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13C nuclear magnetic resonance (NMR) spectroscopy is the method of choice for studying
brain metabolism. Indeed, the most convincing data obtained to decipher metabolic
exchanges between neurons and astrocytes have been obtained using this technique,
thus illustrating its power. It may be difficult for non-specialists, however, to grasp the full
implication of data presented in articles written by spectroscopists. The aim of the review
is, therefore, to provide a fundamental understanding of this topic to facilitate the non-
specialists in their reading of this literature. In the first part of this review, we present
the metabolic fate of 13C-labeled substrates in the brain in a detailed way, including an
overview of some general neurochemical principles. We also address and compare the
various spectroscopic strategies that can be used to study brain metabolism. Then, we
provide an overview of the 13C NMR experiments performed to analyze both intracellular
and intercellular metabolic fluxes. More particularly, the role of lactate as a potential energy
substrate for neurons is discussed in the light of 13C NMR data. Finally, new perspectives
and applications offered by 13C hyperpolarization are described.
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INTRODUCTION
The brain is metabolically the most energy-consuming organ.
Adequate brain physiology depends on the unceasing supply of
proper amounts of oxygen and plasma glucose (Glc). Conse-
quently, limitations in the delivery of these two cerebral substrates
cause most physiopathological states (Nicholls, 2007; Okada and
Lipton, 2007).

Classical approaches to study cerebral metabolism, both in
physiological and in physiopathological conditions, required the
use of optical methods or radioactive isotopes and the isolation
and purification of the enzymes or transport systems involved

Abbreviations: AcCoA, acetyl-CoA; αKG, α-ketoglutarate; ANLS, astrocyte–neuron
lactate shuttle; Asp, aspartate; ATP, adenosine triphosphate; B0, external magnetic
field; BBB, blood–brain barrier; Cho, choline; CMRglc, cerebral metabolic rates
for glucose; CNS, central nervous system; CP, cross-polarization; Cr, creatine;
CSI, chemical shift imaging; DNP, dynamic nuclear polarization; FDG, 2-(18F)-
deoxyglucose-6-phosphate; fMRI, functional magnetic resonance imaging; GABA,
γ-aminobutyric acid, Glc, glucose; Gln, glutamine; Glu, glutamate; GLUT, glucose
transporter; GS, glutamine synthetase; Ins, myo-inositol; KIC, 2-ketoisocaproate;
Lac, lactate; LDH, lactate dehydrogenase; Mal, malate; MCT, monocarboxylate
transporter; MRI, magnetic resonance imaging; NAA, N-acetyl-aspartic acid; NMR,
nuclear magnetic resonance; nOe, nuclear Overhauser effect; OAA, oxaloacetate;
OAAn, neuronal OAA; PC, pyruvate carboxylase; PCr, phosphocreatine; PDE,
phosphodiesters; PDH, pyruvate dehydrogenase; PET, positron emission tomogra-
phy; PGK, phosphoglycerate kinase; PHIP, parahydrogen-induced polarization; Pi,
inorganic phosphate; PME, phosphomonoesters; POCE, proton-observed carbon-
edited; PPT, pulsed polarization transfer; Pyr, pyruvate; RF, radiofrequency; SNR,
signal-to-noise ratio; Suc, succinate; TCA, tricarboxylic acid; VNT, glutamater-
gic neurotransmission flux; VTCA, TCA cycle flux; VX, rate of exchange between
α-ketoglutarate and glutamate.

to study the corresponding in vitro kinetics (Bachelard, 1989;
Clark and Lai, 1989; Sokoloff, 1989). This reductionist approach
provided essential information on the operation of the central ner-
vous system (CNS), despite the limitations brought by the small
amounts of the involved proteins present in cerebral tissues and
by the fact that its utilization was circumscribed to postmortem
biopsies or cerebral extracts.

The remarkable advance during the past decades of powerful
tools for investigating the human brain has had a tremen-
dous impact on our ability to investigate and understand brain
function. Autoradiography and positron emission tomography
(PET) methods have been developed based on the measure-
ment of regional Glc consumption, after the administration of
2-deoxyglucose, either labeled with 14C or with 18F, respec-
tively (Sokoloff, 1981; Wienhard, 2002; Herholz and Heiss, 2004).
These methodologies can be used to determine the regional accu-
mulation of 2-(14C or 18F)-deoxyglucose-6-phosphate, virtually
unmetabolizable analogs of glucose-6-phosphate, using autora-
diography or PET. Autoradiography provides ex vivo images
of the regional accumulation of radioactive 2-deoxyglucose-6-
phosphate (or other radioactive substrates such as acetate and
butyrate, among others), as reflected in photographic plates
obtained from sections of fixed brain tissue. PET produces in
vivo, possibly dynamic, images of the regional uptake of 2-(18F)-
deoxyglucose (FDG, or other positron emitters) in different brain
sections, as resolved tomographically by a coronal arrangement
of positron selective gamma cameras. Both approaches allow
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the determination of cerebral metabolic rates for Glc transport
and phosphorylation (CMRglc) in different cerebral regions after
appropriate modeling of the underlying tracer kinetics (Price,
2003). However, these radioactive approaches are limited in
resolution and chemical specificity, making it not possible to
investigate the downstream metabolism of Glc after the first
glycolytic enzymatic step. Similarly, functional magnetic reso-
nance imaging (fMRI) indirectly allowed the investigation of
the hemodynamic and blood oxygenation changes associated
with sensory or motor stimulation (Heeger and Ress, 2002).
Despite their importance, FDG uptake or fMRI provided no
information on the pathways and metabolic interactions under-
lying the cerebral activation process. This implies that further
advances in this area would involve necessarily the use of addi-
tional methodologies. From this perspective, genome cloning and
sequencing techniques, as well as the important development of
novel nuclear magnetic resonance (NMR) approaches have over-
come many of the limitations of the traditional strategies, as
explained below. In particular, sequencing of the human and
mouse genomes has provided a broad understanding of the dif-
ferent isoforms of enzymes and transporters present in the brain,
without the need to isolate and purify the corresponding proteins
(International Human Genome Sequencing Consortium, 2001;
Mouse Genome Sequencing Consortium, 2002). These genomic
methods, however, do not allow the investigation of the func-
tion and in vivo performance of the genes sequenced or cloned.
It is in this respect that NMR technologies have become more
helpful, providing the quantitative assessment of transport steps,
metabolic fluxes and cellular compartmentalization of glycoly-
sis, pyruvate (Pyr) oxidation, and tricarboxylic acid (TCA) cycle,
among other pathways, in a plethora of neural systems ranging
from primary cell cultures to the intact rodent or human brain
(Gruetter et al., 2003; Shulman et al., 2004; Rodrigues and Cerdán,
2005).

Pioneering NMR approaches to cerebral energetics begun with
the application of 31P NMR (Moore et al., 1999). These 31P
NMR spectra from rodent, cat, dog, or human brain – depicted
resonances from adenosine triphosphate (ATP), phosphocrea-
tine (PCr), inorganic phosphate (Pi), phosphomonoesters (PME,
mainly phosphorylethanolamine), and phosphodiesters (PDE,
glycerophosphorylcholine; Hilberman et al., 1984; Komatsumoto
et al., 1987; Nioka et al., 1991). With this technique it was possible
to follow non-invasively the rates of PCr breakdown and recovery
after hypoxic and ischemic episodes.

Nowadays, the most extended NMR approach to explore brain
in the clinic is 1H NMR spectroscopy (Burtscher and Holtas,
2001). 1H NMR spectra from human or rodent brain show res-
onances from the methyl group of N-acetyl-aspartic acid (NAA),
the methyl groups of creatine (Cr) and PCr, the trimethylam-
monium groups of choline (Cho) containing compounds and
the myo-inositol (Ins), glutamate (Glu), glutamine (Gln), and
γ-aminobutyric acid (GABA) resonances, among others. Ins and
NAA are thought to represent the glial and neuronal contri-
butions to the observed voxel, respectively. Remarkably, lactate
(Lac) becomes evidently observable under hypoxic or ischemic
conditions, providing a proof of augmented net glycolytic flux
under these conditions. However, 1H NMR spectroscopy has the

limitation of poor signal dispersion, compared to other com-
monly used spin nuclei, with the consequent severe overlap
problems.

13C NMR approaches constitute probably the most elaborated,
chemically specific, tool to follow the metabolic fate of 13C-
labeled substrates in the brain, both in vivo and in vitro (de Graaf
et al., 2003b; Gruetter et al., 2003; Garcia-Espinosa et al., 2004;
Rodrigues et al., 2009). Since the first 13C NMR spectroscopy study
of a living organism, describing the metabolism of [1-13C]Glc by
an eukaryotic cell system (Eakin et al., 1972), this approach devel-
oped into a powerful method for metabolic research with cells, per-
fused organs, in vivo animals and humans (Morris and Bachelard,
2003). It enabled measuring metabolic processes as they occur
in their intracellular environment. Furthermore, it continues to
provide unique information, not accessible from previously used
approaches.

13C NMR spectroscopy allows detecting resonances from 13C,
the only stable isotope of carbon having a magnetic moment.
The natural abundance (NA) for 13C is approximately 1.1%
of the total carbon and its magnetogyric ratio is approxi-
mately one-fourth of that of the proton. These two circum-
stances make 13C NMR spectroscopy a relatively insensitive
technique (Friebolin, 1991). The sensitivity can be improved
noticeably by using 13C-enriched substrates. The combination
of 13C NMR spectroscopy detection and substrates selectively
enriched in 13C in specific carbon positions has made it pos-
sible to follow in vitro and in vivo the activity of a large
variety of metabolic pathways. These include glycolysis and the
pentose phosphate pathway, glycogen synthesis and degrada-
tion, gluconeogenesis, the TCA cycle, ketogenesis, ureogenesis,
and the Glu–Gln/GABA cycle in brain, among others (Cerdan
and Seelig, 1990; Kunnecke, 1995; Morris and Bachelard, 2003;
Rodrigues et al., 2007). The 13C NMR approach also enables to
investigate the activities of the neuronal and glial TCA cycles
in vitro and in vivo, providing direct insight into cerebral metabolic
compartmentalization (Cerdan et al., 2009).

The design of 13C NMR experiments with selectively 13C-
enriched substrates is similar to the classical radiolabeling exper-
iments using 14C. An important difference is that 13C precursors
are administered in substrate amounts, while 14C substrates
are used in tracer amounts. Despite this, 13C NMR presents
important advantages over methodologies using 14C: (i) the
metabolism of the 13C-labeled substrate can be followed in real-
time, in situ and non-invasively (Szyperski, 1998; Morris and
Bachelard, 2003); (ii) even if tissue extracts are prepared, the
detection of 13C in the different carbon resonances of a spe-
cific metabolite does not require separation and carbon by carbon
degradation, a prerequisite in the experiments with radioactive 14C
(Dobbins and Malloy, 2003); and (iii) when two or more 13C
atoms occupy contiguous positions in the same metabolite molecule
it will give rise to isotope effects, called homonuclear spin-
coupling, that lead to the appearance of multiplets (instead of
single resonances). The analysis by 13C NMR of these homonu-
clear spin-coupling patterns represents an enormous gain in the
information obtained as compared to the classical radioactive 14C
experiments (Dobbins and Malloy, 2003). As a counterpart to
these advantages, 13C NMR is significantly less sensitive than
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other conventional metabolic techniques like radioactive count-
ing, mass spectrometry, and fluorimetric or spectrophotometric
methods.

Investigation of metabolic pathways using 13C NMR spec-
troscopy is comprised of three main tasks: (i) the infusion of a
13C-labeled substrate; (ii) the detection of 13C-labeled metabo-
lites following substrate consumption; and (iii) the metabolic
modeling of measured 13C enrichments to quantitatively derive
metabolic fluxes. In general, these three tasks are closely inter-
connected. Each of them imposes constraints on the two others,
and all three must be designed depending on metabolic pathways
that are to be investigated. The choice of the substrate (such as
Glc, acetate, Pyr, among others) will allow more or less specific
feeding of a specific cell type (such as neurons and astrocytes).
This will, in-turn, impose the choice of modeling for these cells,
and may drive the NMR methodological choices to measure 13C
labeling for cell-specific metabolites (such as Glu, Gln, GABA,
among others). Alternatively, the ability of 13C spectroscopy meth-
ods to resolve certain peaks on NMR spectra may lead to the
refinement of metabolic models, while the inability to resolve
peaks may impose the choice of a labeled substrate whose con-
sumption does not lead to the formation of species with spectral
overlap.

Due to the connection between biological questions and
methodological issues, a good understanding of the practical
implementation of 13C experiments, with associated caveats and
pitfalls, is a prerequisite to any investigation and discussion of
metabolism based on 13C studies. In this review, we will initially
provide a simple picture of brain energy metabolism, with a level
of details commensurable with NMR accessible information, and
explain how 13C nuclei from different substrates flow through
metabolic pathways. Then, spectroscopic acquisition techniques
will be reviewed, with associated advantages, drawbacks, and
technical difficulties. The basis of metabolic modeling to derive
quantitative flux values will be then explained. Finally, we will
address two different models of neuroglial coupling : the astrocyte–
neuron lactate shuttle (ANLS) model (Pellerin and Magistretti,
1994; Pellerin et al., 2007) and the redox switch/redox coupling
hypothesis (Cerdan et al., 2006; Ramirez et al., 2007).

THE JOURNEY OF CARBON: METABOLIC FATES OF LABELED
SUBSTRATES
FUELS FOR THE BRAIN
The quasi-universal energy molecule of living systems is ATP,
which is predominantly synthesized during aerobic cellular res-
piration (Gjedde, 2007). A central mechanism of aerobic cellular
respiration is the TCA cycle, where fuel molecules undergo com-
plete oxidation, ultimately leading to ATP synthesis through
oxidative phosphorylation in mitochondrial cristae. When these
fuel molecules are labeled with 13C and continuously infused, their
degradation in the TCA cycle will lead to the progressive incor-
poration of 13C into metabolic intermediates and by-products
(Rodrigues and Cerdán, 2007). The journey of 13C nuclei is
summarized in Figure 1.

Under physiological conditions, the main cerebral substrate is
Glc. After crossing the blood–brain barrier (BBB), a Glc molecule
originates two Pyr molecules through glycolysis (Figure 1A). Pyr

FIGURE 1 |Transfer of individual 13C nuclei during the main steps of

oxidative metabolism. (A) Glycolysis; (B) acetyl-CoA synthesis through
pyruvate dehydrogenase (PDH) and TCA cycle; (C) pyruvate carboxylase
(PC). AcCoA, acetyl-CoA; αKG, α-ketoglutarate; Asp, aspartate; Glu,
glutamate; OAA, oxaloacetate; Suc, succinate.
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can be reduced to Lac by the lactate dehydrogenase (LDH, fast
exchange) with the following reversible reaction:

Pyruvate + NADH + H+ ↔ lactate + NAD+ (1)

Lactate dehydrogenase is a tetramer composed of different combi-
nations of two subunits, H (isolated from heart) and M (from
muscle): H4 (LDH1), H3M (LDH2), H2M2 (LDH3), HM3
(LDH4), and M4 (LDH5). LDH1 is mostly neuronal and its kinetic
properties promote the formation of Pyr (Bittar et al., 1996).
Conversely, LDH5 is primarily astrocytic and its kinetic charac-
teristics favor mainly Lac formation. Pyr is also transported into
mitochondria and decarboxylated to acetyl-CoA (AcCoA) via the
oxidative pathway (pyruvate dehydrogenase, PDH), as shown in
Figure 1B. AcCoA enters TCA cycle by irreversibly condensating
with oxaloacetate (OAA) to form citrate, which is subsequently
converted to α-ketoglutarate (αKG) via isocitrate. αKG is then
degraded into succinate (Suc) via succinyl-CoA, where scrambling
occurs between C1 and C4 positions, and between C2 and C3
positions, due to the symmetry of the Suc molecule. Suc is then
oxidized to fumarate, with flavin adenine dinucleotide (FADH2)
used as the hydrogen acceptor. The next step is the hydration of
fumarate to form malate, and the cycle becoming complete with
the oxidation of malate to OAA (Figure 1B). Pyr, or even Lac, can
be directly supplied to the brain as fuels for TCA cycle. An alter-
native fuel is acetate, which can be directly converted to AcCoA.
This was primarily suggested to happen in astrocytes (Waniewski
and Martin, 1998). It was proposed that the main reason acetate
is a relatively poor substrate for neurons was due to transporter
affinity. This study was based on poor uptake of acetate by synapto-
somal fractions compared to astrocytes, not measuring the uptake
of acetate by neurons in this work. Further studies revealed that
metabolism of acetate is tightly controlled at the enzyme level, via
changes in the acetylation status of AcCoA and is not regulated by
restriction of uptake (Rae et al., 2012).

In addition to PDH, Pyr may also enter the TCA cycle via the
anaplerotic pathway, after its carboxylation to OAA, through the
pyruvate carboxylase (PC), as depicted in Figure 1C. In contrast to
PDH metabolism, which preserves the source of carbon skeletons
in TCA cycle, OAA is synthesized de novo by PC. The total number
of carbon skeletons in the TCA cycle is therefore increased, con-
sequently requiring a net efflux before a turn has been completed.
This anaplerotic pathway is mainly glial, due to the specific astro-
cytic localization of PC (Shank et al., 1985; Sonnewald and Rae,
2010).

LABELING OF NMR-VISIBLE AMINO ACIDS
Nuclear magnetic resonance detection threshold is typically in the
millimolar (mM) range, which is above the typical concentra-
tion of most TCA cycle intermediates, including αKG and OAA.
However, these intermediates are in fast exchange with amino
acids, which exist in concentrations that are above the detec-
tion threshold, making 13C-labeling measurements possible. In
particular, αKG is in fast exchange with Glu through aspartate
aminotransferase, with identical labeling patterns for the keto acid
and the amino acid pools. In neurons, neuronal OAA (OAAn) is
in exchange with a pool of Asp, with identical labeling patterns as
well.

Exploring Figure 1, it is relatively easy to track 13C labeling
along metabolic pathways from labeled substrates to amino acids.
For example, following [1-13C]Glc or [1,6-13C2]Glc infusions,
generation of [3-13C]pyruvate is observed, which via PDH leads
to the labeling of αKG and Glu at the C4 position during the first
turn of the TCA cycle. During the second turn of the TCA cycle,
13C label is then transferred to Glu C2 and Glu C3. Note that com-
paring to [1,6-13C2]Glc, the use of [1-13C]Glc as precursor will
lead to a 50%-dilution in the 13C enrichment of Pyr at the end of
the glycolysis.

NEUROTRANSMISSION AND METABOLIC INTERACTIONS BETWEEN
NEURONS AND ASTROCYTES
The TCA cycle plays a central role in brain metabolism because
sugars, fatty acids, and amino acids are oxidized in this pathway.
This metabolic route provides numerous intermediates for cere-
bral biosynthetic pathways, including the neurotransmitters Glu
and GABA. In the case of brain cell compartmentalization, two
different TCA cycles may be considered as functioning in par-
allel: an astrocytic and a neuronal cycle. The existence of these
two cycles, with different kinetics, was firstly demonstrated in
the 1960s. When 14C-labeled Glu was administered to rats, brain
radioactivity was mainly found in the form of Gln (Berl et al.,
1961), showing that there is an exchange between Glu and Gln. In
addition, the specific activity recovered was higher for Gln than
for Glu. Therefore, a pool of Glu exists in the brain that is not
exchanged. The use of 15N-labeled ammonium confirmed the
existence of two pools of Glu (Berl et al., 1962), originating the
concept that there are two different Glu compartments: a “small”
compartment where the Glu–Gln conversion is fast, and a “large”
compartment in which the renewal of Glu is much slower. Subse-
quently, it was shown that glutamine synthetase (GS), an enzyme
responsible for the synthesis of Gln, was found mainly in astrocytes
(Norenberg and Martinez-Hernandez, 1979). On the other hand,
the enzyme responsible for its conversion to Glu, glutaminase, was
found mainly in the neurons (Patel et al., 1982). Thereafter, the two
compartments were assigned to the two cell types: neurons repre-
senting the “large” compartment and astrocytes the “small” one.
One of the main consequences of the metabolic compartmenta-
tion concept is that there is a Glu–Gln cycle between neurons and
astrocytes (cf. Figure 2B). In this intercellular metabolic exchange,
Gln is synthesized by astrocytes and then transferred to the neu-
ronal compartment, where it is converted to Glu. The Glu, a major
neuronal signaling molecule, is released by the neurons into the
synaptic cleft during neuronal activity, and then taken up by astro-
cytes, where it is transformed back into Gln (Badar-Goffer et al.,
1990; Cerdan et al., 1990; Shank et al., 1993; Lapidot and Gopher,
1994). This exchange has been widely studied (Schousboe and
Hertz, 1981; Waniewski and Martin, 1986; Erecinska and Silver,
1990), including in vivo using 13C NMR spectroscopy (for review,
see Rothman et al., 2011), and various Glu transporters have been
found on astrocytes (Erecinska and Silver, 1990; Flott and Seifert,
1991; Danbolt, 2001; Huang and Bergles, 2004).

The metabolic relationship between neurons and astrocytes
appears, however, to be much more complex than the existence
of a simple Glu–Gln cycle. Indeed, it is possible to show that the
uptake of Gln by neurons does not offset the continuous loss of Glu
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FIGURE 2 | Metabolic models consist in an ensemble of metabolic

pools, connected by metabolic fluxes respecting the steady-state

condition for metabolic pools. (A) Example of a simple metabolic model
used to illustrate how to write 13C-labeling equations; metabolic pools A
and B yield C at rates V 1 and V 2, respectively; (B) a “classical”
two-compartment metabolic model (see main text for model’s description).
αKG, α-ketoglutarate; Asp, aspartate; Glc, glucose; Gln, glutamine; Glu,
glutamate; Lac, lactate; OAA, oxaloacetate; Pyr, pyruvate; Suc, succinate.

(Hertz, 1979). Therefore, the neurons must use other metabolites
that are precursors of the synthesis of Glu, as the components of
the TCA cycle, and must therefore be equipped with an enzymatic
route to allow their net synthesis from Glc. As briefly addressed
above, this synthesis occurs mainly through the PC activity (Voet
and Voet, 1990). However, it turns out that this enzymatic activity
is present only in astrocytes (Yu et al., 1983; Shank et al., 1985),
imposing a necessary anaplerotic transfer of carbons from astro-
cytes to neurons to replenish the neuronal pools of oxidized TCA
intermediates.

In GABAergic neurons, Glu is converted to GABA by glutamate
decarboxylase, which is subsequently released in the synaptic cleft.
Most GABA molecules are recaptured by neurons, but a small
fraction is also recaptured by astrocytes and incorporated into the
glial TCA cycle.

Additional pathways exist that may impact the 13C labeling of
NMR-visible metabolites such as Pyr recycling, the transfer of Lac
from astrocytes to neurons and the alanine–lactate shuttle between

neurons and astrocytes (Waagepetersen et al., 2000; Zwingmann
and Leibfritz, 2003).

13C NMR SPECTROSCOPY ACQUISITION TECHNIQUES
The ability to detect 13C enrichment in brain amino acids is
governed by two parameters: sensitivity and spectral resolution.
High signal-to-noise ratio (SNR) means that metabolites can
potentially be quantified with lower concentrations or enrich-
ments, in smaller volumes, or in shorter periods. Good spectral
resolution means that more resonances (corresponding to more
metabolites or more specific positions) can be individually quan-
tified, resulting in a higher chemical specificity. SNR and spectral
resolution increase linearly with the magnetic field, although tech-
nical challenges become significant in vivo (shorter T2 relaxation
times, increased energy deposition in tissues, higher demand
on radiofrequency (RF) pulse bandwidth, and poor homogene-
ity of the RF field). Essentially, two main approaches can be
distinguished for 13C detection, each trading one of these param-
eters against the others: direct 13C detection and indirect 13C
detection.

DIRECT 13C DETECTION: CHEMICAL SPECIFICITY
13C NMR resonances of brain metabolites span a very broad chem-
ical shift range (∼250 ppm), in which conveys the ability to resolve
virtually all carbon positions in the detectable metabolites. In par-
ticular, direct 13C spectroscopy allows simultaneously resolving
Glu and Gln at C2, C3, and C4 positions, as well as Asp and GABA
at positions C2 and C3, even in vivo (Gruetter et al., 2003; Henry
et al., 2003a). The carboxylic carbons are, in all cases, more diffi-
cult to observe because of their long T1s and significant saturation
effects.

Beyond the information about positional enrichment, direct
13C spectroscopy allows quantifying isotopomers (i.e., individ-
ual molecules labeled at different atomic positions), since it is
sensitive to a constant value – called scalar J coupling – that is
different for each 13C neighborhood type. Indeed, the scalar J
coupling will result in the splitting of singlet resonances, corre-
sponding to a given enriched position, into multiplets for 13C
nuclei coupled with neighboring 13C. This additional information
about isotopomers allows one to resolve the activity of different
metabolic pathways, as discussed below.

One-bond heteronuclear coupling between 13C and 1H may
compromise spectral resolution and SNR, since it results in the
splitting of 13C resonances in doublets or multiplets (J ∼ 130 Hz),
with reduced peak heights. Therefore, it is generally desirable to
perform heteronuclear decoupling during 13C acquisition. This is
achieved by the application of a RF train at 1H frequency, resulting
in the effective suppression of the effects of 1H–13C coupling on
13C spectra. Besides technical difficulties associated with the neces-
sity to control two RF chains and to prevent noise injection from
the 1H transmission chain into the 13C acquisition chain, decou-
pling may become problematic for in vivo application at high field
due to the large power deposition in tissues (de Graaf, 2005). It
has, however, been shown that detection without decoupling could
be achieved in the human brain at 9.4 T with acceptable accuracy
(concentration uncertainty was 35–90% higher; Deelchand et al.,
2006).
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The main disadvantage of direct 13C spectroscopy is its low
sensitivity, derived from the low gyromagnetic ratio of 13C.
Three different strategies, namely nuclear Overhauser effect (nOe),
pulsed polarization transfer (PPT), and cross-polarization (CP;
Ernst et al., 1987) have been proposed to transfer polarization (or
magnetization) from neighboring 1H to 13C, both in liquids and
in vivo. This implies an increase in the 13C polarization, ulti-
mately resulting in higher SNR. Like heteronuclear decoupling,
these strategies require two transmission channels at 1H and 13C
frequencies.

Nuclear Overhauser effect relies on direct (through-space)
dipolar coupling between spins, and refers to the transfer of polar-
ization from 1H to 13C due to cross-relaxation. This is achieved
when RF irradiation is performed at the 1H frequency while lon-
gitudinal relaxation occurs, which drives the 13C thermodynamic
equilibrium polarization to a higher value. Assuming that 13C
relaxation is entirely due to dipolar interaction with 1H, nOe
increases 13C polarization up to a factor 1 + 0.5 ×γI /γS = 3, where
γI and γS are 1H and 13C gyromagnetic ratios. Excitation is thus
performed both in the 1H and 13C frequencies, while detection is
obtained only in the 13C channel.

Cross-polarization and PPT rely on indirect (through-bond)
scalar coupling between spins (J-coupling), the excitation being
initially performed for 1H. Then, under the combined effect of
J-coupling and RF perturbation, polarization is driven to an
observable 13C state with amplitude corresponding to γI instead of
γS, as would result from direct 13C excitation. Ideal CPT and PPT
therefore yield up to a γI /γS = 4-fold gain in SNR. For CPT, this is
optimally achieved after RF irradiation of 1H and 13C frequencies
during a 1/J delay, when the Hartmann–Hahn condition is met (γI

B1I = γS B1S; Hartmann and Hahn, 1962) and high B1 amplitudes
are used. On the other hand, PPT only requires short RF pertur-
bations (simultaneous 90◦ pulse at both frequencies at time 1/2J
after initial excitation). It is therefore particularly interesting for in
vivo applications due to the limited power deposition, while CPT
can yield slightly larger SNR gains. An important feature for the in
vivo application is that the localization can be fully achieved at the
1H frequency before transferring polarization, resulting in better
localization accuracy compared to the direct 13C localization, due
to the narrower 1H chemical shift range.

In practice, gains in SNR are significantly smaller than predicted
under ideal conditions and vary between different resonances,
complicating the quantification process. SNR gains up to 3.5 have
been reported in the human brain at 3 T, combining nOe and CPT
(Klomp et al., 2006).

INDIRECT 13C DETECTION: HIGH SENSITIVITY
As an alternative to detecting 13C signal directly, an efficient way
to increase these measurements sensitivity is to detect 1H bound
to 13C. SNR gains result mostly from the increased signal voltage,
which is proportional to the higher 1H thermal equilibrium mag-
netization – by a factor (γI /γS)2 – and to the higher precession
frequency – by a factor γI /γS – compared to 13C. At the same time,
state-of-the-art coils yield noise voltage increasing roughly linearly
with the frequency, i.e., as γI /γS. Therefore, a (γI /γS)2 ∼ 16-fold
increase in SNR can be expected when going from direct detection
(without polarization transfer) to indirect detection.

Indirect detection is usually based on a proton-observed
carbon-edited (POCE) strategy, requiring two transmission chan-
nels at 1H and 13C frequencies. The strategy is based on a standard
1H spectroscopy sequence with an additional 180◦ pulse at 13C
frequency, being ON or OFF every other scan (Rothman et al.,
1985). When the 13C pulse is ON, satellite resonances due to
coupling between 1H and 13C nuclei are of opposite sign when
compared with the OFF case, while resonances corresponding to
1H bound to 12C nuclei are unaffected. Therefore, subtracting odd
from even scans will result in the cancellation of signal from 1H
bound to 12C, while signal from 1H bound to 13C will build up.

Heteronuclear decoupling is generally performed by the appli-
cation of a RF train at 13C frequency during the 1H acquisition.
This is complicated by the large chemical shift range of 13C, which
imposes a requirement for ultra-broadband decoupling (resulting
in high-power deposition) if all resonances on the 1H spectra have
to be decoupled. Decoupling is performed to increase SNR but
also to improve spectral resolution, which is critical when observ-
ing 1H resonances. Indeed, the 1H chemical shift range only spans
∼3 ppm for the aliphatic portion which covers the metabolites’
resonances of interest. It is generally accepted that resolution of
Glu and Gln C4 becomes possible only for B0 > 3 T, while resolv-
ing Glu and Gln C3 remains problematic even at much higher field
(Pfeuffer et al., 1999). Indirect detection of GABA and Asp label-
ing remains problematic and has only been reported at B0 = 7 T
or above in the rodent brain (Pfeuffer et al., 1999; de Graaf et al.,
2003a; Yang et al., 2005; van Eijsden et al., 2010). Therefore, the loss
of chemical specificity associated with indirect detection is accept-
able mostly for in vivo applications where sensitivity is critical,
especially when performing a dynamic measurement: collecting
multiple spectra during 13C-labeled substrate infusion. Indirect
13C spectroscopy in vivo was extensively reviewed by de Graaf
et al. (2003b).

An alternative method has been recently proposed for in vivo
applications, which presents the unique characteristic of requiring
no 13C RF pulse-chain. The method is based on the subtrac-
tion of 1H spectra collected during the 13C infusion from a
baseline spectra acquired prior to infusion (Boumezbeur et al.,
2004). Using this approach, C4 and C3 positions could be resolved
for the total “Glu + Gln” pool at 3 T. Note that the technique
demands extremely stable acquisition (including shimming and
coil sensitivity) over the entire experiment.

NOTE ON SPECTRAL QUANTIFICATION
Analysis of 13C spectra has long been performed by simple peak
integration, which is possible due to the limited spectral over-
lap on direct 13C spectra. More recently, spectral quantification
based on prior knowledge has been introduced, using for exam-
ple the LCModel software (Provencher, 1993). In this approach,
individual spectra of labeled molecules (obtained by experimental
measurement or numerical simulation) are linearly combined to
fit experimental data. This allows accurate quantification despite
partial overlap, which becomes particularly interesting to dis-
criminate different isotopomers around a given resonance, being
possible to perform it even in vivo, where lines are broader (Henry
et al., 2003a). Although still uncommon in direct 13C spectroscopy,
prior knowledge spectral fitting is now routinely implemented
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in indirect 13C spectroscopy, due to unavoidable overlap on 1H
spectra.

Absolute quantification, i.e., the determination of metabolite
concentration and enrichment (in mM and %13C), as required for
dynamic metabolic modeling (see below), is generally easier using
indirect spectroscopy, due to the presence of internal references
of known concentration, such as unlabeled Cr or water. With
direct spectroscopy, absolute quantification can be complicated
by the different polarization transfer efficiency for the different
resonances, and for in vivo experiments by the absence of a suitable
internal 13C reference of known concentration.

METABOLIC MODELING
Examination of 13C enrichment can yield qualitative informa-
tion about metabolite compartmentalization and the existence
and relative importance of metabolic pathways. When seeking
quantitative information, one must turn to metabolic modeling,
whose basic principle is to mathematically express 13C labeling
of detected metabolites as a function of the metabolic fluxes
underlying the labeling process.

WRITING EQUATIONS: MASS CONSERVATION AND LABEL
INCORPORATION
As an exercise, we should consider two metabolite pools, A and
B, yielding a third pool, C, at rates V 1 and V 2 (in μmol/g/min),
respectively, and C being then consumed at rate V 3 (Figure 2A).
A usual assumption is that the size of pool C remains constant:

d[C]
dt

= V1 + V2 − V3 = 0 (2)

This imposes that the total influx in the pool is equal to the total
efflux from the pool, V 3 = V 1 + V 2. We should also assume that
13C nuclei, at position i in A and j in B, both enter the C pool at
position k. We use Ai*, Bj*, and Ck* to denote molecules labeled at
these positions. 13C mass conservation imposes that the increase
in the Ck* pool size is equal to the amount of 13C entering the
pool minus what exits the pool at each instant:

d[Ck
∗]

dt
= V1

[Ai
∗]

[A] + V2
Bj

∗

[B] − (V1 + V2)
[Ck

∗]
[C] (3)

A metabolic model typically consists in several equations of
the previous type, describing label transfer from infused sub-
strates to metabolic intermediates and, ultimately, to detected
metabolites. To favor an efficient solution, the number of dif-
ferential equations describing the model should be minimized.
Equations describing low-concentration intermediates can gen-
erally be omitted since their enrichment mimics that of the
immediately preceding high-concentration metabolite. Except at
steady-state, these systems of differential equations can gener-
ally not be solved analytically and require numerical computing
to determine what flux values yield the best fit to experimental
data.

TEMPORAL RESOLUTION: STEADY-STATE VERSUS DYNAMIC
MODELING
To illustrate the impact of temporal resolution on a model, we
can assume constant, but different, fractional enrichments for A

and B ([Ai*]/[A] = FEA, [Bj*]/[B] = FEB). A common procedure
in acquiring these data is to wait a period of time after the start
of the 13C infusion, ensuring that isotopic steady-state has been
reached for [Ck*]. In this case, Eq. 2 immediately yields, with
FEC = [Ck*](t = ∞)/[C]:

V1

V2
= FEC − FEB

FEA − FEC
(4)

The ratio V 1 to V 2 can therefore be determined from known values
of FEA, FEB, and FEC. In general, metabolic models at steady-state
only yield flux ratios, not absolute values.

In contrast, we can also explore how dynamic modeling (i.e.,
using data collected at different time points) carries richer infor-
mation. We solve Eq. 2 assuming fractional enrichment (also called
specific enrichment) for A and B going instantaneously from 13C
NA = 1.1% to FEA and FEB at t > 0:

[Ck
∗](t)

[C] = V1FEA + V2FEB

V1 + V2
+

(
NA − V1FEA + V2FEB

V1 + V2

)
e− V1+V2[C] t

(5)

It appears that the enrichment curve will again carry information
about the ratio V 1/V 2 from long-time enrichment, and indepen-
dently V 1 +V 2 from the exponential rise (provided [C] is known).
This means that the absolute values of V 1 and V 2 (in μmol/g/min)
can now be determined. The ability to assess absolute flux values
and, potentially, for a number of fluxes greater than the number
of equations is a unique feature of dynamic modeling. However,
absolute quantification of concentrations is required.

FEEDING DYNAMIC MODELS: SUBSTRATE ENTRY INTO THE BRAIN
Dynamic metabolic modeling is complicated by the need to
estimate the temporal evolution of substrate’s intracellular con-
centration and the enrichment as an entry function. Since, in
general, these parameters cannot be directly measured, they
are calculated from plasma concentrations and enrichments by
modeling transport through the BBB. Transport of Glc and mono-
carboxylic acids through the BBB is a bidirectional process and is
best modeled by reversible Michaelis–Menten transport equations
(Simpson et al., 2007). Kinetic parameters have been estimated
in the mammalian brain for Glc (Gruetter et al., 1998), acetate
(Deelchand et al., 2009), and Lac (Boumezbeur et al., 2010). Blood
sampling throughout the infusion is required to determine plas-
matic concentration and enrichment of the investigated substrate.
However, it has been shown for Glc that, provided the infusion
protocol yields “reasonably” stable plasmatic fractional enrich-
ment, blood sampling, as well as Michaelis–Menten kinetics,
can be omitted. Cerebral Pyr/Lac fractional enrichment can be
directly fitted as an additional unknown parameter (Valette et al.,
2009).

TOWARD DYNAMIC MODELING OF ISOTOPOMERS
For a given set of metabolic pathways, dynamic modeling of iso-
topomer time courses should, in theory, allow the derivation of
metabolic fluxes with the highest achievable reliability, due to the
higher information content (provided SNR is high enough). In
practice, this has been performed in a very limited number of
studies (e.g., Haberg et al., 1998; Serres et al., 2007), and never
in vivo. Isotopomer modeling is regularly performed in vitro and
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ex vivo at steady-state (see Wiechert, 2001 for a review). Conversely,
in vivo modeling in the brain has been almost exclusively per-
formed using dynamic positional enrichments (for review of this,
see de Graaf et al., 2003b; Gruetter et al., 2003; Henry et al., 2006;
Rothman et al., 2011). As far as we know, isotopomer modeling has
not been successfully achieved in the brain in vivo, although it can
theoretically yield flux values with unparalleled accuracy (Shestov
et al., 2012). This is probably due to the difficulty of measuring 13C
spectra fine structure in vivo, especially with a high-temporal reso-
lution to perform dynamic modeling. However, it has been shown
that using high-field NMR systems allowed the dynamic detec-
tion of 13C isotopomers in the rat brain during an infusion of
[1,6-13C2]Glc (Henry et al., 2003b) and double infusion of [1,2-
13C2]acetate and [1,6-13C2]Glc (Deelchand et al., 2009). Recent
modeling of these data suggests that current metabolic models
are incomplete to account for the dynamics of all isotopomer
time-curves (Jeffrey et al., 2013), appealing for new refined
models.

SINGLE- OR TWO-COMPARTMENT MODEL
A detailed description of models found in the literature is beyond
the scope of this review. We will only briefly present the main
metabolic pathways and assumptions in two popular models.
The first one is the single-compartment model, which allows the
measurement of TCA cycle flux (V TCA) following infusion of [1-
13C]Glc or [1,6-13C2]Glc. The Pyr/Lac pool is in exchange with the
blood pool at the rate V dil, leading to label dilution (Figure 2B).
Measuring Glu C4 and C3 is required to derive both the V TCA

and the rate of exchange (V X) between αKG and Glu. Some early
works proposed that V X was much higher than V TCA (Mason
et al., 1992), allowing V TCA estimation from Glu C4 only. There is
still some controversy about the value of V X, and modeling of Glu
C3 and C4 should be considered safer if no assumption is done on
V X (Henry et al., 2006). An Asp pool can be added to the model, in
exchange with OAA at the same rate V X, to ensure nitrogen mass
balance through the malate–aspartate shuttle. In this model, the
Glu–Gln cycle is usually modeled by a simple exchange between
both pools at a rate usually set to ∼0.5 × V TCA. Since most Glu
is neuronal, this model essentially reflects neuronal V TCA. Exten-
sive review of this model for in vivo applications was provided by
Henry et al. (2003a).

An increasingly popular model (including in vivo) is the so-
called two-compartment model, where neurons and astrocytes
are explicitly considered (Figure 2B). Infusion of various sub-
strates ([1-13C]Glc, [1,6-13C2]Glc, [2-13C]Glc, [1,2-13C2]acetate)
may be performed to calculate simultaneously neuronal TCA
cycle, glial PDH and PC fluxes, and the glutamatergic neurotrans-
mission flux V NT (Glu–Gln cycle). A net efflux of Gln in the
blood is generally considered to remove extra carbon skeletons
added by PC. Robustness of the model requires the measure-
ment of Glu and Gln at position C4 and C3, and measurement
of Asp C2 and C3 may help stabilize the model (Gruetter et al.,
2001). Isotopomer modeling may significantly improve model’s
reliability.

Some publications have sought to refine single-compartment
or two-compartment models by including conversion of Glu to
GABA and its reentry into TCA cycle, which is associated with

GABAergic neurotransmission (Lapidot and Gopher, 1994; Patel
et al., 2005; van Eijsden et al., 2010; Duarte and Gruetter, 2013).

ASSESSING A MODEL’S RELIABILITY
When performing modeling, the quality and amount of mea-
sured 13C enrichments should be high enough for the problem
to be well determined (i.e., estimated flux values should be
close to the real values), and standard deviation on fluxes, as
well as covariance between fluxes should be low. A method of
choice to explore model’s reliability is Monte Carlo simulations.
Enrichments are simulated for to-be-infused substrates and to-be-
measured metabolites, using the metabolic model and given flux
values. Noise is then added to yield SNR comparable to experimen-
tal SNR, and noised enrichments are fitted using the model. This
procedure is repeated hundreds of times to derive mean and stan-
dard deviation for the estimated fluxes. The degree of confidence
one can have in flux values can therefore be assessed for a given
metabolic model and given experimental conditions. It allowed
showing that estimation of V TCA and V X from the Glu C4 time-
course only is very uncertain (Henry et al., 2006), and that the
glutamatergic neurotransmission V NT may not be reliable when
only [1-13C]Glc or [1,6-13C2]Glc infusion is performed (Shestov
et al., 2007).

METABOLIC COOPERATION BETWEEN NEURONS AND
ASTROCYTES STUDIED BY NMR SPECTROSCOPY
ASTROCYTE–NEURON LACTATE SHUTTLE HYPOTHESIS: FOLLOWING
LACTATE PRODUCTION AND CONSUMPTION BY THE BRAIN
Since the astrocytes are located between blood vessels and neurons,
the question arises whether the astrocytes play the role of inter-
mediary in the flow of substrates from blood to neurons. Indeed,
Glc can reach neurons (i) directly, by diffusing from the capillaries
through the intercellular space using the Glc transporters present
in each of these cells (GLUT-1 and GLUT-3; Vannucci et al., 1997);
or (ii) through the astrocytes, since astrocytic end-feet continu-
ously cover blood vessel walls (Mathiisen et al., 2010). In this latter
option, Glc that enters the astrocytic end-feet can be metabolized
and the product can be subsequently transferred to the neurons
and used as a substrate. A growing body of evidence supports
this latter hypothesis and indicates that the astrocytic metabolic
supply for neurons could be Lac (Dringen et al., 1993; Pellerin
and Magistretti, 1994; Larrabee, 1995; Poitry-Yamate et al., 1995;
Waagepetersen et al., 1998). Indeed, it has been shown that the
presence of Lac in a Glc-free medium maintains synaptic activity
in brain slices (Schurr et al., 1988). In addition, Lac has a pro-
tective effect and allows better recovery of neurons after hypoxia
(Schurr et al., 1997). Although Lac has relatively low permeabil-
ity at the BBB, different isoforms of monocarboxylate transporters
have been localized on endothelial cells (MCT1; Leino et al., 1999),
astrocytes (MCT1), and neurons (MCT2; Bröer et al., 1997, 1999).
Moreover, the isoenzymes of LDH, LDH1 and LDH5, have been
found in different cellular locations (Bittar et al., 1996), supporting
the hypothesis of astrocytic Lac utilization by neurons.

The traditional metabolic coupling theory (ANLSH for the
astrocyte–neuron lactate shuttle hypothesis), firstly proposed by
Pellerin and Magistretti in the mid-1990s (Pellerin and Magistretti,
1994), describes that neurotransmitter Glu released to the synaptic
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FIGURE 3 |The traditional metabolic coupling hypothesis between

neurons and astrocytes during glutamatergic neurotransmission.

Glutamate released to the synaptic cleft during glutamatergic
neurotransmission is co-transported with Na+ to the astrocytes. Astrocytic
Na+ is exchanged by extracellular K+ through the Na+/K+ ATPase,
consuming one ATP molecule. Astrocytic glutamate produces glutamine
through glutamine synthetase, consuming one additional ATP molecule.
Lactate produced exclusively in astrocytic glycolysis to support these energy

demands, is extruded to the extracellular medium, taken up by the
surrounding neurons and oxidized as their main metabolic fuel. Note the
apparent stoichiometric coupling between glutamate–glutamine cycling and
glucose uptake as well as the exclusive glycolytic or oxidative metabolisms in
astrocytes and neurons, respectively. Gln, glutamine; Glu, glutamate; GLUT 1
and GLUT 3, glucose transporters 1 and 3; Lac, lactate; MCT1 and MCT2,
monocarboxylate transporters 1 and 2; PGK, phosphoglycerate kinase; Pyr,
pyruvate. Adapted with permission from Tsacopoulos and Magistretti (1996).

cleft, following an action potential, is recaptured predominantly
by the high-affinity Glu transporters of surrounding astrocytes in
the neuropil (Figure 3). Three Na+ atoms are co-transported with
each Glu molecule to the astrocytic cytosol and metabolized into
Gln by GS. The Na+ atoms are extruded from the cytosol through
the Na+/K+ ATPase, at the expense of one ATP molecule, and GS
consumes one additional ATP molecule. These two ATP molecules
were originally proposed to be compensated for by the degrada-
tion of one Glc molecule in the astrocyte through the glycolytic
pathway. Gln is then extruded to the extracellular space, being
recaptured by the neurons to regenerate Glu. Therefore, in this par-
ticular process, we assist in the consumption of one Glc molecule
from plasma, with the subsequent generation of two molecules
of astrocytic Lac. These Lac molecules are exported to the neu-
rons to become their main metabolic fuel. Thus, Gln production
appears to be stoichiometrically coupled to Glc uptake (1:1 stoi-
chiometry), glycolysis occurring mainly in the astrocytes while Pyr
oxidation remaining as a predominantly neuronal process. These
findings fit well with early 13C NMR results, which determined
the cerebral Gln cycle and the TCA cycle fluxes from a minimal
mathematical model. This model assumed that [4-13C]Glu and
[4-13C]Gln turnover curves reflected the neuronal TCA cycle and
the Gln cycle fluxes, respectively (Sibson et al., 1998). Later, Roth-
man et al. (2003) proposed Gln as the major precursor of cerebral
Glu and the Gln cycle was found to be stoichiometrically coupled
to Glc uptake, accounting for 60–80% of the energy derived from
Glc metabolism.

Importantly, a thorough examination of the earlier evidences
led several authors to challenge the traditional approach proposed
by the ANLSH (Chih et al., 2001; Dienel and Hertz, 2001; Chih and
Roberts, 2003; Dienel and Cruz, 2003). In response to these criti-
cisms, Pellerin and Magistretti (2003) presented a revised version
of their proposal. The main differences are that this newer pro-
posal does not exclude the activation of glycolysis and production
of Lac in active neurons. Additionally, it does not require a direct
coupling between astrocytic Lac release and neuronal Lac oxida-
tion, proposing that Lac from both active astrocytes and neurons
is released into the extracellular space. This Lac is eventually used
by neurons (at rest or during activity). The current version of the
ANLSH has been also critically reviewed (Hertz, 2004).

In the context of this review, it is important to remark that both
1H (Prichard, 1991; Prichard et al., 1991; Merboldt et al., 1992;
Sappey-Marinier et al., 1992) and 13C NMR spectroscopy studies
have been used to explore the ANLSH/metabolic coupling theory
by monitoring and comparing the fate of 13C-glucose and 13C-
lactate metabolism in neurons (Sonnewald et al., 1991; Schousboe
et al., 1997; Bouzier-Sore et al., 2003), astrocytes (Alves et al., 1995),
rat brain (Bouzier et al., 2000; Hassel and Brathe, 2000; Serres et al.,
2004; Sampol et al., 2013) and human brain (Boumezbeur et al.,
2010).

THE REDOX SWITCH/REDOX COUPLING HYPOTHESIS
Several other convincing evidences have accumulated since
the above explained interpretations of metabolic neuroglial
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FIGURE 4 |The subcellular compartmentation of pyruvate and glutamate

and the redox switch/redox coupling hypothesis. Two pools of pyruvate
exist in neurons and astrocytes derived from extracellular monocarboxylates
(Pp) or glucose (Pg). A lactate/pyruvate redox shuttle is able to transfer
continuously lactate from astrocytes to neurons, taking advantage of the
kinetics of plasma membrane transporters and lactate dehydrogenase
isoenzymes. High cytosolic lactate concentration inhibits neuronal glycolysis
at the glyceraldehyde-3-phosphate dehydrogenase step by competition with
cytosolic NAD+, favoring the oxidation of extracellular Lac. Neuronal pyruvate
is transferred back to the astrocyte to close the transcellular exchange of
reducing equivalents. Two α-ketoglutarate/glutamate pools exist in neurons
and astrocytes, associated probably to cytosolic and mitochondrial

compartments. Exchange of α-ketoglutarate/glutamate between mitochondria
and cytosol appears to be slow in the H3 glutamate hydrogen exchange
timescale and dependent of the cytosolic and mitochondrial
NAD(P)+/NAD(P)H ratios, as determined by the malate–aspartate shuttle.
Both glycolysis and oxidative astrocytic metabolism contribute the energy for
glutamine production in the astrocytes, indicating that this coupling involves
both transcellular and intracellular redox coupling mechanisms that allow the
simultaneous operation of glycolysis and oxidation in astrocytes. Asp,
aspartate; Glc, glucose; Gln, glutamine; Glu, glutamate; GLUT1 and GLUT3,
glutamate transporters 1 and 3; α-KG, α-ketoglutarate; Lac, lactate; LDH1 and
LDH5, lactate dehydrogenase 1 and 5; Mal, malate. Reproduced with
permission from Rodrigues et al. (2012).

coupling during glutamatergic neurotransmission, with relevant
consequences. These new pieces of evidence showed that: (i) an
important portion of the energy used to synthesize Gln is derived
from the astroglial TCA cycle (Garcia-Espinosa et al., 2003); (ii)
up to 40% of cerebral Glu is derived from alternative sources
to Gln (Garcia-Espinosa et al., 2003); (iii) Gln cycling may not
present a 1:1 stoichiometry with Glc uptake (Gruetter et al., 2001;
McKenna, 2007); (iv) different kinetic pools of Lac, Pyr, Gln,
Glu, and GABA exist both in astrocytes and in neurons (Cruz
et al., 2001; Zwingmann et al., 2001; Rodrigues et al., 2005; Cerdan

et al., 2009). All the previous described findings indicate that the
coupling mechanisms between neuronal and glial metabolisms are
more complex than previously envisioned.

Figure 4 shows the conception of metabolic coupling between
neurons and astrocytic during glutamatergic neurotransmis-
sion proposed by Cerdan and colleagues (Cerdan et al., 2006;
Ramirez et al., 2007). This hypothesis is based on the existence of
transcellular coupling of oxidative and non-oxidative metabolisms
in both neurons and astrocytes through the exchange of monocar-
boxylate reducing equivalents and on the operation of intracellular
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redox switches. So, after presynaptic Glu release, astrocytes
incorporate Glu and three Na+ ions, being the latter removed
subsequently through the plasma membrane Na+/K+ ATPase.
The energetic cost of this process implies reduced astrocytic
ATP/ADP concentrations, stimulating astroglial glycolysis and
TCA cycle. Both astrocytic metabolic pathways contribute the
energy required by GS, with a major contribution of the oxidative
metabolism. However, the energy demands during glutamater-
gic neurotransmission eventually exceed the reduced capacity
of the astrocytic TCA cycle, what could result in a net activa-
tion of the glycolytic flux and a net production of astrocytic
Lac, which is rapidly extruded to the extracellular space. The
resulting extracellular Lac is taken up by neurons with a con-
sequent reduction of the cytosolic redox state to a point where
neuronal glycolysis could be inhibited at the glyceraldehyde 3-
phosphate dehydrogenase step. An opposite flux of Pyr, from
neurons to astrocytes, is proposed to connect and balance the
redox state in both neurons and glial cells. Under these condi-
tions, extracellular Lac is predominantly consumed by neuronal
oxidation until its extracellular concentration reaches the pre-
activation levels, preparing the stage for a new glutamatergic
event.

This redox switch/redox coupling hypothesis integrates basi-
cally the described experimental findings, both obtained in vivo
and in vitro. More specifically, it includes: (i) the simultane-
ous operation of both astrocytic and neuronal glycolysis and
TCA cycles during neuronal activation; (ii) the fact that both
astrocytes and neurons may potentially use Glc or Lac as com-
plementary, or even alternative, substrates; this depends on the
extracellular redox state and availability; (iii) the stoichiometric or
non-stoichiometric coupling of the Glu cycle and Glc uptake; (iv)
the intracellular compartmentalization of cytosolic monocarboxy-
lates; and, finally, (v) the intracellular Glu compartmentalization
also both in neurons and astrocytes (Cruz et al., 2005; Dienel
and Hertz, 2005). The transcellular redox switch/redox coupling
proposal mimics the intracellular coupling mechanisms existing
between cytosolic glycolysis and the TCA cycle which involves
the transfer of reducing equivalents through the inner mitochon-
drial membrane. During transcellular redox coupling, however,
reducing equivalents are reversibly exchanged between neurons
and astrocytes in the form of Lac and Pyr (Arco and Satrustegui,
2005; McKenna et al., 2006).

PERSPECTIVE: HYPERPOLARIZED 13C NMR APPROACHES
As explained before, one of the most limiting features of NMR is its
lack of sensitivity. Therefore, magnetic resonance imaging (MRI)
has relied primarily on imaging of water protons. This results from
the fact that the SNR ratio of the NMR signal is proportional to the
equilibrium polarization between the two proton spin states under
thermal equilibrium conditions in an external magnetic field (B0),
as well as the proton concentration. Clinical imaging applications
have until now been restricted to 1H MRI because the existence
of a high concentration of protons in biological tissue is able to
counterbalance the inherent low sensitivity. Unfortunately, MR
sensitivity of 13C is too low to allow conventional 13C MRI due
to the vestigial in vivo abundance of this nucleus and its lower
magnetogyric ratio.

Although it is possible to improve the sensitivity using MRI
systems at high B0 and extremely low temperatures, a maximum
polarization (and corresponding SNR) increase (∼103), obtained
by cooling down the sample to liquid He temperature at a field
strength of 20 T, would not be sufficient for clinical 13C MRI
applications. Alternatively, it is possible to improve the sensitivity
by transferring polarization from an electron or nuclear spin that
has a higher polarization, creating a non-equilibrium distribution
of nuclear spins called the hyperpolarized state (Månsson et al.,
2006). In this state, the polarization of spins can be increased by
a factor of ∼105 compared with that in the thermal equilibrium
state and independently of the B0 value, leading to a corresponding
gain in signal strength for MRI. This allows imaging of nuclei other
than protons, namely 13C, and their molecular distribution in vivo
can be visualized in a clinically relevant time window (Ardenkjær-
Larsen et al., 2003).

The hyperpolarized state is created by an external device fol-
lowed by rapid administration of the agent to the subject to be
imaged. However, the lifetime of the hyperpolarized state is lim-
ited by the T1 relaxation time which depends on the chemical
structure and environment of the hyperpolarized compound. In
the case of 13C, it can range from a few seconds to several min-
utes, depending on the functional groups where the 13C nucleus
is present.

Both parahydrogen-induced polarization (PHIP) and dynamic
nuclear polarization (DNP) techniques have been able to hyper-
polarize a wide range of organic 13C-labeled substances. As the
polarization of electrons is much higher than the 13C nuclear
polarization, due to the much larger gyromagnetic ratio of the
electron, the DNP approach implies transferring polarization from
hyperpolarized electron spins in a solid to the coupled 13C nuclear
spins in a doping substance (∼3 T and ∼1 K; Månsson et al.,
2006). Microwave irradiation near the electron resonance fre-
quency transfers the polarization from the unpaired electrons to
the 13C nuclei. After reaching an appropriate polarization, the
solid is rapidly dissolved and injected with small polarization losses
(Ardenkjær-Larsen et al., 2003).

An interesting use of 13C-labeled endogenous compounds is
metabolic imaging. Chemical shift imaging (CSI) has been tra-
ditionally used to image the cerebral distribution of metabolites
from 13C-labeled substances, such as Glc (van der Zijden et al.,
2008). However, without using hyperpolarization techniques, such
images can only be obtained using long scan times (minutes).
Using the previously described hyperpolarization approaches,
images of the metabolic processes can be generated in a sig-
nificant faster time scale (seconds). Endogenous compounds
selectively labeled with 13C have been hyperpolarized by the
DNP technique, extending substantially the applications of cere-
bral metabolic imaging. Basically, enzymatic processes can be
non-invasively quantified and imaged in vivo using these hyperpo-
larized 13C-labeled metabolites. The metabolic fate of [1-13C]Pyr
in images of tumor-bearing animals injected with hyperpolar-
ized labeled Pyr has been followed using the DNP approach,
and allowed mapping the metabolic pattern of labeled Pyr, as
well as of Lac and alanine. It was confirmed that gliomas abun-
dantly transform Pyr into Lac through anaerobic glycolysis. Using
this strategy, it was shown that exchange of hyperpolarized 13C
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label between Pyr and Lac could be imaged in tumors (Day et al.,
2011). This flux was decreased in tumors receiving treatment
undergoing drug-induced cell death. Using the same substrate,
fast dynamic spiral CSI and transport modeling were com-
bined to better characterize the bolus, transport, and metabolic
effects, separating the metabolites in the cerebral blood vol-
ume from the metabolites in the brain tissue. This allowed
developing a repeatable non-invasive measurement of regional
BBB transport kinetics and regional cerebral Lac levels (Hurd
et al., 2010). A novel non-invasive method for imaging tissue
pH in vivo was also demonstrated (Gallagher et al., 2008). It
was shown that interstitial tumor pH can be imaged in vivo
from the ratio of the signal intensities of hyperpolarized bicar-
bonate (H13CO3

−) and 13CO2, after the intravenous injection
of hyperpolarized H13CO3

−. Additionally, other neurochemical
pathways have been exploited using this approach. Conversion
of 13C-labeled acetate to 2-oxoglutarate, a key biomolecule con-
necting metabolism to neuronal activity, was recently shown
using the DNP approach, reporting a direct in vivo observation
of a TCA cycle intermediate in intact brain (Mishkovsky et al.,
2012). The cerebral distribution and metabolism of hyperpolar-
ized 2-keto[1-13C]isocaproate (KIC) has also been described in
the normal rat using MR (Butt et al., 2012). Hyperpolarized KIC
is metabolized to [1-13C]leucine by branched chain amino acid
transaminase, having this enzyme an important role in nitro-
gen shuttling and glutamate metabolism in the brain. Another
group was able to show how sodium 1-13C acetylenedicarboxy-
late, which after hydrogenation by PASADENA (Parahydrogen
and Synthesis Allows Dramatically Enhanced Nuclear Alignment),
becomes 13C sodium succinate. Fast in vivo imaging demon-
strated that, following carotid arterial injection, the hyperpolar-
ized 13C-succinate appeared in the head and cerebral circulation
of normal and tumor-bearing rats (Bhattacharya et al., 2007).
Even more recently, the injection of hyperpolarized [U-2H,U-
13C]Glc allowed real-time imaging of the glycolytic flux in two
non-cerebral murine tumor models in vivo, due to the clear
detection of labeled Lac (Rodrigues et al., in press). Low levels
of dihydroxyacetone phosphate, 6-phosphogluconate and bicar-
bonate were also observed, with the latter two synthesized by the
pentose phosphate pathway activity. The possible use of labeled
Glc in cerebral studies could open a very important avenue in
neurochemistry, mainly because of the possibility to investi-
gate a completely new metabolic timeframe with this approach.
Therefore, the application of 13C metabolic imaging using hyper-
polarized 13C-labeled substrates to neurochemistry is an open field
of research.
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