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Abstract: Bovine mastitis is a common disease worldwide, and staphylococci are one of the most
important etiological factors of this disease. Staphylococcus aureus show adaptability to new conditions,
by which monitoring their virulence and antibiotic resistance mechanisms is extremely important,
as it can lead to the development of new therapies and prevention programs. In this study, we
analyzed Staphylococcus aureus (n = 28) obtained from dairy cattle with subclinical mastitis in Poland.
The sensitivity of the isolated strains to antibiotics were confirmed by the disc diffusion method.
Additionally, minimum inhibitory concentration values were determined for vancomycin, cefoxitin
and oxacillin. Genotyping was performed by two methods: PCR melting profile and MLVF-PCR
(multiple-locus variable-number tandem-repeat fingerprinting). Furthermore, the presence of antibi-
otic resistance and virulence genes were checked using PCR reactions. The analyzed strains showed
the greatest resistance to penicillin (57%), oxytetracycline (25%) and tetracycline (18%). Among the
analyzed staphylococci, the presence of 9 of 15 selected virulence-related genes was confirmed, of
which the icaD, clfB and sea genes were confirmed in all staphylococci. Biofilm was observed in the
great majority of the analyzed bacteria (at least 70%). In the case of genotyping among the analyzed
staphylococci (combined analysis of results from two methods), 14 patterns were distinguished,
of which type 2 was the dominant one (n = 10). This study provides new data that highlights the
importance of the dominance of biofilm over antibiotic resistance among the analyzed strains.

Keywords: AMR; biofilm; mastitis; S. aureus; virulence factors

1. Introduction

Mastitis can be caused by more than 200 aetiological factors, of which one of the
more frequently mentioned is Staphylococcus aureus. This bacterium is classified as a
contagious pathogen, which means that it spreads in the herd due to improper hygiene
on the farm. This pathogen can cause chronic infections that are difficult to cure with
conventional therapy and, as a result, lead to enormous economic losses in the dairy
industry [1]. S. aureus usually causes subclinical mastitis, which is very difficult to treat
(due to ahigh seeding rate of infected animals and chronic recurrent infections). Probably,
this is related to the numerous virulence factors present in this pathogen, such as the ability
to produce biofilm, the production of toxins, or various enzymes designed to damage and
better occupy the infected area [2,3]. On the other hand, it is related to the occurrence of
antibiotic resistance among these bacteria, which has arisen from the overuse of these active
substances in veterinary medicine and in agriculture [1,3,4]. Especially dangerous are
methicillin-resistant staphylococci strains, which pose a direct threat to humans (through
food-borne pathogens), and these, unfortunately, are observed more frequently each year in
veterinary medicine [4]. Although the problem of S. aureus in dairy cattle has been known
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for years, a perfect preventive therapy or treatment has not yet been developed. This is
due to the rapid genetic variability of this pathogen and the lack of knowledge about the
interaction between the bacterium and the host [5,6]. Studies from around the world have
shown that there is no clear pattern in the distribution of virulence genes (adhesins or toxins)
among bovine isolates. Depending on the area from which the strains originate, a different
antibiotic resistance profile can be observed. Such a situation significantly complicates the
results of mastitis prevention research and the development of new therapies, and further
research towards a better understanding of these bacteria should be conducted. Only
through this will it finally be possible to develop methods for inhibiting the development
of these pathogens. Hence, the aim of our study was to examine what mechanisms of
virulence and antibiotic resistance are dominant in S. aureus isolated in northeastern Poland
among dairy cattle with subclinical mastitis.

2. Materials and Methods
2.1. Milk Samples

All milk samples were collected from dairy cattle with subclinical mastitis from various
farms located in northeast Poland (Warmia and Mazury voivodeship) between 2016 and
2019. To standardize the study group, only staphylococci from subclinical cases were
selected for the study. Subclinical milk samples were included in the study if there were no
clinical signs and the somatic cell count (SCC) was higher than 400,000 cells/mL.

2.2. Bacteriological Identification

Milk samples (0.01 mL) for bacteriological examination were transferred with a cali-
brated inoculation loop onto Columbia agar medium supplemented with 5% defibrinated
sheep blood (Oxoid, Basingstoke, UK) and Chapman medium (Oxoid, Basingstoke, UK).
The plates were incubated at 37 ◦C under aerobic conditions for 48 h. The grown isolates
were subjected to microbiological analysis, which included evaluation of the morphol-
ogy of bacterial colonies, Gram staining, and selected biochemical tests (tests for catalase,
coagulase and selected latex tests (Staphytect Plus) (Oxoid, Basingstoke, UK)). The final
identification of S. aureus was confirmed by PCR of the nuc and femA genes [7] (primers in
Supplementary Table S1). In total, 28 S. aureus strains were included in this study. To avoid
testing epidemiologically related isolates, only one isolate per dairy farm was included.

2.3. Antimicrobial Susceptibility Testing—Disc Diffusion Method

The sensitivity of the isolated strains to antibiotics were confirmed by the disc diffu-
sion method [8] with 21 antimicrobials commonly used in Poland for veterinary treatment:
amoxicillin + clavulanic acid (20 + 10 µg) (AMC), enrofloxacin (5 µg) (ENR), clindamycin
(2 µg) (CL), tetracycline (30 µg) (TE), erythromycin (15 µg) (E), ceftriaxone (30 µg) (CEQ),
cloxacillin (5 µg) (OB), neomycin (30 µg) (N), penicillin G (10U) (P), marbofloxacin (MAR),
ceftiofur (30 µg) (EFT), bacitracin (10 µg) (B), cefamandole (30 µg) (MA), cefoperazone
(75 µg) (CFP), gentamycin (10 µg) (CN), oxytetracycline (30 µg) (OT), penicillin/novobiocin
(40 µg) (PNV), trimethoprim/sulfamethoxazole 1:19 (25 µg) (SXT), ubrolexin (CFX), ri-
fampicin (5 µg) (RD) and cefapirin (30 µg) (CPR). All discs were purchased from Oxoid
(Basingstoke, UK). The resistance to antibiotics was assessed according to the CLSI—Clinical
and Laboratory Standards Institute [9] guidelines using the quality control strain Staphylo-
coccus aureus ATCC 25923. All strains were categorized as sensitive (S), intermediate (I) or
resistant (R) to the tested active substances.

2.4. Antimicrobial Susceptibility Testing—E-Test, Minimum Inhibitory Concentration (MIC)

MIC testing for oxacillin, cefoxitin and vancomycin was carried out using ready-
made e-test strips (Oxoid, Basingstoke, UK) according to the manufacturer’s instructions.
Mueller–Hinton BBL II agar supplemented with 2% NaCl (w/v) was used for oxacillin,
while Muelle–Hinton agar without NaCl was used for the other two substances. The plates
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were incubated at 35 ◦C+/−2 ◦C for 18 h. Interpretation was performed according to
CLSI guidelines [9].

2.5. Biofilm Formation

This experiment was performed using polystyrene microtiter plates with flat bottoms
based on the techniques described by Ebrahimi et al. [10] with slight modification. All
strains (n = 28) were incubated in TSB with the addition of 1% glucose under aerobic
conditions at 37 ◦C. The results were read after 24, 48 and 72 h using an ELISA plate
reader (Sunrise absorbance reader, Tecan, Austria). Each strain was analyzed in 8 wells
in triplicate. Biofilm production was interpreted according to the criteria described by
Stepanović et al. [11]. The mean optical density (OD) of the negative control + 3 standard
deviations of the negative control was considered the cut-off (ODc = 0.188), and biofilm
producers were therefore categorized as follows:

Not a biofilm producer: OD ≤ ODc (all strains with OD values below 0.188),
Weak biofilm producer: ODc < OD ≤ 2 × ODc (all strains with OD values above 0.188
and below 0.375),
Moderate biofilm producer: 2 × ODc < OD ≤ 4 × ODc (all strains with OD values above
0.375 and below 0.752),
Strong biofilm producer: OD > 4 × ODc (all strains with OD values above 0.752).

2.6. DNA Isolation

Bacterial DNA was extracted using an ExtractMe DNA bacteria kit (Blirt, Gdańsk,
Poland) according to the manufacturer’s recommendations. Eluted DNA concentrations
and quality were measured using a BioSpectrometer (Eppendorf, Hamburg, Germany) and
stored at −20 ◦C for further analysis.

2.7. PCR MP (PCR Melting Profile)

The PCR MP procedure, which was based on the digestion of genomic DNA with
restriction enzymes and the ligation of the obtained DNA restriction fragments with an
oligonucleotide adaptor, followed by PCR amplification with a reduction in the denat-
uration temperature during each cycle, was optimized for Staphylococcus spp. In this
study, approximately 0.5 µg of DNA (25 µL) was digested with HindIII (Thermo Scientific,
Waltham, MA, USA). Following incubation at 37 ◦C for 30 min and inactivation at 65 ◦C
for 15 min, the ligation mix was added: 4 µL of adapter (two oligonucleotides), 2.8 µL
of ligation buffer (Thermo Scientific), 0.4 µL T4 DNA ligase (5 U/L, Thermo Scientific,
MA, USA) and 0.5 µL 25 mM ATP. The samples were incubated at 16 ◦C for 1 h and then
heated in a thermoblock at 65 ◦C for 10 min. Afterwards, the samples were cooled at room
temperature for 10 min. The PCR was carried out in a 25 µL reaction mixture containing
14.75 µL PCR grade water, 4 µL ligation product, 2.5 µL 10× PCR buffer (Shark, Blirt,
Gdańsk, Poland), 1 µL 50 mM MgCl2, 2 µL of a deoxynucleoside triphosphate (dNTP)
mixture, 0.5 µL (2 U) of polymerase (Hypernova Blirt, Gdańsk, Poland) and 0.25 µL of
primer AD-P (CTCACTCTCAACAACGTCGACAGCTT (5′→3′). The denaturation tem-
perature was determined during the optimization of two S. aureus strains using a gradient
thermal cycler (Eppendorf Mastercycler Nexus, Hamburg, Germany) with a gradient range
of 78–88 ◦C for the denaturation step. The PCRs were performed as follows: (i) 7 min
at 72 ◦C—initial denaturation, releasing of unligated nucleotides; (ii) 90 s at a 78–88 ◦C
gradient across the thermal block—denaturation, (iii) 24 cycles of denaturation at 60 s at
78–88 ◦C gradient across the thermal block, annealing at 72 ◦C for 2 min and elongation
at 72 ◦C for 2 min 15 s, with a final 72 ◦C for 5 min after the last cycle. MP-PCRs for all
isolates were performed as described above using the established optimal denaturation
temperature of 80 ◦C. Each PCR product (8 µL) was run on a 1.5% agarose gel, and the
amplification patterns were determined by examination on Simply Safe (EurX, Gdańsk,
Poland) stained gels illuminated by UV light (Alpha Innotech, Fc8800, Markaryd, Sweden).
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The amplicon sizes were determined by comparing the bands with a 100-bp DNA mass
ladder (Fermentas, Waltham, MA, USA).

2.8. MLVF-PCR

The MLVF (multiple-locus variable-number tandem-repeat fingerprinting) typing
procedure and a set of 5 primers for the genes ClfA1, ClfB1, SdrCDE, SpaI and SspA1 were
analogous to the previously published scheme for S. aureus differentiation [12].

The PCR was carried out in a 50 µL reaction mixture containing 25 µL of 2 × PCR
TaqNova-RED, 0.5 µM each of primers ClfB1-F, ClfB1-R, SpaI-F, and SpaI-R, 1 µM each of
primers ClfA1-F, ClfA1-R, SdrCDE-F, and SdrCDE1-R, 2 µM each of primers SspA1-F and
SspA1-R, and 5 ng of template DNA. DNA fragments were amplified on a thermocycler
(Eppendorf Mastercycler Nexus, Hamburg, Germany) using the following cycling condi-
tions: (i) 30 s at 98 ◦C—initial denaturation, and (ii) 20 cycles of denaturation for 10 s at
98 ◦C, annealing at 60 ◦C for 30 s and elongation at 72 ◦C for 30 s, with a final extension at
72 ◦C for 5 min after the last cycle. Each PCR product (8 µL) was run on a 1.5% agarose
gel, and the amplification patterns were determined by examination on Simply Safe (EurX,
Gdańsk, Poland) stained gels illuminated by UV light (Alpha Innotech, Fc8800, Markaryd,
Sweden). The amplicon sizes were determined by comparing the bands with a 100-bp DNA
mass ladder (Fermentas, MA, USA).

2.9. PCR Detection of Antimicrobial Resistance and Virulence Genes of Staphylococcus aureus

The resistance genes for macrolides (erm(A), erm(B) and erm(C)), tetracyclines (tet(K),
tet(L) and tet(M)), aminoglycosides (aad-6 and aphA-3′), beta-lactams (blaZ and mecA),
sulfonamides (sul)and antiseptic resistance genes (gac and smr) were assessed by PCR.
All genes were chosen in accordance with the available literature. In the case of viru-
lence, the investigated genes were sea, seo, sen, lukM, lukd, clfA, icaA, icaC, icaB, icaD, clfB,
sdrC, eno, bap and etb. Primer sequences, product sizes and annealing temperatures are
summarized in Supplementary Table S1 [13–22] and Table S2 [23–29]. All primers were
synthesized by Genomed S.A. (Warsaw, Poland). Amplification reactions were carried out
with a HotStarTaq Plus Master Mix Kit (Qiagen, Hilden, Germany) in a Nexus Gradient
thermocycler (Eppendorf, Hamburg, Germany). The 20-µL reaction sample contained
10 µL of HotStarTaq Plus Master Mix 2×, 1 µL of primers (final concentration 0.4 µM),
2 µL of 10× CoralLoad Concentrate (Qiagen), 4 µL of RNase-free water, and 2 µL of DNA.
Cycling conditions were as follows: 95 ◦C for 5 min, followed by 35 cycles of 94 ◦C for 30 s,
annealing temperature for 30 s, and 72 ◦C for 60 s, with a final extension of 72 ◦C for 10 min.
Ten microlitres of PCR product were electrophoresed on 2% agarose gel in the presence
of Midori Green Advance (Nippon Genetics, Düren, Germany) at 120 V for 60 min. The
results were read using the Quantum ST5 Gel Documentation System (Vilber, Eberhardzell,
Germany). To confirm the specificity of the amplicons obtained, some PCR products of
interest were randomly chosen and purified using a CleanUp kit (A&A Biotechnology,
Gdynia, Poland) for sequencing (Genomed S.A., Warsaw, MA, Poland).

3. Results
3.1. Antimicrobial Susceptibility Testing—Phenotypic and Genotypic Assessments

The analyzed S. aureus samples showed the greatest resistance to penicillin (57%),
oxytetracycline (25%) and tetracycline (18%). In contrast, they showed intermediate sus-
ceptibility to penicillin with novobiocin (75%), oxytetracycline (45%) and enrofloxacin
(50%). The analyzed strains were relatively susceptible to the rest of the tested antibiotics
(between 85% and 100% of the isolates were susceptible). Among the bacteria analyzed, no
methicillin- or vancomycin-resistant strains were confirmed (Table 1). Of the 15 antibiotic
resistance-related genes analyzed in the studied staphylococci, only two, tet(K) (64%) and
blaZ (82%), were confirmed.
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Table 1. Antibiotic resistance results for Staphylococcus aureus strains analyzed (n = 28). Legend:
amoxicillin + clavulanic acid 20 + 10 µg (AMC), enrofloxacin 5 µg (ENR), clindamycin 2 µg (CL),
tetracycline 30 µg (TE), erythromycin 15 µg (E), ceftriaxone 30 µg (CEQ), cloxacillin 5 µg (OB),
neomycin 30 µg (N), penicillin G 10U (P), marbofloxacin (MAR), ceftiofur 30 µg (EFT), bacitracin
10 µg (B), cefamandole 30 µg (MA), cefoperazone 75 µg (CFP), gentamycin 10 µg (CN), oxytetracycline
30 µg (OT), penicillin/novobiocin 40 µg (PNV), trimethoprim/Sulfamethoxazole 1:19 25 µg (SXT),
ubrolexin (CFX), rifampicin 5 µg (RD), Cefapirin 30 µg (CPR), oxacillin (OX), cefoxitin (FOX), van-
comycin (VAN), ND: not detected, red (R): resistance, orange (I): intermediate, green: sensitive, ND:
not detected.

STRAIN
ID/ANTIMICROBIAL A

M
C

EN
R

C
L

T
E

O
T E C

EQ O
B N P PN
V

M
A

R

SX
T

EF
T

C
N

C
FP

M
A

B R
D

C
PR

V
A

N

FO
X

O
X CONFIRMED

ANTIBIOTIC
RESISTANCE GENES

287 ND
494 tet(K), blaZ
522 tet(K), blaZ
294 blaZ
292 blaZ
476 tet(K), blaZ
342 tet(K), blaZ
510 tet(K), blaZ
321 tet(K), blaZ
165 blaZ
398 blaZ
322 tet(K), blaZ
377 tet(K), blaZ
536 tet(K), blaZ
312 tet(K), blaZ
360 blaZ
399 tet(K), blaZ
493 tet(K), blaZ
535 tet(K), blaZ
390 tet(K), blaZ
509 blaZ
495 tet(K), blaZ
227 blaZ
397 blaZ
556 tet(K), blaZ
545 blaZ
544 tet(K), blaZ
228 tet(K), blaZ
R% 0 0 0 18 25 0 0 0 0 57 7 0 0 0 0 0 0 0 0 0 0 0 0
I% 0 50 4 0 46 7 14 0 0 0 75 4 0 4 0 7 0 0 11 0 0 0 0

3.2. Detection of Virulence Genes by PCR

Among the strains analyzed, 9 of the 15 selected virulence-related genes were con-
firmed (Table 2). The icaD, clfB and sea genes were confirmed in all staphylococci. In 87% of
the analyzed strains, the presence of the lukM, lukD and sdrC genes was confirmed, while
only 3% of the S. aureus strains showed the presence of the sea and sen genes.
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Table 2. Biofilm production capacity of Staphylococcus aureus (n = 28) from subclinical mastitis samples
from the northeast region of Poland after 24, 48 and 72 h with virulence pattern and PCR MP and
MLVF profile. Color green: no biofilm, orange: weak biofilm, blue: medium biofilm, red: strong
biofilm, ND: no profile in PCR MP and MLVF analysis.

Strain ID 24 48 72 CONFIRMED VIRULENCE GENES MP PCR MLVF Combined
287 lukM, lukD, clfA, icaD, clfB, sdrC, eno 4 1 1
494 lukM, lukD, clfA, icaD, clfB, sdrC eno 4 2 2
522 lukM, lukD, clfA, icaD, clfB, sdrC, eno 4 1 1
294 lukM, clfA, icaD, clfB, sdrC, eno 4 6 3
292 lukD, clfA, icaD, clfB, sdrC, eno 4 1 1
476 lukM, lukD, clfA, icaD, clfB, sdrC eno 4 1 1
342 lukM, lukD, clfA, icaD, clfB, sdrC, eno 2 2 4
510 lukM, lukD, clfA, icaD, clfB, sdrC, eno 4 2 2
321 lukM, lukD, clfA, icaD, clfB, sdrC, eno 4 2 2
165 lukM, lukD, clfA, icaD, clfB, sdrC, eno 4 7 5
398 lukM, lukD, clfA, icaD, clfB, sdrC, eno 4 2 2
322 lukM, lukD, clfA, icaD, clfB, sdrC, eno 4 2 2
377 lukM, lukD, clfA, icaD, clfB, sdrC, eno 1 1 6
536 lukM, lukD, clfA, icaD, clfB, sdrC, sea, seo, eno 7 9 7
312 lukM, lukD, clfA, icaD, clfB, sdrC, eno 4 3 8
360 lukM, lukD, clfA, icaD, clfB, eno 2 1 9
399 lukM, lukD, clfA, icaD, clfB, sdrC, eno 4 2 2
493 lukM, lukD, clfA, icaD, clfB, eno 4 2 2
535 seo, sen, LukM, lukD, clfA, icaD, clfB, eno 7 9 7
390 lukM, lukD, clfA, icaD, clfB, sdrC, eno 4 4 10
509 lukM, lukD, clfA, icaD, clfB, sdrC, eno 4 2 2
495 lukM, lukD, clfA, icaD, clfB, sdrC, eno 4 2 2
227 lukM, lukD, clfA, icaD, clfB, sdrC, eno 5 5 11
397 lukM, lukD, clfA, icaD, clfB, sdrC, eno 4 2 2
556 lukM, lukD, clfA, icaD, clfB, sdrC, eno 9 2 12
545 lukM, lukD, clfA, icaD, clfB, sdrC, eno 4 1 1
544 clfA, icaD, clfB, sdrC, eno 8 10 13
228 lukM, lukD, clfA, icaD, clfB, sdrC, eno ND 8 14

no biofilm n [%] 9 (30) 4 (13) 3 (10)
Number of pattern types 9 10 14

Number of strains without a profile 1 0 0
weak biofilm 16 (53) 17 (57) 13 (43)

moderate biofilm 4 (13) 5 (17) 11 (37)
strong biofilm 1 (3) 3 (10) 3 (10)

3.3. Biofilm Formation

Among the analyzed strains, the majority showed the ability to produce biofilms (at
least 70% of the strains at each analyzed time). In the case of our study, it was observed
that the number of strains capable of biofilm production and its intensification increased as
the incubation time of the biofilm plates increased (Table 2).

3.4. Genotyping

Among the staphylococci analyzed, nine patterns were obtained using the PCR MP
method, and ten patterns were obtained using the MLFV method. By using a combined
analysis of the results from these two methods, it was possible to distinguish 14 patterns, of
which type 2 was the dominant pattern (n = 10). Unfortunately, for one strain of analyzed
S. aureus (ID-228), no MP PCR pattern was obtained. For all pointed isolates, the PCR MP
and MLVF reactions were performed in triplicate to confirm the obtained results (Table 2,
Figures S1 and S2).

4. Discussion

The introduction of prevention programs against contagious pathogens that cause
mastitis in dairy cattle has resulted in a decrease in the aetiology of mastitis, and this phe-
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nomenon was also observed in the area that we analyzed [30]. Despite intensive hygienic
and therapeutic efforts, S. aureus has not been completely eliminated. When infection occurs
in the herd as a consequence of numerous virulence and antibiotic resistance mechanisms,
this pathogen is very difficult to completely eliminate, and worse, recurrences are often
observed, making staphylococcus a challenge for both veterinary doctors and dairy cow
owners [31,32].

In the case of the S. aureus that we analyzed, the presence of high antibiotic resistance
at both phenotypic and genotypic levels was not observed. As Arturrson et al. [2] reported,
cows with subclinical mastitis caused by these staphylococci are often removed from the
herd after lactation. To the best of our knowledge, such a technique is also practiced in our
country, which may be the reason why antibiotic resistance is so low. Both the antibiograms
and the presence of genes showed only increased resistance to tetracyclines (tet(K) 64%)
and beta-lactams (blaZ 82%). These results are consistent with studies conducted in Brazil,
Norway and China, where phenotypic resistance to tetracycline and penicillin was also
observed [33,34]. Interestingly, in the case of research conducted by Martini et al. [33], the
most common genes among the analyzed staphylococci were also found to be blaZ (97%)
and tet(K) (84%). Our results suggest that both penicillin and tetracycline may have been
overused in the past in the area we analyzed, making it necessary to consider whether they
should be withdrawn from use in staphylococcal mastitis infections. Such a measure could
prevent the spread of antibiotic resistance to tetracyclines and penicillin to other bacterial
species (horizontal gene transfer).

Observing the emergence of strains of methicillin-resistant S. aureus (MRSA) and
vancomycin-resistant S. aureus (VRSA) is extremely important. Initially, these strains were
associated mainly with the hospital environment; for years, they have also been observed in
the veterinary environment [35,36]. Among the staphylococci we analyzed, no methicillin-
or vancomycin-resistant strains were confirmed. Further monitoring of this phenomenon is
necessary, as the emergence of such strains among animals used for food purposes poses a
direct threat to humans (food-borne pathogens).

High susceptibility to substances other than penicillins and tetracyclines is, in our
opinion, a positive phenomenon that offers great opportunities in antibiotic therapy for
veterinarians. Nevertheless, it should be mentioned here that high sensitivity in vitro does
not guarantee therapeutic success [37]. It is estimated that in the case of infections caused
by S. aureus, the chances of real or apparent cure vary from 4% to 92%, depending on factors
such as the characteristics of the pathogen, the condition of the animals, herd management
or treatment regimen [32,38]. Therefore, further work on developing replacement or
supplementary therapies for antibiotic therapy should be carried out in the context of
these bacteria.

It is well known that staphylococci have the capacity for genetic variation and adapta-
tion to attack new species. Clones of S. aureus that are currently able to attack the udder
in cattle most likely originate from clones of human origin, and this transformation has
occurred gradually since the Neolithic age after the domestication of these animals, among
others. To invade a new animal species, the bacterium must acquire or lose its virulence
mechanisms so that it can survive anatomically and physiologically in the new location [5].
Therefore, monitoring the virulence mechanisms of staphylococci according to the infected
animal species and selecting/developing prevention and treatment programs based on this
is extremely important. In our study, the predominant virulence mechanism at both the
phenotypic and genotypic levels was the ability of the tested strains to produce biofilms. In
the case of the phenotypic study, at all three analyzed incubation times (24, 48 and 72 h), the
majority of the staphylococci showed the ability to produce biofilms (above 70%). Among
the biofilm-related genes, the presence of only two genes, eno and icaD, was confirmed, but
interestingly, they were present in all the strains tested (including those that did not show
the ability to produce biofilm). These results are partially consistent with the observations
of other authors, in which some of the more frequently observed genes were icaD and
eno, and the presence of these genes was not dependent on the ability to produce biofilms
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in vitro [39,40]. Numerous publications have shown that even if at a given moment the
bacterium does not use these genes for biofilm production, in the future they may start
using them due to various factors, e.g., change in temperature or time, or contact with
some substance/surface [39,41,42]. In light of this information, the appearance of these
genes in the strains we analyzed is already a worrisome fact, and the monitoring of this
phenomenon should continue. In the case of the bacteria we analyzed, the presence of both
the icaA and bap genes was not observed. These observations are consistent with the results
of Gajewska et al. [40], who also analyzed S. aureus strains from dairy cattle but from a
different region of Poland. In their study, the icaA gene was also not observed, and the
bap gene was present in only 25% of the analyzed strains, despite the ability to produce
biofilm in in vitro conditions. In our opinion, this may indicate that these genes do not
play a key role in the ability to produce biofilms in the area we analyzed. As reported by
Chen et al. [39], although the bap protein was first linked to the ability of staphylococci to
produce biofilms, the gene encoding this protein is located on the SPIbov2 pathogenicity
island, which is found in only a few S. aureus strains of bovine origin. Perhaps such strains
have not occurred thus far in the area under analysis.

Additionally, it should be mentioned here that the number of nonbiofilm-forming
strains decreased with the increasing incubation time. These results are consistent with
those obtained by Oliverira et al. [43], in which, in addition to the demonstration of a
large number of staphylococci showing the ability to produce this structure, a correlation
between the result and reading time was also observed. We agree with the suggestion of
those authors that different strains may have different times of biofilm production and that
interpreting the results only after 24 h can significantly affect the results.

For the strains we analyzed, we used two genotyping methods to check the relatedness
of the S. aureus strains isolated from dairy cattle in northeastern Poland. For the strains we
analyzed, the combined method distinguished 14 types, of which 35.7% were classified
as type 2. These results suggest moderate genetic variability in the area we analyzed,
which is good information in the context of developing targeted preventive measures
or new therapies. According to Kasela et al. [44], the use of two genotyping techniques
simultaneously yields more accurate and reliable typing results for the staphylococci
analyzed. This can be seen in our results, in which using only one method, 9 types (with
the MP PCR method) or 10 types (with the MLFV method) were distinguished, while
14 types were distinguished using a combined analysis of the two techniques. That kind of
approach seems to be reasonable solution in case of staphylococci, which are quite clonal
bacteria. In that case, the use of pulsed-field gel electrophoresis (PFGE), considered to be
the gold standard for bacteria differentiation, does not allow for tracing epidemiological
links between Staphylococcus strains [45] as its discriminatory power is not high enough.

As mentioned earlier, staphylococci demonstrate the ability to adapt to new condi-
tions. Therefore, monitoring their mechanisms of virulence and antibiotic resistance is
extremely important, as it allows us to complete our knowledge of the pathogenesis of this
pathogen and thus may contribute to the development of new more effective therapies and
prevention programs in the future. In summary, in the area we analyzed, the staphylococcal
isolates showed lower antibiotic resistance than virulence. Among the virulence factors,
biofilm formation was dominant, and new prevention programs should be focused on this,
especially since it not only affects the virulence of a given bacterium but also decreases the
effectiveness of applied active substances used for the treatment of cattle.
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bovine mastitis in Poland. Figure S1. MP-PCR HindIII profiles of Staphylococcus genomes. Figure S2.
MLVF-PCR profiles of Staphylococcus genomes: marker 100bp, S. aureus_058PP2016-084PP2016,
S. aureus_089PP2016-091PP2016, S. CNS_002PP201.
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