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Abstract

As urbanization increases in low- and middle-income countries (LMICs), urban populations
will be increasingly exposed to a range of environmental risk factors for non-communicable
diseases. Inadequate living conditions in urban settings may influence mechanisms that regu-
late gene expression, leading to the development of non-communicable respiratory diseases.
We conducted a systematic review of the literature to assess the relationship between respira-
tory health and epigenetic factors to urban environmental exposures observed in LMICs using
MEDLINE, PubMed, EMBASE, and Google Scholar searching a combination of the terms:
epigenetics, chronic respiratory diseases (CRDs), lung development, chronic obstructive air-
way disease, and asthma. A total of 2835 articles were obtained, and 48 articles were included
in this review. We found that environmental factors during early development are related to
epigenetic effects that may be associated with a higher risk of CRDs. Epigenetic dysregulation
of gene expression of the histone deacetylase (HDAC) and histone acetyltransferase gene fam-
ilies was likely involved in lung health of slum dwellers. Respiratory-related environmental
exposures influence HDAC function and deoxyribonucleic acid methylation and are import-
ant risk factors in the development of CRD. Additional epigenetic research is needed to
improve our understanding of associations between environmental exposures and
non-communicable respiratory diseases.

Introduction

In 2014, 881 million people in low- and middle-income countries (LMICs) lived in urban
slums, and this number is expected to grow on average by 9 million people each year [1, 2].
A greater proliferation of low-income settlements, also known as slums, exists with a lack of
access to sustainable housing, expansive living space, sanitation, safe drinking water, and secur-
ity [3, 4]. Disparities are present among slum dwellers but they are not equally distributed
worldwide. Specifically, in sub-Saharan Africa, the United Nations Habitat estimated that a
majority of urban populations, at about 56%, live in slums [2, 5]. Overall, Africa is shifting
to a predominantly urban continent. It is estimated that 40% of Africa’s population lives in
urban areas, but by 2030 one out of two individuals living in sub-Saharan Africa will live in
an urban area [6]. Urbanization, the migration of residents from rural to urban areas often
for the economic opportunities offered by urban development, has further contributed to
the increase in urban poverty in LMICs [3]. This rapid urbanization has been accompanied
by significant shifts in health patterns, increasing the prevalence of non-communicable diseases
(NCDs). Lung disease is known as a leading cause of mortality in LMICs, where it is reported
to account for 15% of all deaths [7].

As the prevalence of asthma and chronic obstructive airway disease (COPD) rise, the WHO
predicts that deaths due to NCDs will increase by 27% by 2030 [7–10]. This is mainly due to
demographic transitions and changing lifestyles of populations associated with urbanization.
Moreover, populations in urban slums often have inadequate access to health services and
seek care after symptoms have advanced and often when life-threatening complications
have arisen [11]. The combination of slum conditions in Bangladesh, Kenya, and Egypt has
led to severe malnutrition in adolescents, primed by a lower under-five child nutrition status,
when compared to individuals living in rural settings [8, 12, 13]. As a result, slum living has
been linked to poverty and multiple risk factors for respiratory disease including poor housing
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quality, overcrowding, traffic-related and household air pollution,
tobacco smoke, psychological stress, occupational exposures, and
exposure to allergens and malnutrition [4, 7, 11, 12].

Environmental exposures associated with living in slums can
lead to epigenetic modifications and changes in cell function
that begin in utero and could last a lifetime, therefore predispos-
ing slum residents to poor respiratory health outcomes.
Epigenetics is the study of mitotically-heritable phenotypes
not resulting from changes in the deoxyribonucleic acid
(DNA) sequence. The term epi- is a Greek suffix meaning ‘on
top or outside’, which highlights the nature of the mechanisms
outside of the DNA code [14]. The most widely known epigen-
etic marks include: DNA methylation, histone tail modifica-
tions, and noncoding ribonucleic acids (RNAs) [15–17].
These mechanisms control access to DNA to participate in tran-
scription [15, 17]. The same principle applies to histone tail
regulatory mechanisms as acetylation by histone acetyltrans-
ferases (HATs) leading to active gene transcription, whereas
deacetylation by histone deacetylases (HDACs) leads to gene
silencing [18, 19]. Non-coding RNAs (ncRNAs) also play a crit-
ical role in regulating gene expression by controlling gene
expression through binding of 3′ untranslated regions of
mRNA [20]. The end result is either mRNA degradation or
inhibition of protein translation.

Epigenetic markers are important regulators of overall DNA
stability, cell differentiation, imprinting, and organismal develop-
ment. As a result, epigenetic mechanisms, through their key role
in cell function and heritable nature, have been implicated in
the development of chronic respiratory diseases (CRDs) that
include asthma and COPD in people living in LMICs, predispos-
ing these populations to significant negative health outcomes [15].
However, potential molecular mechanisms due to epigenetic
modifications from environmental exposure in this population
are currently lacking. In this systematic review, we aim to focus
on the current knowledge of epigenetic markers related to
human environmental exposures that affect lung health and relate
this to urban residents, but more specifically slum dwellers, in
LMICs as a measure of the impact of urbanization in chronic
illness. Also, we aim to identify the knowledge gaps in interactions
between epigenetic mechanisms and specific threats to respiratory
health in LMIC settings.

Methods

Using MEDLINE, PubMed, EMBASE, and Google Scholar and
following the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses guidelines [21], we conducted a systematic
search of literature published between 1 January 1995 and 9
September 2017 using the following search terms: epigenetics,
Africa, Asia, Latin America, Caribbean, LMICs, CRDs, NCDs,
urban slum, lung development, and asthma using a combination
of ‘AND’ and ‘OR’ search settings among various combinations of
terms. The primary outcomes of the review are epigenetic markers
and mechanisms related to the following human environmental
exposures that influence lung health: cigarette smoke, second
hand smoke, ambient or household air pollution, traffic-related
pollution, maternal nutrition, exposure to allergens, and nutri-
tional status. The generated abstracts were limited to publications
in English and to research papers, editorials, reviews, original arti-
cles, and reports. The first reviewer (NR) screened titles and
abstracts for relevance, selecting papers for abstract analysis.
The inclusion and exclusion criteria were considered during this

process. Only research articles relating to settings in LMICs or
studies that could be applied to populations in LMICs were
included. Articles published before 1995 were excluded from
our search to limit our review to recent literature. The first
reviewer (NR) selected 82 papers. Reference lists of selected
papers were manually searched for further related studies.
Then, the second reviewer (AK) performed the final selection
of 48 articles. Any disagreement between the two authors
resulted in a discussion and joint review of the article with
reconciliation. Quality criteria were assessed using the
Newcastle-Ottawa Scale (NOS) [22]. The aim of the search
was to assess the relationship between respiratory health and epi-
genetic factors in environments similar to that of urban areas of
LMICs. The methodological summary of this literature search is
outlined in Fig. 1.

Results

A total of 8543 articles were obtained from the searches, with 48
articles ultimately included in this review. Abstracts were manu-
ally sorted, and unrelated and duplicated papers were removed.
Papers were excluded based on quality, relevance to systematic lit-
erature review aims, and reported methodology and results
(Fig. 1). Studies that presented results not conducted in LMICs
or that could not be applied to LMIC settings were excluded.
Papers that did not report methodology or results were excluded.
Other reasons that papers were excluded were duplication or
abstracts and publications that were not written in English. The
quality of papers was assessed utilizing the NOS, Table 1. The
articles included in this review span a diverse geographical distri-
bution and are included in Supplementary Table S1 with specific
relationships between epigenetic factors and lung health further
outlined in Table 2. Our systematic literature review yielded arti-
cles relating to epigenetic modifications due to environmental
exposures including cigarette smoke, air pollution, maternal
nutrition, exposure to allergens, and malnutrition, among others.
Few studies related specifically to how these predisposing environ-
mental factors were associated with common CRDs including
COPD and asthma.

DNA methylation and non-coding RNAs

Our search revealed several slum-related exposures in utero , in
childhood, and adulthood, which have been associated with
altered DNA methylation. We found that cigarette smoke and
second-hand smoke (SHS) are both associated with altered epi-
genome methylation patterns. In utero exposure to maternal
tobacco smoke has also been shown to result in both global and
site-specific DNA methylation levels during fetal development
[33–36]. Exposure to SHS has shown increased methylation of
CpG sites in T effector cell IFN-γ promoters relative to unexposed
individuals [26]. Traffic-related air pollution exposure increased
locus-specific methylation in the TET1 promoter region, specific-
ally at CpG (cg23602092) site, which was significantly associated
with childhood asthma [37]. Studies in utero have shown that
maternal famine was associated with higher methylation of
IL10, LEP, ABCA1, GNASAS, and MEG3 genes, compared to
the same-sex unexposed siblings, potentially increasing risk of
asthma later in life [38–40]. In the current literature, there is a
gap regarding ncRNA’s role in regulating gene expression empha-
sizing the need for greater research in this area.
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Histone deacetylases and histone acetyltransferases

Two major enzymes, HDAC and HATs, potentially play a role in
epigenetic factors related to the lung health of slum dwellers. The
HDAC family facilitates local histone deacetylation and transcrip-
tional repression by binding to DNA substrates. In Class I of the
HDAC family, specifically HDAC 1, 2, 3, and 8, have been shown
at reduced levels in individuals with COPD or asthma or indivi-
duals that smoke tobacco. Marwick et al., observed decreased
HDAC2 activity due to cigarette smoke exposure. Ito et al.,
expanded on these results by demonstrating that cigarette smoke

exposure decreased overall HDAC activity in bronchial biopsies
and alveolar macrophages of smokers compared to non-smokers
[29, 30]. Moreover, the HAT families acetylate the lysine residues
at the N-terminus of histone proteins by removing positive charges.
As a result, the affinity between histones and DNA is reduced,
facilitating access to the promoter region of target genes by RNA
polymerase and transcription factors. Among the Gcn5-related
N-acetyltransferase (GNAT) family, HAT activity was associated
with higher pro-inflammatory gene expression among individuals
with asthma [27]. A summary of these findings included studies is
contained in Table 2 and in Supplementary Table S1.

Fig. 1. Literature search process to identify
papers to include in this review.
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Discussion

In this review, maternal nutrition, tobacco smoking, ambient and
household air pollution, and traffic-related air pollution during
early development were risk factors associated with epigenetic
changes in LMICs. In particular, the HDAC, HAT, and GNAT
families, specifically, were associated with lung health outcomes.

The Barker hypothesis proposes that environmental factors
acting during the phase of early development interact with the
genome to change the capacity of the organism to cope with its
environment in later life [38, 41]. This hypothesis has expanded
to find other immunological, mental health, and reproductive dis-
eases that can result from malnutrition or over-nutrition [38].
Current research points to evidence that epigenetic marks alter
gene expression in the lung, which may be associated with com-
mon CRDs [42]. Because the epigenome is dynamic and changes
accordingly to the environment and ageing process, associations
between cigarette smoke and SHS and epigenetic marks have
been demonstrated in recent studies in high-income settings
[33, 43]. For example, intergeneration DNA methylation asso-
ciated with in utero cigarette smoke exposure is associated with
a high risk of asthma development in offspring [33, 44]. In
utero exposure to maternal tobacco smoking has been shown to
be significantly associated with increased newborn epigenome-
wide alterations and methylation at 26 CpGs mapped at 10
genes and reduced mean methylation for AluYb8 repetitive ele-
ments [33–35]. SHS exposure has also been associated with a
higher percentage of methylation of CpG sites in the T effector
cell IFN-γ promoter with a concomitant reduction in IFN-γ
expression from T effector cells when compared to individuals
not exposed to SHS [26]. Exposure to cigarette smoke also affects
miRNA expression. Ezzie et al., found that miR-223 and
miR-1274a were expressed almost three-fold in COPD lung sam-
ples compared to non-COPD lung samples [25]. Moreover, 28
miRNAs were differentially expressed in airway epithelial cells,
with most of these miRNAs down-regulated when exposed to
tobacco smoke compared to unexposed cells [45]. Because child-
hood years have been found to be a critical time for rapid lung

development, reducing exposure to cigarette smoke and SHS
may reduce the risk of developing chronic respiratory conditions
later in life [46].

Air pollution is a ubiquitous environmental exposure, espe-
cially in urban settings. Previous research in high-income settings
has found that DNA methylation of long interspersed nucleotide
element (LINE)-1 was lower with higher levels of ambient par-
ticulate matter [47]. Diesel exhaust particle exposure has been
found to impact DNA methylation at 2827 CpG sites compared
to filtered air; with CpG sites, such as GSTP1, becoming signifi-
cantly less methylated [48]. Asthma was significantly associated
with loss of methylation at a single CpG site in the TET1 pro-
moter (cg23602092) and increased global 5hmC in bronchial epi-
thelial cells and human participants [37]. Diesel exhaust particle
exposure was associated with alterations in Alu and LINE-1 ele-
ments and the CpG site within miR-21, and increased FOXP3
was significantly associated with increased diesel exhaust particle
exposure, which was associated with increased risk of asthma
development in children [48, 49]. Allergen exposure, diesel
exhaust particle exposure, and co-exposure showed alterations
in 7 CpG sites in bronchial epithelial cells after two days.
Spacing out allergen and diesel exhaust particle exposure by
four weeks resulted in alterations in over 500 CpG sites including
four Hox family of genes such as HOXA3, HOXA4, HOXB1, and
HOXB3 involved in fetal lung development, and global DNA
methylation suggesting sequential exposure has a pronounced
impact on DNA methylation [50]. Moreover, methylation of the
ACSL3 5′-CGI was significantly associated with maternal airborne
polycyclic aromatic hydrocarbon exposure above 2.41 ng/m3 in
umbilical cord white blood cells potentially related to the develop-
ment of traffic-related air pollution exposure asthma [51].

Diet and nutrition may also exert epigenetic changes. Indeed,
the relationship between epigenetic maternal and either early
childhood nutrition or dietary supplementation have been studied
in populations in the Dutch Hunger Winter Famine in Europe, in
Nepal, and in The Gambia [24, 40, 52, 53]. In individuals exposed
to in utero famine conditions INSIGF methylation was signifi-
cantly reduced and increased in IL10, LEP, ABCA1, GNASAS,

Table 1. Example of NOS for assessment of quality of included studies-cross-sectional studies (1 indicates individual criterion within the subsection was fulfilled)

Quality assessment criteria White et al. [23] Waterland et al. [24] Ezzie et al. [25] Kohli et al. [26]

Selection (maximum 4)

Case definition adequate 1 1 1 1

Representativeness of the cases 1 1 1 1

Selection of controls 1 1 1 1

Definition of controls 1 1 0 1

Comparability (maximum 2)

Comparability of cohorts on the basis of the design of analysis
(controls used)

1 1 1 1

Confounding factors are controlled. 1 1 1 1

Exposure (maximum 3)

Ascertainment of exposure 1 1 1 1

Same method cases and controls? 1 1 1 1

Non-response rate 0 1 0 0

Overall quality score (maximum 9) 8 9 7 8
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and MEG3 genes compared to unexposed same-sex siblings
[40]. Seasonal changes in maternal methyl-donor nutrient
intake during conception also have been found to influence
13 plasma biomarkers and systemic epigenetic changes in
human metastable epialleles in Gambian populations with
metastable epialleles having increased DNA methylation levels
for individuals conceived in the rainy season when nutritional
intake is low [24, 52]. Moreover, the lack of maternal dietary
vitamin A may alter in utero lung development potentially
increasing susceptibility of postnatal lung diseases. In Nepal,
children aged 9–13 years born to mothers who were assigned
to receive 7000-μg retinol-equivalents of vitamin A weekly
before, during, and after pregnancy were shown to have a larger
forced expiratory volume at 1 s and forced vital capacity than
children of the same age who were born to mothers assigned
to receive a placebo [53].

Emerging evidence of the relationship between environmental
exposures and epigenetic markers coupled with the function of
epigenetic regulation in T-cell differentiation demonstrates epi-
genetic alterations that may contribute to a higher prevalence of
asthma in LMICs [54]. Current research is focusing on the effect
of maternal nutrition on the development of atopy and asthma in
children [55, 56]. For example, epigenetic changes, specifically
increasing site-specific methylation levels of the genome, during
pregnancy shifts towards a Type II helper phenotype, increasing
the risk of asthma [38, 39]. Previous epidemiological studies
have shown that increasing folate levels, which is a precursor
for the methyl group supply that is used to generate DNA methy-
lation marks, are associated with an increased risk of developing
asthma [38]. Additionally, acetylation of histones may influence
the onset of asthma because increased levels of acetylation of
H4 has been found in asthmatic individuals and is associated

Table 2. Results of the relationship between epigenetic factors and lung health in included studies in this systematic literature review

Epigenetic factors Activity in asthma, COPD, or smoking Reference
Sample
size Type of sample Country

Class 1 HDAC Family

HDAC 1 Decreased in asthma, not yet studied in
smoking and COPD patients

[27] 40 Bronchial biopsy
samples

UK

[28] 28 Alveolar macrophages UK

[29] 24 Rat lung tissue UK

HDAC 2 Decreased in asthma, smoking and COPD [27] 40 Bronchial biopsy
samples

UK

[28] 28 Alveolar macrophages UK

[29] 24 Rat lung tissue UK

[30] 29 Human bronchial
biopsies

UK

HDAC 3 and 8 Decreased in COPD, no difference in asthma,
limited published data in smoking

[28] 28 Alveolar macrophages UK

[31] 159 Human lung tissue USA and
Canada

Class II HDAC family

HDAC 5 Decreased in COPD, no difference in asthma,
limited published data in smoking

[28] 28 Alveolar macrophages UK

[31] 159 Human lung tissue USA and
Canada

Class III HDAC family

SIRT1 Limited published data

Class IV HDAC family

HDAC 11 Limited published data

GNATs-HAT family

HAT1, GCN5, GCN5L,
Elp3, PCAF

Increased in asthma patients, limited
published data on smoking and COPD

[27] 40 Bronchial biopsy
samples

UK

[32] – Cell culture-mature
monocytes

USA

General transcription
factor-HATs

TAF250, TFIIIC Increased in asthma, limited published data
on smoking and COPD

[27] 40 Bronchial biopsy
samples

UK

[28] 28 Alveolar macrophages UK

HDAC, histone deacetylase; SIRT1, sirtuin; HAT, histone acetyl transferase; GCN5, general control of amino acid synthesis protein 5; GCN5L, general control of amino acid synthesis protein 5
ligand; Elp3, elongation complex protein; PCAF, protein300/CREB-binding protein-associated factor; TAF250, TBP-associated factor 250 kDa; TFIIIC, transcription factors IIIC.
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with increased inflammatory gene expression in lung tissue [57].
The level of acetylation of histones has been shown to be asso-
ciated with enhanced inflammatory gene expression by HATs
and reduced inflammatory gene expression by HDACs [58].
The altered HAT/HDAC ratio from inflammation in peripheral
blood cells has been shown in adults and children that correlates
with alterations in bronchial hyperresponsiveness as in asthma
and in patients with COPD [59, 60].

The degree of increase in the acetylation of histones associated
with the promoter region of inflammatory genes in peripheral
lung tissue has been found to be associated with the severity of
COPD [61]. Alterations in histone acetylation patterns and
other epigenetic changes could mean promising therapies for
anti-inflammatory conditions such as corticosteroid resistant
cases of asthma [57]. Glucocorticoids change acetylation patterns
of histones via mechanisms that regulate inflammatory and anti-
inflammatory genes [57]. In addition to maternal nutrition, cigar-
ette smoke exposure, for example, reduces the expression of
HDAC2, a glucocorticoid receptor corepressor, at the protein
and mRNA levels meaning maternal secondhand smoke exposure
may influence the HDAC2 promoter, which could lead to asthma
progression in utero [62].

While there is a significant amount of research focused on the
genetics and epigenetic factors surrounding populations in high-
income countries, there is little priority on the interaction
between environmental factors and genetics in LMICs, where
the burden of disease is greatest. The lack of research data, as evi-
dent in a large number of papers excluded during the systematic
review process, hinders health systems from allocating resources
and targeting policy efforts towards short-term and long-term
CRD prevention and management services in LMICs (Fig. 1).
Further epigenetic research could lead to identifying epigenetic
targets stemming from living in urban slums. This research
could identify potential therapies that target epigenetic modifica-
tions in urban slum dwellers along with associated poor health
outcomes that result from epigenetic modifications.

Currently, there is little focus on these silent killers known as
NCDs such as CRDs in LMICs. As is evident in this review, envir-
onmental factors afflicting residents of slums and urban areas of
developing settings can have a significant impact on lung health
and development that can lead to adverse health outcomes.
Environmental exposures in utero and during adolescent years
can have long lasting and possibly irreversible effects later in life.
Researching and targeting the upstream factors of CRD onset and
the biological mechanisms is not only economical but will improve
the quality of life for these vulnerable, at-risk populations.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/gheg.2019.7
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