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Asthma is no longer considered a single disease, but a common label for a set of

heterogeneous conditions with shared clinical symptoms but associated with different

cellular and molecular mechanisms. Several wheezing phenotypes coexist at preschool

age but not all preschoolers with recurrent wheezing develop asthma at school-age;

and since at the present no accurate single screening test using genetic or biochemical

markers has been developed to determine which preschooler with recurrent wheezing

will have asthma at school age, the asthma diagnosis still needs to be based on

clinical predicted models or scores. The purpose of this review is to summarize

the existing and most frequently used asthma predicting models, to discuss their

advantages/disadvantages, and their accomplishment on all the necessary consecutive

steps for any predictive model. Seven most popular asthma predictive models were

reviewed (original API, Isle of Wight, PIAMA, modified API, ucAPI, APT Leicestersher,

and ademAPI). Among these, the original API has a good positive LR∼7.4 (increases the

probability of a prediction of asthma by 2–7 times), and it is also simple: it only requires

four clinical parameters and a peripheral blood sample for eosinophil count. It is thus

an easy model to use in any rural or urban health care system. However, because its

negative LR is not good, it cannot be used to rule out the development of asthma.

Keywords: asthma, asthma predictive index, biomarkers, preschool, predictive models, recurrent wheezing

INTRODUCTION

Wheezing is a sign associated with a highly heterogeneous set of conditions, with different
pathogenesis and different outcomes during early life. Many epidemiological studies have shown,
for example, that a large proportion of preschool children who wheeze, even recurrently, show
remission of their symptoms either by age three, or during the school years (1, 2). Based on
these findings, several early childhood wheezing phenotypes were described based on their natural
history and associated risk factors (2). Since these phenotypes were described based on longitudinal
data, they are of little use to the clinician when making therapeutic decisions affecting children
whose future course is obviously unknown to him. Much more useful was a recent clinical trial
showing that, although as a group, preschool children respond better to inhaled corticosteroids
(ICS) than to montelukast, children who are not sensitized to aeroallergens or do not have
peripheral blood eosinophilia respond equally well to both medicines (3). Thus, the clinician has
now easily available tools to assess which preschool children are more likely to respond to ICS and
in which children alternative approaches are still needed.
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Of similar importance for the clinician, however, is the
prognosis of the preschool child requiring medical attention
for recurrent wheezing. Once atypical causes of wheezing are
ruled out (e.g., cystic fibrosis, airway malformations, foreign
bodies, etc.), parents are still eager to know if their child has
“asthma,” which in their mind and in that of many clinicians
is equated with a chronic disease that will persist and require
treatment for extended periods during childhood and into adult
life. Moreover, the great challenge toward the future is asthma
prevention, and there is now solid data suggesting that in most
cases of persistent asthma, the first symptoms most often develop
during the school years (4), and it is during this age that the
deficits in lung function growth, which are characteristic of the
disease first appear (5–7). This has stimulated the search for
indices or models that, combining different risk factors known
to increase persistence of symptoms in young wheezing children,
would allow identifying children more likely to have symptoms
during the school years.

The purpose of this review is to compare and contrast
different prediction tools developed during the last two decades.
As stated, earlier, the role of these tools is not to facilitate
attributing labels (“asthma”) that have little meaning in the face
of the complexity and heterogeneity of wheezing conditions
in this age group. At this moment, indices and models are
also not useful for identifying children who will or will not
respond to asthma therapy during the school years. Much
more appropriate for this latter purpose are clinical trials
such as the INFANT study (3) in which phenotypes and
biomarkers are directly tested for their capacity to predict
which children will respond to a certain therapy as compared
to other therapies or placebo. The lain purpose of these
indices and models is, as stated to predict outcomes and
therefore, to allow clinicians to have meaningful discussions
about prognosis with parents and caregivers, and to open the
way to prevention studies that will be targeted to children
at the highest risk of developing persistent symptoms later
in life.

Clinical prediction rules (CPR) are decision-making clinical
tools that use variables of medical history, physical examination,
and simple laboratory tests to provide the probability of an
outcome, prognosis, or likely response to treatment in an
individual patient (8). At this point, it is very important
to remark that the clinical usefulness of a diagnostic test is
determined by the extent to which it helps to modify the
pretest probability of occurrence of a certain diagnosis. For
this purpose, the calculation and application of likelihood
ratios (LR) is a very useful tool, reflecting the magnitude
by which the pretest probability increases or decreases and
thereby helping the physician rule out, confirm, or continue
investigating a diagnosis with new tests (9). Therefore, LR, not
the sensitivity or positive predicted value, is the best parameter
reflecting the diagnostic accuracy of any diagnosis or prognosis
model (10, 11).

It is important to remember that four consecutive steps are
needed for prognostic or diagnostic prediction rules to become
universal accepted for massive use. These steps are: development,
validation, impact, and implementation (12).

PREDICTIVE MODELS FOR PROGNOSTIC
OR DIAGNOSTIC TOOLS

Step 1: Development
At this moment, at least seven predictive models or scores for
asthma have been developed. The first model was the Asthma
Predictive Index (API) or original API (13), followed by the
PIAMA (14), Isle of Wight (15), modified API (mAPI) (16),
University of Connecticut (ucAPI) (17), Asthma Prediction
Tool (APT) from Leicester (18), and Asthma Detection and
Monitoring (ademAPI) (19). The characteristics and predictors
used in these models were shown in Table 1.

In clinical prediction rules, each score level represents a
different LR. Calculation is based on a proportion, in which we
consider in the numerator, the proportion of patients with the
condition with the given score level, and in the denominator, the
proportion of patients without the condition with the given score
level (9). For the purpose of simplifying, scores are sometimes
dichotomized into positive and negative, i.e., scores are collapsed
into two categories yielding LR considered as positive or negative,
when given group of predictors are present or absent.

Regarding prediction of asthma, the positive LR is the
probability of a child with active asthma to have been classified
as being at risk divided by the probability of a child without
active asthma to have been classified as being at risk. The negative
LR is the probability of a child with active asthma to have been
classified as not being at risk divided by the probability of a child
without active asthma to have been classified as not being at risk.
Traditionally the negative LRs < 0.1 and positive LRs > 10 are
considered to be conclusive, whilst LRs in the range of 0.2–5 are
of limited usefulness. However, beside the number, it is more
important how big the change between the pre-test probabilities
and the post-test probability is (9).

The LRs of these different prediction models for assessing the
development of asthma at school age were: original stringent API
(13) (+LR = 7.43 and –LR = 0.75, for asthma at age 6 years);
Isle of Wight (14) (+LR = 3.41 and –LR = 0.56, for asthma at
age 10 years); PIAMA (15) (score ≥ 20, +LR = 2.5 and –LR =

0.53, for asthma at age 7–8 years); mAPI (16) (+LR = 21 and
–LR = 0.84, for asthma at age 6 years); ucAPI (17) (+LR = 7.5
and –LR = 0.6, for asthma at age 7 years); APT (18) (+LR = 2.5
and –LR = 0.4, for asthma at 6–8 years); and the adem-API (19)
(+LR= 8.8 and –LR= 0.13, for asthma at age 6 years) (Table 2).
For example, to determine the risk of asthma in preschoolers
from countries with high (e.g., Brazil), medium (e.g., Chile), and
low (e.g., China) asthma prevalence, using the positive original
stringent API, the probability for developing asthma increases by
2, 4, and 7 times (the pretest probability of asthma moves from
40 to 80%, from 14 to 62%, and from 3 to 21%, respectively)
(20) (Figure 1). However, since their negative LR is not good, it
cannot be used to rule out the probability for the development
of asthma.

Several important issues need to be addressed to determine the
internal validity of the optimal prediction model. Among these
sevenmodels, only the original API (13) is relatively generalizable
since it was developed in an unselected ethnically diverse birth
cohort. The Isle of Wight (14) and PIAMA (15) included patients
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TABLE 1 | Characteristics of currently available asthma predictive models.

Original API (13) Isle of Wight (14) PIAMA (15) mAPI (16) ucAPI (17) APT (18) ademAPI (19)

Year publication 2000 2003 2009 2013 2014 2014 2015

Country US UK Netherlands US US UK Netherlands

#children survey 1,246 1,034 2,171 289 589 1,998 202

Source population General High-risk High-risk High-risk High-risk High-risk General

Age (y) asthma prediction 6, 8, 11, 13 10 7–8 6, 8, 11 7 6–8 6

Methods of building Clinical index Cumulate risk score Logistic regression Clinical index Clinical index LASSO regression Logistic regression

#predictors used 5 4 8 5 5 10 8

PREDICTORS

Age ✓

Gender ✓ ✓

Wheezing frequency* ✓ ✓ ✓ ✓ ✓ ✓

Parental history of asthma

or allergy

✓ ✓ ✓ ✓ ✓ ✓

Eczema ✓ ✓ ✓ ✓ ✓ ✓

Rhinitis ✓ ✓ ✓ ✓

Wheezing without colds ✓ ✓ ✓ ✓ ✓ ✓

Blood eosinophilia ✓ ✓

Skin prick test ✓ ✓ ✓

Specific IgE ✓

Chest infections ✓ ✓

Parental medication

inhalation

✓

Parental education ✓

Post-term delivery ✓

Activity disturbance ✓

Shortness of breath ✓

Exercise-related

wheeze/cough

✓

Aeroallergen-related

wheeze/cough

✓

EBC biomarkers ✓

VOCs ✓

Gene expression ✓

*As enter criteria for stringent API, mAPI, ucAPI, and adem API. API, asthma predictive index; APT, asthma predictive tool; PIAMA, Prevention and Incidence of Asthma and Mite Allergy;

mAPI, modified API; ucAPI, University of Cincinnati-API; ademAPI, Asthma Detection and Monitoring-API; EBC, exhaled breath condensate; Ig, immunoglobulin; VOCs, exhaled volatile

organic compounds.

with respiratory tract/recurrent chest infections among their
many criteria which could misrepresent the reporting of episodes
of recurrent wheezing. The PIAMA (15) is more laborious
to determine because the many criteria used have different
weights, in addition, its generalizability may be reduced since
it includes health beliefs and socioeconomic information that
may vary between ethnicities and countries. The ucAPI (17) even
though it was the first one that used an objectively confirmed
asthma (change in FEV1 of ≥ 12% post bronchodilator or a
methacholine challenge test PC20 ≤ 4 mg/ml), it was developed
in a high-risk cohort. Similarly, the mAPI initially proposed
by expert opinion was recently also developed in a high-risk
of atopy birth cohort (16). Moreover, it is well-known that
peripheral blood eosinophilia is a better predictor of remission of
asthma, than specific IgE or skin prick test (21, 22). Therefore,
predictive indices that use peripheral blood eosinophilia (a

cheaper and worldwide common test) instead of specific or
total IgE or skin prick test, will be more useful for predicting
asthma. In addition, in the literature (23) recently started the
debate about the cutoff for specific IgE (> 0.35 kUa/L) or
positive skin test (≥3mm) generally considered as indices of
sensitization, being arbitrary and having not been defined by
a scientific study; moreover, they depend on age and sex (23).
Therefore, the incorporation of specific IgE or positive skin test
in any predictive model without taking these consideration are
questionable. The APT (18) tool was developed in high risk
population (children came from health care visits because of
respiratory problems) and incorporated age, gender, and eight
clinical wheezing/atopy characteristics.

The latest model developed was the ademAPI (19). It included
a prospective case-control study, adding to original API (but
replacing eosinophilia by specific IgE) the following parameters:
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TABLE 2 | Performance measures among current available asthma predictive models.

Asthma predictive model Sensitivity Specificity Positive Negative Positive Negative

PV PV LR LR

(13) Original API (stringent index)

At 6 years 28 96 48 92 7.43 0.75

At 8 years 16 97 44 88 4.9 0.86

At 11 years 15 96 42 86 3.9 0.88

At 13 years 16 97 52 84 4.9 0.9

(14) Isle of Wight (score strata ≥3)

At 10 years 53 85 68 74 3.41 0.56

(15) PIAMA (cutoff ≥ 20)

At 7–8 years 60 76 23 94 2.5 0.53

(16) mAPI (from year 3)

At 6 years 17 99 72 9 21 0.84

At 8 years 19 100 87 9 55 0.83

At 11 years 19 99 70 9 19 0.82

(17) ucAPI At 7 years 44 94 60 89 7.5 0.6

(18) APT At 6–8 years 72 71 49 86 2.5 0.4

(19) ademAPI* At 6 years 88 90 90 89 8.8 0.13

*Final model: API plus 9/17 volatile organic components and 3/31 gene expression markers. API, asthma predictive index; APT, asthma predictive tool; PV, predictive value; LR, likehood

ratio; Positive LR, sensitivity/1-specificity; Negative LR, 1-sensitivity/specificity.

FIGURE 1 | Application of the original positive Asthma predictive index (API) in hypothetical different scenarios with a low, moderate, or high-risk population of having

asthma at school age.

17 exhaled volatile organic compounds (collected and detected
by gas chromatography–time of flight–mass spectrometry),
10 exhaled breath condensate biomarkers (cytokines and
chemokines analyzed with a multiplex immunoassay), 31
genes expression, and lung function measured by airway
resistance using MicroRint R©. This model is maybe the most

complete and sophisticated model, but although it reaches the
best positive and negative LRs (8.8 and 0.13, respectively),
the possibility to be used massively in any healthy setting
worldwide is very unlikely due to the high costly and
sophisticated predictors included. Moreover, the increase of
positive LR from 7.4 (original API) to 8.8 (ademAPI) might
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not justify all the sophisticate/expensive biomarkers used in the
later tool.

Step 2: Validation
After developing any prognosis model the next step is the
validation, i.e., “testing the accuracy of the prediction rule
in patients that were not included in the development
study. Temporal, geographical, and domain validations can be
distinguished. If necessary, the prediction rule can be updated,
by combining the information captured in the rule (development
study) and the data of the new patients (validation study)” (12).

At this moment, only the original API, PIAMA, and APT
models were validated in new populations. The original API was
validated in three different independent large cohorts and one
small high-risk cohort. In the general population of Leicester
Cohort from Switzerland (24) (n = 3,392), the performance of
API to predict asthma at 7 years was LR (+) 5.3 and LR (−) 0.7
for the stringent API, and LR (+) 2.9 and LR (−) 0.5 for the
loose API; at 10 years the figure was similar. In the high risk
wheezer population (n =1,573) of the PIAMA (15) cohort, the
API performance to predict asthma at 7.8 years was LR (+) 5.3
for the stringent API and LR (+) 2.8 for the loose API. And in
a nested case control study (n = 616) from a birth cohort in
Norway (25) the stringent API for asthma at 10 years. was LR
(+) 3.3 LR (−) 0.5. In a small study in Colombian recurrent
wheezer preschoolers (n = 130) from outpatient clinic the API
performance for predict asthma at 5–6 years was LR (+) 2.1
for stringent and 1.1 for the loose API (26). It is important to
note that a different combination of API criteria was used in two
validated studies (15, 24) that made the interpretation difficult.

In contrast, the PIAMA was validated in a high-risk
population (n= 2,877) the Dutch R-Generation (27) where their
performance for asthma at 6 years was AUC = 0.74; and in the
small Colombian study where their LR (+) was 2.6 for asthma at
5–6 years (26). Also, the PIAMA score used in the Dutch study
was not identical to the one use in the developed study. Finally,
the APT score was validated in only a small high-risk population
German study (28) (n = 140) where their performance for
predicted asthma at 8 years was LR (+) 2.6, LR (−) 0.3, and
AUC= 0.83.

Step 3: Impact
The next step is to determine the impact of the CPR, i.e.,
“determining whether a validated prediction rule is used by
physicians, changes therapeutic decisions, improves clinically
relevant process parameters, improves patient outcome or
reduces costs” (12). The ideal design for an impact study, is a
randomized controlled study, in which the “intervention” group
is randomized to use the CPR and the control group to use
standard or usual judgement. Only a limited number of CPR
worldwide have completed this step, probably because of the
big methodological challenge and high costs of such studies
for CPRs.

At this time, none of the prediction models has moved
forward to this stage. Therefore, there is little evidence to support
impact and implementation. Nevertheless, at this moment the
original stringent API has been the most common predicted

model tested worldwide in different non-randomized studies,
the other was the mAPI. For example, Wi et al. (29) performed
a cross-sectional study on 105 American children (5.8 ± 1.5
years. old) assessing performance of “retrospective” API against
Predetermined Asthma Criteria, showing that the agreement rate
and kappa between those were 89.5% and 0.66 (p < 0.01). This
could suggest that application of API to retrospective studies for
ascertaining asthma status is suitable. Similarly, a case-control
study (30) on 202 Chilean children aged 6–7 years showed
that those with current asthma had a positive API when they
already were preschoolers [OR = 84.3 (24–436)]. In a case-
control study (31) on 113 Brazilian children (aged 6–24 months)
comparing recurrent wheezing vs. controls, the positive stringent
API remained an important risk factor for recurrent wheezing
[aOR= 5.57 [2.23–7.96], p< 0.001]. A study (32) on 529 Turkish
school children with history of recurrent wheezing, reported that
those with negative API in the past, had significantly shortened
wheezing duration.

A recent cross-sectional study (33), nested in a US birth
cohort, was done to develop and validate a natural language
processing (NLP) algorithm to identify patients that meet the
original API criteria. Asthma status ascertained by manual chart
review based on API criteria served as gold standard. NLP-API
was developed on a training cohort (n = 87) and validated on
a test cohort (n = 427, median age of 5.3 years). The NLP-API
predicted asthma with sensitivity 86%, specificity 98%, positive
PV 88%, negative PV 98%. NLP-API was able to ascertain asthma
status in children mining from electronic health records and
has a potential to enhance asthma care and research through
population management and large-scale studies when identifying
children who meet API criteria.

Also, the original API was used to explore the effect of a smart
nebulizing device on the rate of adherence to ICS in Chinese
preschoolers with positive API (n = 65), showing a significant
improve in the rate of adherence, and reducing the frequency of
emergency visits and respiratory infections, as well as the usage
of antibiotics or systemic steroids (34). A recent study (35) in
Chinese Han preschoolers (n= 385) reported association of four-
gene model consisting of IL13 rs20541, IL4 rs2243250, ADRB2
rs1042713, and FCER1B rs569108 with the original API [OR =

4.08, p < 0.0001; and OR = 2.36, p < 0.0001, for stringent and
loose API, respectively].

Also, the original stringent API was compared and correlated
with surrogated markers of airway inflammation using two
non-invasive tests, i.e., fractional exhaled nitric oxide (FeNO)
and exhaled breath condensate (EBC) pH. In a study on 391
Switzerland preschoolers (age 3–47 mo), FeNO was significantly
higher in those with positive stringent API than positive loose
API or recurrent cough without history of wheeze controls (36).
Also, in a study on 32 Spanish infants (median age of 12 mo)
with recurrent wheezing, those with positive API had significant
higher FeNO levels than those with negative API (37). Similarly,
a study on 52 Argentinian preschoolers (aged 5–36 mo) showed a
significantly higher levels of FeNO in the positive API group than
in those with negative API (38). Finally, a study on 191 German
preschoolers (median age 4.4 years) reported that reduced EBC
pH value combined with API improved the chance to identify
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asymptomatic children at high risk of asthma (AUC = 0.88 for
positive API vs. AUC= 0.94 for positive API plus pH) (39).

Other inflammatory biomarkers e.g., periostin, CC16 and YK-
40, were also tested in population with positive and negative
original API. A study done in 48 Chilean preschoolers (aged 24–
71 mo) reported no significant differences in serum periostin
levels for those with positive API and negative API; and
no significant correlation between serum periostin levels and
peripheral blood eosinophils (40). Also, no difference in level
of serum CC16 levels for preschoolers with a positive API
and negative API were found in the same population (41). A
correlation between serum CC16 levels and age was found [r
= 0.36 [0.07–0.59], p = 0.01], but not between serum CC16
levels and peripheral blood eosinophils. Similarly, a recent study
done in 98 Turkish preschoolers showed that periostin and
angiopoietin serum levels were similar between positive and
negative mAPI (42). Finally, a longitudinal Sweden study of 156
preschoolers with recurrent wheeze and 101 healthy controls,
showed that YKL-40 levels were elevated during acute wheeze
exacerbation in positive and negative API (maybe related with
current neutrophilic inflammation) compared to controls, but
not at 3 and 12month follow-up after the acute exacerbation (43).

The API was also compared and correlated with airway
inflammation in bronchial biopsies. A study on endobronchial
biopsies obtained from 30 Czech preschoolers (median age
13.5 mo) who underwent flexible bronchoscopy for various
clinical reasons found significant difference in the thickness of
the basement membrane, subepithelial deposition of laminin,
and collagen IV in the basement membrane between children
predisposed to asthma-by positive API- and control group (44).

Since there were some criticism about the value of the
original API, some studies were performed changing or adding
new biomarkers in order to improve the API performance
for predicting asthma at 6 years of age. For example, on 191
Germany preschoolers (median age 4.4 years), when adding an
exhaled breath condensate pH to the original stringent API, the
positive LR was lower compared to the original stringent API (LR
(+) 5.88 vs. 7.43, respectively) (39). Similarly, replacing FeNO
instead of blood eosinophil determination from the original
API in 391 Swiss preschoolers (aged 3–47 mo) results in lower
positive LR (1.99) for predicting asthma at age of 4 years
than original stringent API (45). In other study, interleukin-
1-receptor-like 1 or sST2 (a well-replicated asthma-gene and
associates with eosinophilia) was compared to the API in 202
Dutch wheezing children and 50 healthy controls reporting
that serum sST2 levels at 2–3 years could not distinguish
which of the preschoolers developed asthma at school age;
consequently, serum sST2 did not significantly add to the
prediction of asthma diagnosis than the used of API (API alone
vs. API+sST2: AUC = 0.60, p = 0.02 vs. AUC=0.57, p = 0.12,
respectively) (46).

Step 4: Implementation
Finally, the last step is the implementation, i.e., “actual
dissemination of the diagnostic or prognostic prediction rule in
daily practice to guide physicians with their patient management”
(12). Although, like formerly exposed, none of the CPR has

completed the impact step, the original API and mAPI are the
only asthma prediction models that have been implemented
worldwide over the years (Table 3).

For example, the API has been used to explore the airway
lung function in young asthmatic children. Using the tidal rapid
thoraco-abdominal compression and raised volume technique,
50 Portuguese recurrent wheezing children aged 8–20 mo
were compared to 30 controls, showing a significant lower
z scores for FVC and FEF25−75 in those with positive than
those with negative API (47). Later, a study of thoraco-
abdominal compression technique on 91 recurrent wheezing
Spanish preschoolers (aged up to 24 mo) showed that those
with positive API had a lower Vmax FRC Z-score than negative
API (48). A case-control study (49) on 108 Chilean recurrent
wheezing preschoolers (aged 24–72 mo) showed no differences
in basal lung function and post-bronchodilator response to
salbutamol (by IOS or spirometry) between positive and negative
API preschoolers. However, positive API preschoolers with ICS
had significantly higher central basal airway resistance (RA at
20Hz) and higher post-BD response (% change in FEF25−75

and FEV0.5) than those positive API without ICS; suggesting
that preschoolers with positive API and ICS use may have some
airway dysfunction (49). Recently, a Finish longitudinal study
(50) about lung function assessed with IOSmeasured at preschool
age (n = 255) and at adolescence, showed that abnormal
baseline values (poor R5) during preschool were significantly
associated with: low lung function, need for asthma medication,
and asthma symptoms during adolescence. And a positive
API at preschool age was associated with asthma symptoms
(OR: 13.7 [1.4–147.1]) and need for asthma medication (OR:
14.6 [1.4–147.1]), but not with abnormal lung function at
adolescence (50).

The mAPI has been also used to explore airway lung function.
A study to assess whether the IOS has a diagnostic value to predict
the mAPI in 115 Turkish preschoolers (median age 39 mo) with
recurrent wheezing showed a significant improvement in the rate
R5-R20% in children with positive mAPI compared to negative
mAPI. The R5–R20% levels >14.4 had a sensitivity of 75% and
specificity of 53% for predicting a positive mAPI [AUC: 0.656,
p = 0.003] (57). In 34 Finnish children (aged 3–7 years) with
recurrent wheezing measured by impedance pneumography at
home during sleep, those with positive mAPI had significantly
lower min curve shape correlation and minimum noise limit
than negative mAPI, indicating a stronger change in flow profile

TABLE 3 | Steps for develop a prognostic or diagnostic prediction model (12).

Development Validation Impact Implementation

Original API ✓ (13) ✓ (15, 24–26) ✓ (47–56)

Isle of Wight ✓ (14)

PIAMA ✓ (15) ✓ (26, 27)

mAPI ✓ (16) ✓ (3, 55–62)

ucAPI ✓ (17)

APT ✓ (18) ✓ (28)

ademAPI ✓ (19)
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shape and momentarily lowered chaoticity (58). Recently, the
same group reported that children with positive mAPI presented
reduced sympathvoagal balance, suggesting that high-risk of
developing asthma might be related with a lack of adaptability
of parasympathetic nervous system (59).

The original API has been also used in studies aimed to
correlate with some nutrients. A Turkish study of 186 infants
with recurrent wheezing compared with 118 healthy control
peers, showed that those recurrent wheezing with negative API
had significantly lower levels of vitamin D than those with
positive API, and both had lower levels than controls (51).
Similarly, a case-control study in n = 148 Turkish children
(mean age 20.7 mo) showed lower serum levels of vitamin
D and zinc, and higher Cu and Cu/Zn ratio in recurrent
wheezing with positive API compared to those with negative
API (52).

Finally, only the original API and mAPI has been
used as recruitment tools in randomized control trials
(RCTs). The API was used in two RCTs comparing ICS
vs. placebo (53) and ICS vs. montelukast (54); and mAPI
in four RCTs comparing ICS vs. placebo (60) and ICS vs.
montelukast (3, 61, 62). Also, the original stringent API
was endorsed by two asthma guidelines (55, 56), and the
mAPI by one (55). A positive original API and mAPI
preschool wheezer was proposed as one endotype, e.g., a
Th2 mechanism and good responder to daily ICS, under
the asthma syndrome umbrella (63). Two recent systematic
reviews identified other prediction models for asthma but
with considerable limitations (64, 65). A critical appraisal
of asthma predictive models using the CHARMS checklist,
revealed that original API, ATP, and PIAMA have low-
moderate risk of bias (65). Finally, “several major strengths
of the original API are in the design, with a simple set of
equally weighted criteria with a binary scoring system: the

criteria are either met or not met, allows easy implementation
(only requires clinical parameters plus a peripheral blood
sample for eosinophils count) and interpretation of the
API” (66) in all type of rural and urban health services
setting worldwide.

CONCLUSION

Among all the prediction models for asthma prognosis, the
original API is in most use because it derives from unselected
multiethnic population, is simple to recollect, cheaper, little
invasive (e.g., peripheral blood count) and has been validated
in external populations. It is a very promising predictive tool
and the positive original stringent API should be able to be
used by clinicians worldwide in any health setting, to identify at-
risk children and educate parents on the importance of asthma
maintenance therapy and treatment of flares. Its major strength
is its positive LR∼7.4 that allows an important effect on post-test
probability of disease, improving significantly by 2–7 times the
probability (Figure 1). But since its negative LR is not very low
enough, it cannot be used to rule out the development of asthma.
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