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Abstract

Background: Biomedical researchers are now often faced with situations where it is necessary to test a large number of
hypotheses simultaneously, eg, in comparative gene expression studies using high-throughput microarray technology. To
properly control false positive errors the FDR (false discovery rate) approach has become widely used in multiple testing.
The accurate estimation of FDR requires the proportion of true null hypotheses being accurately estimated. To date many
methods for estimating this quantity have been proposed. Typically when a new method is introduced, some simulations
are carried out to show the improved accuracy of the new method. However, the simulations are often very limited to
covering only a few points in the parameter space.

Results: Here I have carried out extensive in silico experiments to compare some commonly used methods for estimating
the proportion of true null hypotheses. The coverage of these simulations is unprecedented thorough over the parameter
space compared to typical simulation studies in the literature. Thus this work enables us to draw conclusions globally as to
the performance of these different methods. It was found that a very simple method gives the most accurate estimation in a
dominantly large area of the parameter space. Given its simplicity and its overall superior accuracy I recommend its use as
the first choice for estimating the proportion of true null hypotheses in multiple testing.
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Introduction

In this genomic era, biomedical researchers are often faced

with situations where a large number of hypotheses (a few

thousands to tens of thousands) are being tested simultaneously.

For example in a high-throughput microarray-based comparative

gene expression study, a hypothesis concerning the differential

expression status of each gene between two or more biological

conditions is tested, and this is applied to all the genes being

measured by the microarrays. The result of each statistical

hypothesis testing is a p-value summarizing the level of statistical

significance of the observed differential gene expression. With so

many null hypotheses being tested simultaneously, the conven-

tional single hypothesis testing criterion (p-valuev0.05) to reject

a null hypothesis and declare significance in the result is no longer

adequate, because too many false positives become inevitable.

Take the microarray-based comparative gene-expression studies

for example, suppose the two biological conditions being

compared are the same, so no gene is differentially expressed.

However, if 10,000 genes are being measured by the microarrays,

on average 500 of these genes (5%) will turn out to have a p-

valuev0.05, purely by chance. So an accurate estimation of the

number of false positives is very important for researchers to

correctly interpret the results and it is often necessary to control

the number of false positives among the claimed significant

results.

The classical method for false positive error control in multiple

testing is the Bonferroni procedure, which controls the family wise

error rate (FWER) at a by setting threshold p-value as a=N, where

N is the total number null hypotheses being simultaneously tested.

However, the Bonferroni procedure is now widely recognised as

being too conservative and leading to high rate of false negatives.

The FDR (false discovery rate) approach has gained much

popularity in recent years as it is more pertinent to the biomedical

problems encountered in the high throughput omics era. In

microarray gene expression studies, for example, researchers are

naturally more interested in the proportion of false positives

among the genes that are declared as significant. There are several

closely related yet mathematically different measures in the

literature, which were all intended to describe and quantify the

proportion of falsely rejected null hypotheses among all rejected

ones, namely, FDR (False Discovery Rate), pFDR (positive FDR),

mFDR (marginal FDR), eFDR (empirical FDR), and cFDR

(conditional FDR), the detailed definitions of which can be found,

for example, in [1–3]. In this paper, I approach the multiple

testing problem by trying to estimate the expected number of false

positives E(V ) rather than the above error rates directly. Once

E(V ) has been estimated, it is relatively straightforward to

calculate mFDR and eFDR because these two error rates are

less entangled than FDR or pFDR. Fernando et al showed that

mFDR, or PFP (proportion of false positives) as they referred to it,

have two desirable properties that FDR, pFDR, FWER do not
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possess; they also demonstrated that controlling these 3 error rates

(FDR, pFDR, and FWER) does not necessarily lead to the control

of the proportion of false positives among all positive results [4].

For these reasons above, I prefer to use PFP (or equivalently

mFDR) as a measure describing and quantifying false positive

errors in multiple testing.

A key factor in the accurate estimation of E(V ) is the

proportion of true null hypotheses p0 defined below, which is

generally unknown a priori. Once this factor becomes known or is

accurately estimated, it is then a straightforward step to estimate

E(V), the expected number of false positives. For the control of

various error rates such as FDR and pFDR, Black [5] pointed out

that the main challenge in those procedures remains to be the

accurate estimation of p0, the proportion of true null hypotheses.

So in this paper, our focus is on the accurate estimation of this key

factor rather than on those different variants of FDR. Suppose in

total N genes are being measured by microarrays and thus N null

hypotheses are being simultaneously tested. Suppose N0 genes are

non-differentially expressed, the proportion of true null hypotheses

is hence p0~N0=N. Given p0 and a threshold p-value a, the

expected number of false positives will be E(V )~Np0a. Thus by

choosing an appropriate value of a, researchers can control the

expected number of false positives as desired. Note that the

formula E(V )~Np0a does not depend on the correlation

structure among the N test statistics. In other words, these N
tests could be independent of each other, or correlated among

themselves with any correlation structure. By focusing on the

estimation of E(V ) rather than the various error rates, we can

reduce the multiple testing problem to the problem of estimating a

single parameter p0. The performance of the methods used to

estimate p0 will generally be affected by the correlations among

the test statistics, as will be shown in this paper.

Many methods for estimating p0 have been proposed in the

literature, most of them require as input the p-values obtained

from the N simultaneous statistical tests. In this study, I compare

some commonly used methods and identify the ones that are

significantly more accurate than others in different regions of the

parameter space. I also make recommendations as to which

method(s) should be used under some general and specific

conditions.

Methods

Methods for estimating p0

All the methods considered here for estimating the proportion of

true null hypotheses require as input the p-values from the testing of

N null hypotheses. Methods based on other strategies and requiring

other type of data as input exist, for example, based on a re-

sampling strategy [6], based on transformed test statistics [7], or

based on estimating effect sizes [8]. However, these methods all

require quite involved operations on the raw input data prior to or

during the statistical testing step, and hence they are not as generally

applicable to most situations as the p-value based methods. One of

the advantages of the p-values based methods for estimating p0 is

their wide applicability, because the step of calculating p-values in

statistical testing is well separated from the subsequent steps. Five

different p-value based methods are considered in this study; the

details of these methods can be found in the original publications

that introduced them. Here I only give a brief description of each.

Although the selection of these methods is far from exhaustive, they

nevertheless represent some of the most commonly used ones in the

literature. Their inclusion in this study was also partially due to the

availability of software provided by the original authors implement-

ing each method.

The PM03 method. Given N p-values obtained from testing

N null hypotheses, the PM03 method [9] fits a beta-uniform

mixture (BUM) model to the histogram of the observed p-values

(empirical density distribution) with the following form of PDF

(Probability Density Function)

f (pja,l)~lz(1{l)apa{1, ð1Þ

where the first term l is for the uniform part of the mixture

distribution model and the second term for the Beta part. The

parameters a and l are first estimated by their maximum

likelihood estimator (MLE) âa and l̂l, respectively, and then an

upper bound of p0 is estimated by l̂lz(1{l̂l)âa.

The PC04 method. The PC04 method [10], instead of fitting

a BUM model, applies LOESS to the p-value spacings to obtain

an estimate of PDF, and takes the minimum value of the estimated

PDF as an estimate of p0.

The Ch04 method. The Ch04 method [11] uses an estimator

for the CDF (Cumulative Distribution Function) of p-values in the

form of a B-spline series with strategically designed knot sequence

to achieve a desirable shape for the p-value cumulative

distribution. The PDF is simply the first derivative of the CDF

and the minimum of PDF is taken as an estimator of p0.

The ST03 method. Exploiting the fact that p-values from

true null hypotheses are uniformly distributed, the ST03 method

[12] uses the following expression as an tunable estimate of p0

p̂p0(l)~
#fpiwl; i~1,::::,Ng

N(1{l)
, ð2Þ

with l as the tuning parameter. It then fits a natural cubic spline

with 3 degrees of freedom to the data of p̂p0(l) on some values of l,

eg., l~0,0:05,0:10,0:15,:::,0:90, and finally the value of the fitted

spline line at the end point l~1 is taken as the estimate of p0.

The ZG04 method. In the ZG04 method [13], the N p-

values are first sorted in ascending order so that

p1ƒp2ƒp3ƒ � � �ƒpN{1ƒpN . An empirical cumulative

distribution of p-values is obtained by plotting i=N versus pi. To

estimate the proportion of true null hypotheses, the ZG04 method

connects each point (i=N,pi) on the empirical cumulative plot to

the end point (1:0,1:0) by a straight line, and calculates the slope

of the line as

ci~
1:0{i=N

1:0{pi

: ð3Þ

Then the median value of ci for a given range of pi, plƒpiƒpu, is

taken as an estimate of p0,

p̂p0~median cijplƒpiƒpuð Þ, ð4Þ

with pl~0:40, pu~0:95 as the default values of the method

parameters.

In this study, extensive in silico experiments are carried out to

compare the performance of these 5 methods, with an unprece-

dented thorough coverage of the parameter space. The mean

absolute error (MAE) is used as the main measure to compare the

accuracies of these methods; the smaller the MAE, the more

accurate the p0 estimator. MAE is defined as

MAE ~
1

R

XR

i~1

jp̂p0
i{p0j, ð5Þ

Accurate Estimation of pi0
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where p̂p0
i is the estimated value of p0 in the ith in silico experiment,

and R is the total number of such experiments for each point

depicted in the parameter space. Another commonly used

measure, RMSE (Root mean squared error), defined as

RMSE~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

R

XR

i~1

(p̂p0
i{p0)2

vuut , ð6Þ

could also be used to compare the accuracies of different methods.

RMSE gives relatively higher weight to large errors, so it favors

more accurate methods to stand out. MAE gives equal weight to

all errors, and was felt to be more appropriate for this study. Note

that both measures, MAE and RMSE, lead to the same conclusion

in this study as to which estimator of p0 is overall the most

accurate one.

In silico experiment setup
Suppose we are carrying out a comparative gene expression study

between two biological conditions, a control and a treatment. A

gene’s expression in the control condition is normally distributed as

x*N(mc,s2
c), and in the treatment condition this gene’s expression

is distributed as y*N(mt,s2
t ), where the superscripts/subscripts c

and t indicate the control and treatment condition, respectively. For

simplicity let us assume that the variances of a gene’s expression for

the two conditions are the same, ie, s2
c~s2

t :s2. If a gene’s mean

expression levels in the two conditions are the same, ie, mc~mt, we

say that this gene is non-differentially expressed, otherwise it is a

differentially expressed gene. For a differentially expressed gene, we

say it is up-regulated in the treatment condition if mt
wmc, and

down-regulated if mt
vmc.

In simulating a high-throughput comparative gene-expression

study, N is the total number of genes being measured (N~2000 is

used throughout these in silico experiments unless otherwise

specified), and N0 is the number of genes non-differentially

expressed. For these N0 null genes (non-differentially expressed

genes) I set mc~mt~0 and s2~1 in generating their expression

values. For each of the N{N0 differentially expressed genes,

mc~0 is set for the control condition and some non-zero value

mt
=0 for the treatment condition. In this study, the mt values are

obtained by generating N{N0 random numbers from a normal

distribution mt
i=s*N d,v2

� �
with d~2 and v~0:5 unless

otherwise specified. So the typical effect of differential gene

expression in this study is d~(mt{mc)=s~2. In order to achieve a

reasonable power of statistical testing, a power and sample size

calculation was carried out using a tool developed previously [14].

Although this tool was primarily designed for experiments where

sample-pooling was involved, by setting the pooling parameters

properly it can also be used as a general power and sample size

calculation tool for two-sample t test with equal variance. For the

power and sample size calculation in this study, a~0:01 was used

as a threshold for p-values, meaning that any observed differential

gene-expression with a p-value less than a will be declared as

significant. The results of this power and sample size calculation

exercise are included in Table 1, which lists the statistical power

achievable as the sample size increases. In most cases in the in silico

experiments, nc~nt~n~8 is chosen as the sample size. For a

typical effect size of d~2 and a multiple testing situation where

80% of genes are non-differentially expressed, this is the minimum

number of arrays that would allow us to achieve a power above

0:80 and a PFP below 0:05, as can be seen from this Table.

Increasing the sample size to nc~nt~n~15 will increase the

power to 0:995, but the decrease in FPF is only 0:007. When the

proportion of true null hypotheses p0 varies, the actual PFP varies

accordingly. Fig. 1 shows PFP as a function of p0, indicating that

even when the proportion of true null hypotheses is p0~0:95, the

PFP is still under 0.2. In other words, even when 95% of the genes

are non-differentially expressed, the in silico experimental setup

would still allow us to achieve a reasonable PFP of below 0.2. So

nc~nt~n~8 is chosen as the sample size for the majority of these

in silico experiments; the guidelines being that the statistical power

achievable in such experiments should not be too low or too high.

Low powers are undesirable in real experiments and should be

avoided at the experimental design stage; Too high the powers, on

the other hand, can be too expensive and unrealistic in real

microarray experiments. Here in this paper, the focus is on

comparing the relative performance of several different methods

under a typical experimental situation with a reasonable sample

size and statistical power. In addition, the effects of varying sample

sizes on the performance of these p0-estimating methods are also

investigated.

All genes are independent
First, consider the situation where all the N genes, whether

differentially or non-differentially expressed between the two

biological conditions, are independent of each other, meaning that

a gene’s expression is not influenced by or correlated to any other

genes. This of course is not the closest representation of a real gene

expression study, but might be an adequate theoretical model for

the purpose of identifying individual differentially expressed genes.

Importantly this is the theoretical basis upon which most of the p0-

estimation methods were derived. So the first task is to compare

these methods under this rather simplified assumption.

Genes are correlated within groups
Next, it is interesting to see how these methods can be stretched

to the regions where they were not initially designed for, how

much deterioration would accumulate, and to compare the

relative performance of these 5 methods when the above simplified

assumption does not hold. Consider the situation where the genes

Table 1. The statistical power achievable in the in silico
experimental setup.

nc nt a d power p0 PFP

3 3 0.01 2 0.157 0.8 0.203

4 4 0.01 2 0.313 0.8 0.113

5 5 0.01 2 0.477 0.8 0.077

6 6 0.01 2 0.623 0.8 0.060

7 7 0.01 2 0.739 0.8 0.051

8 8 0.01 2 0.826 0.8 0.046

9 9 0.01 2 0.888 0.8 0.043

10 10 0.01 2 0.929 0.8 0.041

11 11 0.01 2 0.957 0.8 0.040

12 12 0.01 2 0.974 0.8 0.039

13 13 0.01 2 0.985 0.8 0.039

14 14 0.01 2 0.991 0.8 0.039

15 15 0.01 2 0.995 0.8 0.039

nc and nt are the numbers of microarrays for the control and treatment
conditions, respectively; a is the significance level of the statistical tests on
genes’ differential expression; d is the typical effect size for differential gene
expression. PFP proportion of false positives.
doi:10.1371/journal.pone.0018874.t001
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are not all independent of each other, but they are correlated

within some small groups. For simplicity in the simulations, a very

simple correlation structure within a small group of genes is used.

Note that in real experimental conditions, the correlation

structures among genes can be much more complex and variable.

In the simulation the N genes are divided into many small groups

of K ; the gene groups are still independent of each other, but

within each group the K genes are correlated with the following

K|K covariance matrix.

s2
1 r12s1s2 r13s1s3 � � � r1K s1sK

r21s2s1 s2
2 r23s2s3 � � � r2K s2sK

r31s3s1 r32s3s2 s2
3 � � � r3K s3sK

� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �

rK1sK s1 rK2sK s2 rK3sK s3 � � � s2
K

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

ð7Þ

In the covariance matrix (7), s2
i is the variance of gene i’s

expression; rij with i=j is the correlation coefficient between gene

i and gene j within the group. By definition the correlation

coefficient rij~rji. In this paper, the simplest covariance matrix

with rij~r for all i=j is used. In other words, all the pairwise

correlation coefficients assume the same value r. Thus by

changing the value of r from 0 to 1, the correlation strength

among the K genes within a group can be tuned. The correlated

expression values for the K genes in a group can be generated

using a multivariate normal distribution generator via a Cholesky

decomposition of the above covariance matrix. Used in this work

is the Java class umontreal.iro.lecuyer.randvarmulti.MultinormalCholesky-

Gen included in the SSJ Java library for stochastic simulation

(http://www.iro.umontreal.ca/,simardr/ssj/indexe.html). Note

that in dividing the total N genes into groups of K , differentially

expressed genes and non-differentially expressed genes are not put

into the same group, as it is hard to imagine how such a

correlation structure exists in real experiments. The reasoning is

that if a gene’s expression is affected by the treatment condition,

any other genes correlated with it must also be affected by the

treatment condition and hence they too should be differentially

expressed. So genes are divided into many small groups, each

consisting of K genes (K~10 is used in all the in silico experiments

unless otherwise specified) which are either all null or all

differentially expressed. Genes from different groups are still

independent of each other. The genes in the same group could be

considered as being in the same pathways or involved in the same

biological processes.

Results

All genes are independent
The results of comparing the 5 methods under the indepen-

dence assumption are shown in Fig. 2, where the mean absolute

errors (MAE) for these methods are plotted as a function of p0. As

can be seen from this figure, the accuracies of the PM03 method

(yellow line) and PC04 method (purple line) are rather variable,

with much wider ranges of MAE (changing from under 0.02 to

above 0.1 for the PM03 method) as compared to the other 3

methods. The ST03, Ch04, and the ZG04 methods are more

stable performers as the value of p0 changes. There is a clear trend

that both the ST03 and Ch04 methods become less accurate as p0

increases; however the magnitude of change in their MAE is

relatively small compared to the PM03 and PC04 methods. This

figure clearly shows that the ZG04 method is the most stable and

accurate performer among these 5 methods, and is a clear winner

with its MAE consistently lower than the other methods when

p0w0:3. For small values of p0v0:3, the separation of the ZG04

method from others become non-significant. The overall accuracy

of the ZG04 method does not seem to be affected much as p0

increases.

Genes are correlated within groups
In addition to the simulations where all genes were assumed to

be independent, extensive in silico experiments were also carried

out with the block correlation structure described in the previous

sections. The performance of these 5 methods was investigated

with an unprecedented coverage over the parameter space (r,p0).
As an example, Fig. 3 shows the results for one point

(r~0:50,p0~0:80) in the parameter space, based on R~100
replicate in silico experiments. As can be seen from this figure,

ZG04 is the most accurate method with the smallest median value

Figure 1. PFP as a function of p0 ranging from 0.05 to 0.95. For the in silico experiments with sample size nc~nt~8, significance level a~0:01
and typical effect size d~2, the power to detect such an effect is 0:83 as can be seen from Table 1. The PFP will depend on the proportion of true null
hypotheses p0 as shown in this figure.
doi:10.1371/journal.pone.0018874.g001
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of Absolute Errors (AE). ZG04 is followed by ST03,PC04, Ch04,

and PM04 in ascending order of median AE. When the mean

absolute error (MAE) was used as a measure of accuracy, ST03

and PC04 swapped places, resulting in the sequence ZG04, PC04,

ST03, Ch04, and PM04 in ascending order of MAE. A two-

sample paired t-test was carried out to compare the MAEs of the

ST03 and PC04 methods. A p-vlaue = 0.99 was obtained,

indicating that difference between these two methods was not

statistically significant. All the other 9 possible pair-wise compar-

isons among the 5 methods (ZG04 vs ST03, ZG04 vs PM03, …,

PM03 vs Ch04, and Ch04 vs PC04, etc) using two-sample paired

t-tests were also carried out; all those 9 comparisons yielded a p-

valuev0.005, indicating that the differences in their accuracies

were statistically significant (even under the very conservative

Bonferroni multiple testing procedure). So the overall conclusions

at this particular point (r~0:50,p0~0:80) are: ZG04 is

significantly more accurate than all the other 4 methods; ST03

and PC04 achieved statistically equivalent level of accuracy, and

they both are significantly more accurate than the Ch04 and

PM03 methods; and finally, the Ch04 method is significantly more

accurate than the PM03 method at this point.

Next it is interesting to investigate how these methods perform

with varying strength of the inter-gene correlations r at a given

value of p0. Fig. 4 shows the results of mean absolute errors for the

5 methods as a function of the correlation strength r with the

proportion of true null hypotheses fixed at p0~0:80. As can be

seen from this figure, the ZG04 method, again, is the overall best

performer, with its MAE value consistently lower (clearly so for

rv0:7) than all other 4 methods. There seems to be a trend for all

5 methods that when the inter-gene correlation strength increases,

they all become less accurate to some extent. This is probably

understandable as most of these methods were developed under

the inter-gene independence assumption. Overall the deterioration

in their accuracies as correlation kicks in and increases is not

Figure 2. The mean absolute errors (MAE) of the 5 methods for different values of p0. The error bar at each data point is the standard error
of MAE based on R~100 in silico experiments. Genes are assumed to be independent of each other. Overall the results here show that the most
accurate method is ZG04 which has significantly lower MAE than the other methods for a wide range of values of p0 . This figure also shows that
ZG04, ST03 and Ch04 are much more stable than PM03 and PC04 whose MAEs fluctuate with changing p0 .
doi:10.1371/journal.pone.0018874.g002

Figure 3. Box plot of the Absolute Errors (AE) of the 5 methods at p0~0:80 and r~0:50. Based on the median AE, ZG04 is the most accurate
among the 5, followed by ST03,PC04, Ch04, and PM03, in descending order of accuracy.
doi:10.1371/journal.pone.0018874.g003
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much, eg., v0:04 for the ZG04 and ST03 methods, which seem

to be affected the most among these 5 methods.

Global view in the parameter space (r,p0)
To get a whole picture on the relative performance of these

methods, systematic and extensive in silico experiments were

carried out covering an unprecedented wide region of the

parameter space. In total over 20 GB of data were generated

counting all the simulated gene-expression data, statistical testing

data, and the data on p0 estimations and comparisons. The results

of these systematic in silico experiments are summarised and shown

in Fig. 5. Each marked data point in this figure represents R~100
in silico replicate experiments with the parameters (r,p0) specified

by the coordinates of that point. At each of the data points shown

in this figure, gene-expression data were generated for 100
replicate in silico experiments, and then for each such in silico

experiment, a two-sample T test with equal variance was applied

to each gene, giving a p-value indicating the statistical significance

of this gene between the control condition and the treatment

condition. The vector of p-values for the N~2000 genes were

then fed to these 5 different methods to estimate the value of p0.

Because these were in silico experiments and the true value of p0

Figure 4. The mean absolute errors (MAE) of the 5 methods for p0~0:80 with different levels of inter-gene correlation. Overall the
results here show that the most accurate method is ZG04 which is consistently and significantly more accurate than all the other methods for
rv0:70. Beyond rw0:70, the difference between ZG04 and PC04 becomes statistically non-significant. The results here also clearly show that as the
correlation strength increases, the ZG04 and ST03 methods become slightly but clearly less accurate. The PC04 and Ch04 methods seem to have
similar trends but less clear-cut. The PM03 method is not affected much by the increasing level of inter-gene correlation, as its MAE values are almost
flat with increasing r.
doi:10.1371/journal.pone.0018874.g004

Figure 5. The (r,p0) parameter space covered in this study by in silico experiments. For each data point marked on this graph, R~100
replicate in silico experiments were performed, and in each such experiment, nc~8 and nt~8 are the numbers of microarrays for the control and
treatment conditions respectively. For each microarray, N~2000 genes’ expression values were generated. Blue diamonds indicate that the ZG04
method is significantly more accurate than all the other 4 methods. Yellow triangles: There is at least one other method achieving equivalent
accuracy as the ZG04 method; Red squares: At least one method achieved a higher accuracy than the ZG04 method. The significance level was set at
a~0:001, which controls the expected number of falsely significant claims at v1. As there are about 125 data points, each with four statistical tests,
giving the total number of tests about 500.
doi:10.1371/journal.pone.0018874.g005
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was known, so it was possible to assess the accuracies of these

different methods by comparing their mean absolute errors as

defined by Eq.(5). As there were R~100 replicate in silico

experiments at each (r,p0) data point, statistical tests could be

applied to four pair-wise comparisons between the ZG04 method

and the other 4 methods. Given the results in Figures (2–4) that the

ZG04 method was consistently more accurate than the other

methods, it was important to investigate whether this holds true

across the (r,p0) parameter space. Now that the emphasis was to

compare the ZG04 method with others, only the following four

pair-wise comparisons were performed: ZG04 vs ST03, ZG04 vs

PM03, ZG04 vs Ch04, and ZG04 vs PC04. A two-sample paired

T test was applied to each of the 4 pair-wise comparisons, and a

threshold p-value 0:001 was used to declare statistical significance.

There are 3 possible mutually exclusive outcomes of these

comparisons: First, if ZG04 method is significantly more accurate

than the other method in all these 4 pair-wise comparisons, ZG04

method is called as most accurate at this point of the parameter

space; the data point will be shown as a blue spot (diamond) in

Fig. 5. Second, if there is any one method which is statistically

more accurate than the ZG04 method, that data point will be

shown as a red spot (square) in Fig. 5. The third possibility is that

the difference in accuracy between the ZG04 method and at least

one other method is not statistically significant. In other words, at

least one other method has achieved the same level of accuracy as

the ZG04 method. In such a case, this data point will be shown as

a yellow spot (triangle) in Fig. 5. The reason for setting the

threshold p-value at 0:001 to declare statistical significance is the

following. There are about 125 data points in the parameter space

that were investigated. At each point, 4 statistical hypothesis tests

are performed to compare these 5 methods, so the total number of

tests carried out is about 500. By setting the threshold p-value at

0:001, we expect to have less than 1 (0:5 to be more precise) falsely

declared significant results. In other words, by setting the threshold

p-value as such, we are prepared to tolerate on average less than 1

falsely declared significance. This very stringent criterion ensures

that when we say that one method is more accurate than another,

we have the ultimate confidence that this is almost certainly true.

As can be seen from Fig. 5, in a large bulk area of the parameter

space (rv0:6,p0w0:3) (the blue region), the ZG04 method is

clearly the consistent winner. When the inter-gene correlation

increases beyond r~0:7 or when the proportion of true null

hypotheses is relatively small p0v0:2, one or more other methods

achieved statistically the same level of accuracy as the ZG04

method (in the yellow region). Also noticeable is that in a narrow

strip of the parameter space (the red strip), one method became

statistically more accurate than the ZG04 method, and it was the

PM03 method. Shown in Fig. 6 are the the comparisons of the 5

methods in this narrow strip of the parameter space. Clearly the

PM03 method achieved the lowest MAE, thus it was the most

accurate method in this region. The performance of the PM03

method seems to be dependent on the value of p0, as also evident

from Fig. 2 (yellow line), where it showed the biggest fluctuation

with p0 among the 5 methods. From that figure, one can see that

near p0~0:15, the MAE of the PM03 method quickly dropped to

its minimum. The fact that the PM03 method is most accurate at

around p0~0:15 may suggest that this method should be used in

this region. However, in actual applications, one would not know

the true value of p0, so a safe choice of the p0-estimation method is

to use one that is most accurate in the largest area of the parameter

space, which is the ZG04 method as has been demonstrated in this

study. If the estimated value of p0 is in the neighborhood of 0:15,

one can then use the PM03 method in order to achieve further a

slightly more accurate estimation.

Excursions into the sample size dimension
So far all the in silico experiments have been carried out with a

fixed sample size, ie, nc~nt~n~8. This choice of sample size was

guided by the sample size and power calculations conducted in

previous sections. One could argue that the global view depicted in

Fig. 5 in the (r,p0) parameter space regarding the relative

performance of these 5 methods was only based on this fixed

sample size, hence its representative value is limited. So it would

be interesting to investigate the effect of sample size on the

performance of these p0-estimation methods. Given that the

amount of simulations and time required to cover the current

(r,p0) 2-dimensional parameter space was already very extensive,

to add another whole dimension (sample size n) and to cover the

(r,p0,n) 3-dimensinal parameter space would be too time-

consuming and practically infeasible. So instead I chose some

representative points in the (r,p0) 2-dimensional space, and made

excursions into the 3rd dimension (the sample size dimension) to

observe what effects these varying sample sizes have on the relative

performance of the 5 p0-estimation methods.

Figure 6. The PM03 method becomes more accurate in a small strip of the parameter space around p0~0:15 and r~0:8{0:95. This
figure shows that ZG04 is still the second most accurate method in this narrow strip.
doi:10.1371/journal.pone.0018874.g006
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The first point chosen was a blue spot in the (r,p0) space

(r~0:5,p0~0:8). A series of simulations were carried out with

different samples sizes while keeping other parameters fixed. As

can be seen in Fig. 7a, the ZG04 method remained consistently the

most accurate method with varying sample sizes. So the results

here show that the spot at (r~0:5,p0~0:8) stays blue as the

sample size varies; and it is especially so when the sample size

increases.

The second point was a yellow spot (r~0:9,p0~0:8), a spot

where no clear winner was declared at n~8, which meant that at

least one other method achieved an equivalent level of accuracy as

the ZG04 method, and the difference between them was not

statistically significant. Fig. 7b shows the mean absolute errors

(MAEs) of these 5 methods as a function of sample size n. As can

be seen from this figure, as the sample size varied the PC04

method stayed close to the ZG04 method; they competed and

entangled; however their difference was not statistically significant

due to the relatively large error bars. This point (r~0:9,p0~0:8)
remained a yellow spot with varied sample sizes.

The third point was a red spot (r~0:9,p0~0:15) where at least

one other method (the PM03 method) achieved higher accuracy

than the ZG04 method when n~8. Fig. 7c shows the performance

of the 5 methods under the influence of varying sample sizes. Here

at this point, ST03, PM03 and ZG04 in turn became the most

accurate method as the sample size increased from n~3 to n~16.

The color of this spot would change from red, to yellow, to red,

to yellow, then to blue. This was because the point (r~0:9,
p0~0:15) was close to the yellow-red boundary; it is understand-

able that its color was susceptible to mutation when the sample size

varied. But overall this spot stayed dominantly as a red one.

The last point was a boundary blue spot (r~5:0,p0~0:30),
where ZG04 was the most accurate method for n~8. This spot

was close to the blue-yellow boundary suggested that it might

mutate its color as some other parameters varied. Fig. 7d shows

MAEs of the 5 methods as a function of sample size n. Starting

from n~6 onwards ZG04 remained the most accurate method

and this became statistically significant from n~8 onwards, so this

point stayed predominantly blue. It looks though that as the

sample size is increased, the strong position of ZG04 method is

reinforced; and it is weakened when the sample size becomes too

small. However in real experiments, small sample size is not a

desirable direction to go; particularly the statistical power

achievable is too low (less than 0.5 when sample size is less than

6, as shown in Table 1), hence small sample size should be avoided

in real experiments at the experimental design stage.

Overall, the view in the 2-dimensional (r,p0) parameter space

provided a reasonably accurate picture regarding the relative

performance of these 5 methods, and it is of good representative

value. Even when the sample sizes were varied, the four

representative points investigated here demonstrated that the

results shown in Fig. 5 largely persisted, especially when the

sample size was increased, which is the desirable direction in real

experiments.

Discussion

In this study we have made the observation that the ZG04

method outperforms the other 4 over a large region of the (r,p0)
parameter space. To understand what makes this method perform

better, let’s compare the ZG04 method with the ST03 method.

Both methods try to exploit the fact that p-values arising from true

null hypotheses are uniformly distributed over (0,1). The ST03

method first fits a natural cubic spline based on about 20 point

estimates of Eq.(2) (The default setting for the ST03 method was

using the sequence of l~0,0:05,0:10,0:15,:::,0:90), and then takes

Figure 7. The effects of sample size variation on the accuracies of p0-estimation methods. Shown here are the MAEs for the 5 p0-
estimation methods as a function of sample size nc~nt~n. The results for four representative spots in the (r,p0) space show that as the sample size
is varied, these spots remained predominantly their original behavior presented in Fig. 5. (a) Blue spot (r~0:5,p0~0:8) (b) Yellow spot
(r~0:9,p0~0:8) (c) Red spot (r~0:9,p0~0:15) (d) Blue spot (r~0:3,p0~0:5).
doi:10.1371/journal.pone.0018874.g007
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the value of the fitted spline at l~1 as the final p0 estimate. The

ZG04 method, on the other hand, makes a point estimate of p0 by

Eq.(3) for every pi in the range ½pl~0:4,pu~0:95� (The default

setting of the ZG04 method). The number of pis within this default

range of ½pl ,pu� is usually in the order of 1000, which means that

the ZG04 method is based on much more point estimates than the

ST03 method. This may help explain the potential of the ZG04

method to outperform the ST03 method. Secondly, the upper half

of the p-value range, namely ½0:4,0:95� (the ZG04 default setting),

may be more relevant and efficient than the whole range ½0,0:90�
(the ST03 setting) in estimating p0, because the upper half of the p-

value range tends to be populated less with p-values arising form

non-null hypotheses. In other words, the distribution of p-values in

the upper range reflects mostly those p-values arising from the true

null hypotheses. In devising the ZG04 method, three possible

measures could be used as the final estimate of p0, namely the

minimum, the mean, and the median of the calculated slopes

Eq.(3) for the given range ½pl~0:4,pu~0:95�. Given that the min

tended to underestimate the true values of p0 [14], the median was

adopted because it was less sensitive to extreme values and outliers.

The fact that the median is more robust than the minimum or the

mean may also help to explain the consistent performance of the

ZG04 method. It is a necessary practice to tune some parameters

(pl and pu in the case of the ZG04 method) and to choose the most

appropriate measure (the median of the slope ci’s) to achieve the

best performance at the method-devising stage. But once this has

been done, it is only fair to compare different methods at their

respective default settings and it is probably the only feasible way

to compare several different methods extensively. And this is what

have been carried out in this study. It is very difficult to present a

thorough analysis for each pair of methods explaining why one

method is more accurate than the other. Nevertheless, the above

analysis comparing ZG04 and ST03 hopefully can give some sense

of why the ZG04 method outperforms the ST03 method. The

PM03 method uses a beta-uniform mixture model to fit the

histogram of p-values. The fact that PM03 performs best near

p0~0:15 may suggest that this is an area of the parameter space

where the empirical distribution of p-values is best described by

the BUM model, which however becomes a less accurate model

over other parameter regions.

It should be noted that this in silico study has been very extensive

in terms of its coverage over the (r,p0) parameter space and its

data volume. If it were a real experimental study, it would be

equivalent to microarray experiments with about 200,000
microarrays. To the best of my knowledge, no other similar

simulation studies with this magnitude have been reported yet in

the literature. Although very extensive, this study is still far from

comprehensive because there are a couple of important aspects

that need to be addressed, which are beyond the scope and

capacity of a single study. Here in this paper I only touch on and

briefly discuss them.

The first aspect concerns the number of different methods

included under this study. Given the amount of simulations and

subsequent analysis required in such an extensive study, my

strategy in carrying out the investigation was to focus on a few

most-commonly used methods, and get an overall picture

regarding their relative performance. The number of methods

included in this study may be relatively small, but the remit of this

work is well-defined and focused. This forms a solid base for any

future investigations to incorporate the findings established here.

For example, any other methods or new methods only need to be

compared with the best performing methods identified here, i.e.,

the PM03 method around the p0~0:15 region, and/or the ZG04

method over a large region of the parameter space.

Another important aspect concerns the influence of the

underlying gene-expression distributional assumption on the

accuracies of these p0-estimation methods. All the methods

investigated here are p-value based methods, the advantage of

which is their flexibility and wide applicability. They only require

a vector of properly calculated p-values as input. The underlying

distributional form of the gene-expression values and the type of

statistical test used are shield away from these p0-estimation

methods themselves by the p-values. In this study I have used a

single distributional assumption, i.e, the normal distribution, as the

underlying distribution for the gene expression values. For this

distribution, the two-sample t test is the proper statistical test to

use. As the focus of this study is the estimation of p0 given a vector

of properly calculated p-values, it is adequate to use the normal

distribution as a most convenient instrument to generate the gene

expression values and then to use its proper form of statistical test

to calculate the p-values. It would be interesting to see how the

underlying distributions affect the accuracies of these p0-

estimation methods, especially how robust these p-value based

methods are when the actual distribution of gene expression

departs from the assumed theoretical distribution. This would

form the basis of a future investigation, which is beyond the scope

of the current study.

In conclusion I have carried out extensive comparisons of some

commonly used methods for estimating the proportion of true null

hypotheses in multiple testing. The coverage of these in silico

experiments over the (r,p0) parameter space is unprecedented,

thus enabling us to get a global picture on the relative performance

of these methods. I identified ZG04 as the most accurate one

among the 5 methods investigated over the largest area of the

parameter space. Overall, based on the evidence gathered here in

this study, I recommend the ZG04 method as the first choice for

estimating p0. In a vast majority of times, the ZG04 method will

give the most accurate results (the blue region) among the 5

methods, or at least achieving an equivalent accuracy as others

(the yellow region). In a narrow strip of the parameter space

around p0~0:15, the PM03 method becomes more accurate than

the ZG04 method, so I also recommend its subsequent use if the

ZG04 method gives an estimation of p0 in the region 0:10{0:20.

This hopefully will further increase the high accuracy already

offered by the ZG04 method. Given the widely recognized

paramount importance of the p0 parameter in multiple testing, all

the efforts towards more accurate estimation of p0 are greatly

helpful to the subsequent calculations or controls of various error

rates, such as PFP, FDR, pFDR, and eFDR.
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