 62 test-retest reliability (ICC; Table 2).

Clinical Validity

Clinical validity of the active and passive sensor fea-
tures was first evaluated by testing their ability to discrim-
inate PD participants from controls. All active test and
passive monitoring features significantly discriminated PD
from controls (all P< 0.005; Table 2). Compared
to controls, PD participants manifested 34% less time
performing gait-related activities (PD 5 0.1 6 0.05,
controls 5 0.15 6 0.05 proportion of time spent walking),
8.2% fewer sit-to-stand transitions (PD 5 1.67 6 0.23,
controls 5 1.82 6 0.17 per hour) and 18% slower> 90-
degree turns (PD 5 50.3 6 8.2, controls 5 61.2 6 5.6).
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Single participant data are shown in Figure 2, where each
data point represents motor behavior averaged over the
duration of the study, summarized with boxplots.

Clinical validity of the active test features was
further assessed by comparing smartphone-based
estimates of symptom severity (i.e., feature values)
with corresponding MDS-UPDRS item or subscale
scores (Fig. 3). These linear-effects mixed models
revealed that all active test features, with the excep-
tion of sustained phonation, were significantly related
to their corresponding MDS-UDPRS scores (Table 2;
Fig. 3). For the passive monitoring features, only turn

speed was significantly related to average PIGD
scores; both sit-to-stand transitions and activity ratio
showed trends for a relationship with average PIGD
(Table 2).

Sensitivity for Undetected Manifestations

The ability of the active and passive test features to
detect subtle or variable PD signs/symptoms was
assessed through comparison of the feature scores of a
subset of PD participants scored as having no signs/
symptoms on the respective MDS-UPDRS item at the

FIG. 3. Active test feature scores aggregated over 2 weeks of in-home testing demonstrated case-control differences, significant relationships with
clinical severity ratings, and significantly greater sensitivity compared with MDS-UPDRS item/subscale scores from site visits. The orange arrow
indicates the statistical test for association of increased disease severity as to the selected MDS-UPDRS item with the digital biomarker feature, tak-
ing into account repeated measures per participant. The black square bracket indicates a comparison of the control group (C) with PD participants
that are rated “0” for the corresponding MDS-UPDRS item. *P < 0.05; **P < 0.01; ***P < 0.001. C, control group; MFCC2, mel-frequency cepstral coef-
ficient 2; n.s, not significant.

FIG. 2. Machine-learning algorithms applied to passive monitoring data revealed multiple aspects of significantly reduced everyday motor behavior
in PD participants compared with controls. See Results (Reliability of Testing) for details. **P < 0.01; ***P < 0.001. C, control group.
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site visit (i.e., with a MDS-UPDRS item score of 0)
with controls. These analyses revealed that all active
test features except postural tremor, and sit-to-stand
transitions and activity ratio passive monitoring mea-
sures, detected significant PD-like abnormalities (com-
pared with controls) in PD participants who
demonstrated no signs on the corresponding MDS-
UPDRS item(s) (Table 2; Fig. 3). It is important to
note that postural tremor sensor measures were com-
pared to patients’ self-report of tremor interfering
with daily life (MDS-UPDRS item 2.10); in this con-
text, the negative result for postural tremor indicates
that the sensor feature indeed accurately reflected
patients’ self-perceived symptom severity.

Discussion

The present study is, to our knowledge, the first
reported deployment of a digital biomarker approach in
a clinical trial of PD. It provides an initial demonstra-
tion that use of commercially available smartphones for
in-home active testing and passive monitoring in the
home environment is feasible and provides reliable,
clinically meaningful, and sensitive symptomatic data.
All active and passive test features significantly differen-
tiated controls from PD participants, and the magnitude
of sensor-based features was significantly related to
physician-administered MDS-UPDRS scores. Passive
monitoring data revealed significantly reduced mobility
in PD participants compared to controls. Finally, active
tests could detect significant abnormalities even in PD
participants who were rated as having no evidence of
the corresponding sign on exam, suggesting that digital
biomarkers may confer important sensitivity advan-
tages. Together, these results indicate that a digital bio-
marker approach fulfills the prerequisites of acceptable
adherence, reliability, validity, and sensitivity for use in
long-term clinical trials and treatment monitoring.

The current protocol instructed PD participants to
complete six daily active assessments over a period of 6
months. At the outset, it was unclear whether PD par-
ticipants would adhere to this testing schedule (the test-
ing procedure itself is short, approximately 5 minutes).
We found that overall adherence to the active test pro-
tocol was 61% over 6 months, similar to a smaller-scale
digital biomarker approach with four active tests per-
formed four times daily for 1 month (69%19), and
greater than what was observed with the general popu-
lation deployment of mPower.28 This demonstration of
long-term adherence passes a crucial test for future digi-
tal biomarker use in long-term clinical trials and eventu-
ally for patient monitoring.

Beyond feasibility, the digital biomarker approach
must produce sensor feature data of adequate reliability
and validity to be used in research and clinical settings.
Reliability analyses confirmed this to be the case:
ICCs ranged from moderate (finger tapping; 0.64) to

excellent (postural tremor: 0.97) for all active tests. The
clinical validity of the active and passive test features
were confirmed in two independent sets of analyses.
First, all sensor features exhibited clear disease-relevant
signals by significantly differentiating PD participants
from controls. Second, all but one sensor feature dem-
onstrated a significant relationship between severity as
estimated by the sensors and as rated by the physician.
The exception was sustained phonation, where the
MFCC2 feature was not significantly related to MDS-
UPDRS Speech, item 2.1.25 However, note that
MFCC2 reflects the ratio between vocal tract resona-
tion of the high, and vocal fold vibration of the low,
Mel-frequency bands67; a parameter not specifically
scored by MDS-UPDRS item 2.1.25

Daily sensor feature data appeared to be more sensitive
at detecting subtle abnormalities than the less frequent
physician ratings. Of note, significant motor impairments
(compared to controls) were observed even in those PD
participants rated as having no motor impairment on the
corresponding MDS-UPDRS item(s) on five of the six
feature variables (i.e., sustained phonation, resting
tremor, finger tapping, walking speed, and turning
speed). Only one (postural tremor) feature failed to
detect this. However, this corresponding MDS-UPDRS
item assessed the self-perceived interference of tremors
on patients’ daily functioning (and not postural tremor
on examination). Patients who negated this phenomenon
had sensor postural tremor scores on par with controls,
thus indicating that the sensor accurately recapitulated
patients’ self-perception of tremor severity. For all MDS-
UPDRS item(s) based on physician’s ratings, the digital
biomarker feature showed greater sensitivity, suggesting
that a primary reason for the improved sensitivity is fre-
quency of sampling. Clearly, frequent (i.e., daily)
smartphone-based active testing has the advantage of
sampling many more data points, increasing power to
detect potentially subtle or variable PD motor signs,
compared with much less frequent and time-limited
clinical assessment. Moreover, PD participants’ motor
signs may be less severe in the activating presence of
a physician than during daily life at home, leading to
an underestimation of motor severity at clinic visits.68

Taken together, these results indicate that a frequent
and remote digital biomarker approach is more sensitive
at detecting subtle and potentially variable motor
impairments than MDS-UPDRS ratings at infrequent site
visits.

There is a discontinuous mapping between motor
performance during active, maximum capacity testing
and patients’ functional capacity in daily life.69 For
this reason, motor behavioral data acquired from con-
tinuous passive monitoring while patients go about
their daily lives represent a critical complement to the
clinical picture obtained from active or in-clinic test-
ing. The machine-learning algorithms applied to
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passive monitoring generated a HAR model which
revealed that PD participants, even those scored as
having no gait dysfunction at the site visits, were sig-
nificantly less active than controls in several aspects of
daily living: time spent performing gait-related activi-
ties, sit-stand transitions, and turn speed. Note that a
cultural confound may partially explain these findings
given that controls were recruited from Switzerland
and PD participants from the United States. Critically,
however, evaluating the PD sample alone revealed
that turn speed was significantly related to PIGD
scores, and gait activity showed a trend relationship
with PIGD. The present findings are also in line with
other studies measuring remote physical activity in
PD, which were traditionally performed over shorter
timeframes (i.e., 1 day to 1 week). These reported sig-
nificantly less motor activity in PD compared to con-
trols (e.g., fewer steps and shorter bouts of physical
activity,48,70) some of which were related to disease
severity71 (for a review, see Block and colleagues5).
Such insights may carry significant weight when
assessing drug efficacy; that is, the ability of the ther-
apy to improve patients’ ability to perform everyday
activities, which may be indirectly related to quality of
life.72,73

Several limitations to this study exist. First, we did
not control for participants’ familiarity with digital
technology including smartphones, which may affect
active test performance or passive monitoring adher-
ence. Second, note that ICCs calculated with mean
data may lead to artificially heightened ICC values
compared with ICCs calculated using individual data
points. Third, whereas the applicability of our HAR
model (generated using control data) to PD patient
data was confirmed through successful categorization
of PD active test data (i.e., data where activities being
performed were known), feature extraction from PD
passive monitoring may be improved through HAR
models generated with combined control and patient
data. In addition to these points, future research
including the determination of appropriate feature cut-
off values for healthy/diseased classifications, and pro-
spective assessments to determine longitudinal rela-
tionships between digital biomarker features and
clinical measures is warranted.

The promise of digital biomarkers to create a para-
digm shift in biomedical research and clinical treat-
ment monitoring is evident.3 Our study demonstrates
that digital biomarkers have now become feasible.
Future research is needed to confirm whether digital
biomarkers provide valid and fine-grained measures of
disease severity and treatment response, enabling a
better understanding of our patients’ daily lives.
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