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Abstract: Resonant tunneling devices are still under study today due to their multiple applications
in optoelectronics or logic circuits. In this work, we review an out-of-equilibrium GaAs/AlGaAs
double-barrier resonant tunneling diode system, including the effect of donor density and external
potentials in a self-consistent way. The calculation method uses the finite-element approach and
the Landauer formalism. Quasi-stationary states, transmission probability, current density, cut-off
frequency, and conductance are discussed considering variations in the donor density and the width
of the central well. For all arrangements, the appearance of negative differential resistance (NDR)
is evident, which is a fundamental characteristic of practical applications in devices. Finally, a
comparison of the simulation with an experimental double-barrier system based on InGaAs with
AlAs barriers reported in the literature has been obtained, evidencing the position and magnitude of
the resonance peak in the current correctly.

Keywords: resonant tunneling diode; electronic transmission probability; Landauer formalism

1. Introduction

Resonant tunneling diodes (RTDs) are semiconductor devices that consist of a system
of two or more potential barriers that allow electron transport only for certain states known
as resonant states. The operating mechanism is fundamentally based on the tunneling
effect of quantum mechanics. This type of system is characterized by developing one or
more NDR zones that are the fundamental peculiarity of RTDs that enable them to be
used for various applications. These devices are experimentally developed in very thin
layers, which allows for an ultrafast operation speed, enabling them for applications even
in the terahertz range [1–4]. The first investigations in the field of resonant tunneling were
carried out around 50 years ago; some of these early developments are included in the
references [5–12]. These studies have progressed continuously, characterizing RTDs both
experimentally and theoretically. To mention some of the most recent work in this area,
Citro and Romeo [13] studied a flux-tunable tunneling diode using a mesoscopic ring
subject to the Rashba spin–orbit interaction and sequentially coupled to an interacting
quantum dot, in the presence of an Aharonov–Bohm flux. Wójcik et al. [14] studied the spin-
and time-dependent electron transport in a paramagnetic resonant tunneling diode using
the self-consistent Wigner–Poisson method. They found that under a constant bias, both the
spin-up and spin-down current components exhibit the THz oscillations in two different
bias voltage regimes. In more recent works, Shinkawa et al. [15] studied the hole-tunneling
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in Si0.82 Ge0.18/Si asymmetric-double-quantum-well RTD with high-resonance current and
suppressed thermionic emission. Simultaneously, Encomendero et al. [16] investigated the
possibility of using degenerately doped contact layers to screen the built-in polarization
fields and recover symmetric resonant injection; they found negative differential conduc-
tance (NDC) under both bias polarities of GaN/AlN RTDs. Several theoretical works that
approach resonant tunneling systems by means of the non-equilibrium Green’s formalism
(NEGF) for the calculation of the transmission function have been reported [17,18].

As an application of tunneling systems, Belkadi et al. [19] demonstrated the appear-
ance of resonant tunneling effects in metal-double-insulator-metal-type diodes, by varying
the thickness of insulators to modify the depth and width of the quantum well. Various
analytical works [20–22] have sought an improvement in the efficiency, a decrease in the
dissipation power, and the optimization of parameters to obtain the highest peak-to-valley
current ratio in resonant tunneling systems of various materials, which can improve the
applicability in practical devices. Finally, in recent reports [23,24], resonant systems are
evidenced as possible direct applications in communication systems for frequencies of the
order of Gigahertz or the possibility of using RTDs as memory systems. Among the experi-
mental developments in this area, in works such as those from Ryu and co-workers [25],a
semitransparent cathode of indium tin oxide (ITO)/Ag/ITO is studied, developed as a
resonant tunneling double-barrier structure for transparent organic light-emitting diodes.
This was achieved by employing an e-beam evaporated ITO/Ag/ITO cathode due to the
double quantum barriers of ITO and the quantum well of Ag. Their results include the
observation of a weak NDR in devices using a 100 nm thick ITO/Ag/ITO layer as a cathode
in combination with a thin LiF/Al layer. In a later work, Ryu et al. [26] developed a
semitransparent multilayered cathode of indium tin oxide (ITO)/Ag/tungsten oxide (WO3)
for transparent organic light-emitting diodes (LEDs). The device showed a weak NDR,
until the operating voltage of 8 V was reached.

It is worth mentioning some recent experimental and theoretical related works that
have sought to improve the efficiency of optoelectronic devices, including perovskite light-
emitting diodes (PeLEDs) [27], solar cells that use resonant semiconductor nanoparticles
(NPs) and improve both light trapping and scattering [28], multiple quantum well (MQW),
and quantum dot (QD) nitride-based light-emitting diodes (LEDs) [29,30].

Over the years, knowledge about the operation and physics behind this type of
semiconductor devices has expanded, thus allowing numerous applications, among which
we can highlight: Wei and Shen’s work, where a novel universal threshold logic gates
(UTLG) based on RTD with simple structure and fixed parameters are proposed, taking
advantage of the characteristics of NDR [31]. Jijun et al. analyzed the piezoelectric effects
in RTDs based on GaAs/InxGa1−xAs/AlAs for potential applications in micromachined
mechanical sensors, obtaining the result that the piezoresistive sensitivity of RTDs can be
adjusted through the bias voltage [32]. Due to their particular NDR behavior, these systems
are excellent candidates for applications to nanoelectronics; in this sense, Malindretos
et al. grew a GaAs/AlAs RTD by means of a molecular beam epitaxy; their results are
satisfactory and of good precision to fabricate RTDs suitable for application in robust digital
logic circuits [33]. Among all the applications of this type of system, it is worth highlighting
applications in detector devices that can filter in a varied range of frequencies by simply
modifying geometric or material parameters. To mention such a device, Dong et al. [34]
developed an RTD based on In0.53Ga0.47. As for detection in the 1550 nm range, they found
that the detector responsivity is nonconstant, it decreases with the increase of the incident
light power density, which provides the basis for optimizing the RTD performance.

Resonant tunneling systems go beyond double-barrier-based systems. In 2020, Mehmet
Bati [35] studied the effects of an intense laser field on the properties of resonant tunnel-
ing in a double-well-structure parabolic reverse triple-barrier system, implementing the
method of finite differences combined with the Green function formalism to calculate the
transmission functions, obtaining the conclusion that the increment of the well width causes
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the incident electron waves to be localized. Consequently, the transmittance decreases, and
the resonant peak becomes small or disappears.

In this problem, the Landauer approach has been chosen for the calculation of con-
ductance, since it is a model that has a fairly broad theoretical development and that has
been studied in depth for more than 40 years. In 1981, Langreth D.C. and Abrahams E.
presented a rigorous derivation of the conductance formula from the linear response theory
(Kubo’s formula), giving a generalization to the case of many-scattering-channel and found
that only in very special circumstances can the currents in different channels be decoupled
in such a way as to give a simple conductance formula [36]. Six years later, S. Eränen and
J. Sinkkonen further generalized this formalism, studying the electrical current transport
in conductor–insulator–conductor structures, where the charge carriers are assumed to
traverse the insulating layer by tunneling. They self-consistently solved the coupled system
of Poisson and Boltzmann equations, the latter giving the form of temporary relaxation.
An important conclusion of this work is that the tunneling current density comes from the
contribution of two effects: the first is the ordinary contribution of the Landauer formula in
the linear voltage regime, and the second is a correction term originated by the screening of
the electric potential through the insulating layer. The contribution to the current due to
this screening term in most systems is negligible compared to the current generated by the
effect of resonant tunneling. These results are detailed in [37].

Apart from the effect of the charge redistribution caused by the ionized donors and
the external electric field applied to the contacts, it is possible to analyze the effect of
the electronic spin dependence on the transport properties in magnetic RTD. The three
combined effects generate an effective modification in the profile associated with the
bottom of the conduction band in the heterostructure that finally causes modifications
in the electronic transport properties. In the work of Havu et al. [38], the self-consistent
spin-density-functional theory method was implemented within the Wigner formalism
with Green functions to analyze the properties of electronic transport in a magnetic RTD
obtaining the electronic densities and potentials, studying the computational cost that
this requires.

Over the years, research has continued to improve numerical techniques to make them
more efficient and extend theoretical developments in various physical situations. Taking
advantage of the versatility in terms of materials and external parameters with which it
is possible to develop RTDs, our main interest is to develop a methodological approach
to address these types of problems by first solving the effect of charge redistribution and
electron density in the system out of equilibrium to obtain in this way the profile at the
bottom of the self-consistent conduction band. This will act as an input parameter for the
potential term in the Schrödinger equation, considering open boundary conditions in the
effective mass approximation, this equation, as well as the Poisson equation, is solved
through the finite-element method (FEM) to obtain a set of quasi-stationary states and
probabilities of electronic transmission in the system. Finally, with these transmission
functions, the Landauer formalism is implemented for the calculation of the density current
and conductance. In this study, we report the self-consistent potentials, quasi-stationary
electronic states, tunneling currents, and conductances for different widths of the central
well and different donor densities; then, a comparison is drawn between theoretical results
of this procedure with recently reported experimental results. The article is organized as
follows: Section 2 presents the theoretical framework of the simulation. In Section 3, we
show and discuss the results obtained. Section 4 is devoted to the conclusions of the work.

2. Theoretical Model

Our system corresponds to an RTD (Resonant Tunneling Diode), consisting of a GaAs
central region (Quantum Well) of length Lw, surrounded by two Al0.3Ga0.7As barriers
with equal lengths Lb. There are two additional GaAs undoped spacers with lengths Ls;
the purpose of these layers is to prevent electronically tunneling scattering effects due to
impurities in the contact region. Finally, two outer GaAs doped layers of length Ld. This
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is the central system that is contacted with two electronic reservoirs or metal contacts on
each side, as presented in Figure 1. For this work, we consider a non-rectifying metal-
semiconductor junction, which consists of a negligible relative resistance of the contacts
compared to the resistance of the central device. In this case, it is considered that mobility
effects are due solely to the electronic movement in the conduction band.
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Figure 1. Scheme of the resonant tunneling diode (RTD), with doping nd in the outer regions, two
Al0.3Ga0.7As barriers, a GaAs well, and two outer regions of the GaAs undoped with two metal
contacts in the external regions.

The system was solved through the finite-element method with the COMSOL-
Multiphysics licensed software by (5.4, COMSOL AB, Stockholm, Sweden) [39–41], imple-
menting the semiconductor module (“Semiconductor Module User’s Guide” COMSOL
Multiphysics®) [42]. As a starting point, we must consider the effect on the potential of the
donor density and electron density in the system—this can be modeled by means of the
Poisson equation,

~∇ · (ε0εr~∇V(x)) = −ρ(x), (1)

in this equation, εr and ε0 are the relative permittivity and vacuum permittivity, respectively,
and the charge density ρ(x) has the form

ρ(x) = −qe(n(x)− Nd), (2)

in this equation, Nd is the number of donors which are considered to be fully ionized, and
qe is the electronic charge. The electronic density has the form

n(x) = Ncγne−β (Ec−EF), (3)

in Equation (3), Ec is the bottom of the conduction band, which, due to the effect of the
redistribution of charges, is not a straight line, but it is a function that can vary with position,
EF is the quasi-Fermi level (for the system out of equilibrium) associated with the conduction
band. The term Nc = 2(m∗/ 2πβh̄2)3/2 corresponds to the effective density of states, with
m∗—the electron effective mass, kB is the Boltzmann constant, h̄ is the reduced Planck
constant, and β is the Boltzmann factor β = 1/kBT. In Equation (3), the term γn is equal to

γn = F1/2(β(EF − Ec))eβ(Ec−EF), (4)

where F1/2 is the Fermi–Dirac integral, kB is the Boltzmann constant, and T—the system
temperature. In the non-degenerate states limit, the Fermi–Dirac distribution approaches
the Maxwell–Boltzmann distribution, and γn = 1. The values of the electronic affinity
qe χ = E0− Ec (E0 is the vacuum level) and the bandgap Eg = Ec− Ev are input parameters
associated with the properties of the materials and necessary to establish the quasi-Fermi
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level as a reference point during the calculations. The band energies in Equations (3) and (4)
are related to the electrostatic potential V(x), as follows [43,44]:

Ec = −χ− qe V(x). (5)

The potential obtained in Equation (5) can be replaced in the Schrödinger equation to
obtain the eigenfunctions and eigenvalues,

− h̄2~∇ ·
(
~∇ψi(~r)

2m∗

)
+ U(~r)ψi(~r) = Eiψi(~r), (6)

h̄ is the reduced Planck constant, U(~r) = Ec is the conduction band profile obtained by
solving the system of Equations (1)–(5) in a self-consistent way, this includes the potential
band offset and the effect of the charge redistribution due to doping. Ec is depicted in
Figure 2 for Lw = 4 nm, Lb = 3 nm, Ls = 3 nm, Ld = 12 nm and nd = 1.2× 1018 cm−3, the
quasi-Fermi level calculated for this configuration is EF = 0.026 eV, as presented in Figure 2
with the dashed line. ψi is the system wave function corresponding to the eigenvalue Ei, the
subscript i indicates the quasi-stationary states generated inside the device central quantum
well region. The solutions of Equation (6) for this system considering open boundary
conditions are plane waves,

ψi(~r) = A(~r)ei~ki ·~r + B(~r)e−i~ki ·~r. (7)

The functions A(~r) and B(~r) indicate that the amplitude of the wave that propagates
from left to right and from right to left depends directly on the point in the system at which
they are calculated and the full wave function is a superposition of these waves, ki is the
magnitude of the wave vector and is given by ki = (2m∗(Ei − Ec)/h̄2)1/2.

Knowing the amplitude of the wave function in all regions, it is possible to calculate
the transmission function T(E) through the device by

T(E) =
|A(~r f )|2

|A(~ri)|2
, (8)

where A(~ri) represents the wave amplitude that propagates from left to right evaluated at
the emitter (amplitude of the incident wave), and A(~r f ) is the amplitude of a wave that
propagates from left to right, but is evaluated in the collector (amplitude of the transmitted
wave). This function is proportional to the probability of electronic tunneling through the
double-barrier system.
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Figure 2. Conduction band profile. The dashed line correspond to the quasi-Fermi Level. The
calculations are for Lw = 4 nm, Lb = 3 nm, Ls = 3 nm, Ld = 12 nm and nd = 1.2× 1018 cm−3.
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Current-voltage characteristics of this device can be calculated using the Landauer
formula, which gives the electronic tunneling current between the contacts,

I =
e

πh̄

∫ ∞

−∞
T(E)[Fem(E, Φ)−Fcol(E, Φ)]dE, (9)

in this equation, e is the electron charge and h̄ is the reduced Plank constant, the terms
Fem(E, Φ) and Fcol(E, Φ) correspond to the Fermi functions evaluated at the emitter
and collector, respectively, given by Fem(E, Φ) = (1 + e(E−EF)/kBT)−1 and Fcol(E, Φ) =
(1 + e(E−(EF−Φ))/kBT)−1 , where the term Φ is the bias voltage applied between both de-
vice terminals.

At the zero bias limit (at low temperature), the Fermi functions take the form of
Heaviside functions and the Equation (9) reduces to the well-known Landauer equation for
conductance [45],

G =
e2

πh̄
T(E), (10)

the term T(E) represents the transmission function between the contacts, which, in this
case, corresponds to the two terminals of the device (emitter and collector).

2.1. A Device Macroscopically Large in the Transverse Directions

In most of these types of devices, it is reasonable to consider that the structure growth
direction is very small compared to the transverse directions of the device. Considering
this statement, the electronic energy associated with their transverse directions is given by

εy,z =
h̄2

2m∗
(k2

z + k2
y). (11)

With this expression, it is possible to calculate the electronic distribution, depending
only on the device growth direction, obtaining,

F (E) = S
m∗

βπh̄2 ln
(

1 + eβ(EF−E)
)

, (12)

where S is the cross-sectional area of the device and β = 1/kBT, with kB—the Boltzmann
constant and T—the device temperature. This expression is proportional to the number
of electrons with energy E. With these results, it is possible to calculate the total current
density through the device J = I/S, using Equation (9),

J =
em∗

2βπ2h̄3

∫ ∞

0
T(E) ln

(
1 + eβ(EF−E)

1 + eβ(EF−E−Φ)

)
dE. (13)

By means of this equation, it is possible to calculate the current-voltage characteristics
through the device, considering variations in electronic concentration and temperature.
In this type of system, the electronic transport process is ballistic, that is, there are no
dispersion mechanisms within the device; however, the current does not reach infinite
values due to the electron reflection probability being different from zero, which acts as a
resistance to the passage of charge carriers through the system [46].

In Figure 3, we can see the conduction band’s profile and the probability density that
corresponds to the only quasi-stationary level within the central region. It is noteworthy that
the energy corresponding to this level has an imaginary part, as it is expected for this type
of confinement in which the electrons do not remain indefinitely inside the well, but they
may eventually come out through tunneling through the walls of AlGaAs after a certain
half-life that is proportional to the width of the transmission function peak, as will be seen
later. Since the state presented in this figure corresponds to the quasi-stationary state of the
central region (that is, the free electrons have exactly the same energy as the state inside the
well), then it corresponds to a state of maximum tunneling probability, and therefore, the
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wave function amplitude is not affected after the electrons cross the two barriers. For any
other free-electron energies in the emitter region, a decrease in the amplitude of the wave
function occurs, which implies a decrease in the probability of transmission. The red dashed
curve corresponds to the quasi-stationary state with energy E0 = 0.147 eV; this is precisely
the energy for which there must be a maximum electron tunneling incident from the emitter.
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0.4
en

er
gy

 (e
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 V(x)
 EF

 | 0(x)|2
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Figure 3. Potential energy for the system in equilibrium (bias voltage 0.0 V), the blue curve corre-
sponds to the probability density of the resonant state, and the red dashed curve is the energy for this
state E0. The quasi-Fermi level is also presented with the blue dashed curve. The calculations are for
Lw = 4 nm, Lb = 3 nm, Ls = 3 nm, Ld = 12 nm and nd = 1.2× 1018 cm−3.

2.2. Cut-Off Frequency Calculation

One way to characterize RTDs is through the cut-off frequency. The impedance
of unbiased RTDs is well described by an equivalent circuit (EC) consisting of parallel-
connected resistance and capacitance and an additional resistance connected in series with
this parallel combination [47–49]. To calculate the cut-off frequency, it is necessary to
calculate the delay time of electrons in the quantum well of an RTD, τD. This time can be
calculated by remembering that the energies associated with the quasi-stationary states
inside the central well are complex, E = ε + i Γ, where ε and Γ are the real part and the
imaginary part of the energy, respectively. The imaginary component of energy can be
associated with the τD-time through the relation τD = h̄/Γ. In the case in which there is
the contribution of two conduction channels with associated delay times τ1 and τ2, the
total time τD is obtained according to 1/τD = 1/τ1 + 1/τ2. We have calculated the cut-off
frequency based on the work of Alkeev et al. [50], obtaining the result of

(2π fC)
2 =

1
τ0 τD

(√
1 + A2 − A

)
, (14)

with

A =
τ2

0 + τ2
D

2 τ0 τD
. (15)

In Equation (14), fC corresponds to the cut-off frequency and τ0 is a parameter that for
this system takes estimated values between 0.1 ps and 0.2 ps, according to the results of
Alkeev et al. [50].

3. Results and Discussion

For the transmission calculation, except for the conductance, the following input
parameters have been used [51,52] at 300 K, for GaAs: electron effective mass m∗ = 0.067 m0
(where m0 is the mass of the free electron), dielectric constant εr = 12.9, bandgap 1.42 eV,
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and electronic affinity χ = 4.07 eV. For Al0.3Ga0.7As: electron effective mass m∗ = 0.0879 m0,
dielectric constant εr = 12.048, bandgap 1.81 eV, and electronic affinity χ = 3.74 eV. For
the conductance calculations at 5 K, the following parameters have been used, for GaAs:
electron effective mass m∗ = 0.0665 m0, dielectric constant εr = 12.4, and bandgap 1.52 eV.
For Al0.3Ga0.7As: electron effective mass m∗ = 0.0916 m0, dielectric constant εr = 11.56,
and bandgap 1.95 eV. All the equations were solved through the finite-element method
considering the following parameters: 538 elements, 538 edge elements, 0.5149 element
length radius, 400 as the maximum number of iterations of the self-consistent method, and
10−6 as the absolute tolerance.

Figure 4 shows the self-consistent potential profile and how it changes and the resonant
state probability density as the potential difference between the emitter and the collector
increases. The clear redshift of the resonant level must be highlighted and the decrease
in the electronic probability density inside the quantum well, mainly due to the electric
field effect. For voltages higher than 0.4 V, the resonant state is very close to the bottom of
the conduction band at the emitter, and therefore, from this limit, it no longer contributes
to the transport properties in the system. From Figure 4d, it is possible to notice that, for
high voltages, electronic current there will no longer exist in the system due to resonant
tunneling, the incident electrons do not have a state inside the well to tunnel and therefore,
their probability of passing to the collector must be significantly decreased. This occurs until
reaching a certain limit voltage from which the electrons will have two options—perform
resonant tunneling with a higher state of the system or perform non-resonant tunneling,
which depends on both geometric characteristics and the materials involved in the system.
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Figure 4. Potential energy change with bias voltage from 0.0 V to 0.4 V, the blue curve corresponds to
the resonant state probability density and the red curve is the energy for this state E0. The quasi-Fermi
level is also presented by the dark blue dashed line for emitter and collector. The calculations are for
Lw = 4 nm, Lb = 3 nm, Ls = 3 nm, Ld = 12 nm, and nd = 1.2× 1018 cm−3.

In Figure 5, we see the transmission probability for different voltage values, as indi-
cated by the arrow, the voltage varies from 0.0 V to 0.6 V, Figure 5a corresponds to a doping
nd = 1.2× 1018 [1/cm3], while in Figure 5b it is nd = 10× 1018 [1/cm3]. The red curve is for
a 10 nm QW, and the black one is 4 nm. As indicated in Figure 5b, the quasi-Fermi level at
the emitter (shaded region) presents a higher value for the system that has higher doping,
which means that there is a greater number of occupied states in the conduction band that
can contribute to current through the device. In Figure 5a, the quasi-Fermi level at the
emitter takes the value of EF = 0.026 eV, while in Figure 5b, it is of EF = 0.081 eV. For zero
voltage, the system with Lw = 4 nm presents a single resonant level in 0.147 eV, while for
Lw = 10 nm, there are two resonant peaks in 0.083 eV and 0.179 eV, respectively, where the
one closest to the bottom of the band has a medium amplitude lower than the peak of the
highest quasi-steady state, this characteristic in the amplitudes of the peaks is maintained
approximately, independent of the applied voltage. As the voltage is increased, as men-
tioned in Figure 4, there is a redshift of the levels inside the well and, at the same time, a
decrease in the transmission amplitude; this behavior is clearly evidenced in Figure 5a,b.
In Figure 5b, where the system presents higher doping, for Lw = 4 nm now presents the
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resonant state for the energy of 0.271 eV, that is, 0.124 eV higher than in the case of lower
donor density presented in Figure 5a. A fundamental difference concerning the system
with lower nd is that now, for Lw = 10 nm, there is only one resonant state inside the well
and not two as occurs in the initial case, with an energy of 0.230 eV, which, as in Figure 5a,
presents a much smaller mean amplitude than for the QW of Lw = 4 nm.
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Figure 5. Transmission coefficient for different values of bias voltage, the black curve is for Lw = 4 nm
and, the red curve is for Lw = 10 nm. (a) with nd fixed at 1.2× 1018 [1/cm3] and (b) with nd fixed at
10× 1018 [1/cm3]. The shaded area indicates the region between the bottom of the conduction band
and the quasi-Fermi level at the emitter. As indicated by the arrow in (b), the voltage for each curve
varies from 0.0 V to 0.6 V in steps of 0.05 V.

In Figure 5, notice how as the voltage increases, the redshift of all the states occurs.
For voltages higher than 0.05 V, the system with Lw = 10 nm presents a third resonant peak
well-defined of greater average width than the previous two; this does not happen for the
system with Lw = 4 nm. The increase in the average width of each peak occurs because
the upper states are “less stable”, that is, the lifetime of the electrons in these states is less
than in the lower states, and this time is proportional to the imaginary part of the energy
associated with each of these states and the average width of the resonant peaks. The shaded
area indicates the region between the bottom of the conduction band and the quasi-Fermi
level at the emitter, as shown in Figure 5a; note how the first resonant peak reaches the
quasi-Fermi level at the emitter faster for the system with less doping, at approximately
0.1 V for Lw = 10 nm, and 0.3 V for Lw = 4 nm. In the case of higher doping, these values
become 0.3 V and 0.45 V for Lw = 10 nm and Lw = 4 nm, respectively. This indicates that
the system in Figure 5a will reach a peak in the current faster than the system in Figure 5b.

Figure 6 shows the transmission probability for 0.0 V red curve and for 0.4 V black
curve, Figure 6a is for nd = 1.2× 1018 [1/cm3], Figure 6b is for nd = 10× 1018 [1/cm3]; from
bottom to top, the results are indicated by increasing the width of the QW. The shaded
area indicates the region between the bottom of the conduction band and the quasi-Fermi
level at the emitter. As the width of the well increases, a new resonant state with higher
energy and higher mean amplitude emerges for both electron densities, this state appears
for Lw ≥ 6 nm in the case of nd = 1.2× 1018 [1/cm3] and for Lw ≥ 8 nm in the case of
nd = 10× 1018 [1/cm3], as indicated in Figure 6a,b with the red curve. For larger Lw, the
first quasi-stationary state appears closer to the bottom of the conduction band at the emitter
(which corresponds to 0.0 energy), which generates the appearance of the first current
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peak for lower voltages; this effect is more significant in the case of lower donor density.
Concerning the increase in donor density, there is a slight shift in transmission peaks toward
lower energies, which translates into reaching resonance slightly faster than for the lower
density. For the 0.4 V voltage, it is possible to see how the peaks have shifted, approaching
the bottom of the conduction band and presenting a decrease in intensity produced by the
asymmetry of the potential generated by the effects of the applied electric field.

Lw = 10 nm

Lw = 8 nm

Lw = 6 nm

Lw = 4 nm

Lw = 2 nm

(a)

Tr
an

sm
is
si
on

energy (eV)

(b)
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Figure 6. Transmission coefficient for different values of Lw, the red curve corresponds to 0.0 V, and
the black curve corresponds to 0.4 V. (a) with nd fixed at 1.2× 1018 [1/cm3], and (b) with nd fixed at
10× 1018 [1/cm3]. The shaded area indicates the region between the bottom of the conduction band
and the quasi-Fermi level at the emitter.

Figure 7 presents the tunneling current density calculated employing Equation (13)
for two different values of Lw, Lw = 4 nm black points and Lw = 10 nm red points, as
a function of the bias voltage with Lb = 3 nm. In Figure 7a nd = 1.2 × 1018 [1/cm3],
in Figure 7b nd = 10× 1018 [1/cm3]. An increase in the magnitude of the current peak is
evidenced for Lw = 4 nm compared to Lw = 10 nm; this is due to a greater amplitude in
the electron transmission probability associated with the only quasi-stationary level for the
smaller well compared to the amplitude for the larger system. This is evidenced in Figure 5a
comparing the mean amplitudes of the resonant states for both systems, obtaining; as a
result, a higher mean amplitude for the system with lower Lw, that is, for Lw = 4 nm, this
behavior holds for both electron densities. Note how there are two peaks associated with
the current for the system Lw = 10 nm one for 0.15 V and the other for 0.45 V, reaching
current density values of the order of 0.042 [mA/µm2] and 0.449 [mA/µm2], respectively.
Note the difference in magnitude of these two current density peaks, and it is because the
first maximum corresponds to the resonant transmission with the lower energy red peak
in Figure 5, which, for non-zero voltages, when it reaches values below the quasi-Fermi
level at the emitter, this peak has a very low magnitude compared to that of the second
resonant peak. On the other hand, for Lw = 4 nm there is only one of greater magnitude
for 0.35 V, reaching a current density magnitude of 0.566 [mA/µm2]; this is because the
larger system has two quasi-stationary states (states inside the well), while the smallest
system presents only one, as evidenced in Figure 6a with the red curves. The marked
difference concerning the magnitude of the current peaks associated with Lw = 10 nm
is due to the difference in amplitude of the quasi-stationary states, the amplitude being
much smaller for the state of lower energy. For both well lengths, NDR occurs, that is, a
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decrease in current density from a certain limit voltage. In Figure 7b, which corresponds to
a higher donor density, it is evident that the system with Lw = 4 nm reaches the maximum
current density faster than the system with Lw = 10 nm. This is since in this system, the
quasi-stationary state with the lowest energy reaches the bottom of the conduction band
at the emitter with a negligible amplitude and average width compared to the second
quasi-stationary state; this means that in Figure 7b, the peak presented at 0.6 V of the red
curve corresponds to a current of 0.102 [mA/µm2] is due to the resonance generated by the
second state inside the well. For the system with Lw = 4 nm, the resonance with the only
quasi-steady state is presented for a value of 0.5 V, which corresponds to a current density
value of 0.204 [mA/µm2]. For both values of Lw, with nd = 10× 1018 [1/cm3], NDR is
presented. For voltages higher than 0.6 V and 0.8 V in Figure 7a and Figure 7b, respectively,
there is a monotonous increasing behavior in current density due to the combination of
two processes, the first being tunneling, not resonant, that is, tunneling through a single
potential barrier, and the second is a probable transmission of charge carriers in regions
above the potential barriers.
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Figure 7. Tunneling current density for two different values of Lw as a function of bias voltage, in
(a) with nd = 1.2× 1018 [1/cm3], and (b) with nd = 10× 1018 [1/cm3]. Figure (c) shows the transmission
for three different values of the Al concentration in the barriers, x = 0.2, 0.3, and 0.4 for a system of
three regions AlxGa1−xAs/GaAs/AlxGa1−xAs. The inset shows the current density for these three
systems taking Lw = 4 nm and Lb = 3 nm. In figures (a,b), the cut-off frequencies have been included
for all the arrangements calculated (black text corresponds to Lw = 4 nm and red text corresponds to
Lw = 10 nm) by taking two different values of τ0, 0.1 ps and 0.2 ps.

For comparison, Figure 7c shows the transmission for three different values of the
aluminum concentration in the barriers, x = 0.2, 0.3, and 0.4, for a three-region system
of AlxGa1−xAs/GaAs/AlxGa1−xAs. The inset shows the current density for these three
systems taking Lw = 4 nm and Lb = 3 nm. We can note that the transmission peak width is
inversely proportional to the x-percentage in the barrier region; this implies an increase
in the system current density for the system with the lowest x-concentration, as can be
seen in the inset of Figure 7c. On the other hand, it presents a blue shift proportional
to the x-percentage in the barriers; this is due to the fact that when the Al percentage
increases, there is an increase in the barrier heights and this displaces the quasi-stationary
state towards higher energies. In Figure 7a,b the cut-off frequencies values, fC, have been
included for all the arrangements calculated (black text corresponds to Lw = 4 nm and red
text corresponds to Lw = 10 nm) by taking two different values of the τ0-parameter, 0.1 ps
and 0.2 ps [50]. These frequencies were calculated according to Equation (14). The highest
cut-off frequency occurs for the RTD of Lw = 10 nm and nd = 10× 1018 [1/cm3]. Taking
τ0 = 0.1 ps, fC = 0.52 THz. On the contrary, the lowest cut-off frequency occurs for the
RTD of Lw = 10 nm with nd = 1.2× 1018 [1/cm3], taking τ0 = 0.2 ps, with a value of 0.33 THz.
Note how the cut-off frequency reaches higher values for τ0 = 0.1 ps than for τ0 = 0.2 ps for
both central well widths. On the other hand, the RTD with Lw = 4 nm does not present
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significant changes in the cut-off frequency with the increase in carrier density nd, the
largest change is of the order of 0.03 THz for τ0 = 0.1 ps. For the RTD with Lw = 10 nm, the
change in cut-off frequency with increasing carrier density nd is more significant, reaching
a maximum change of the order of 0.15 THz for τ0 = 0.1 ps.

The system conductance is proportional to the electronic probability transmission. The
proportionality constant is known in the literature as the conductance quantum and is given
by G0 = e2/πh̄2. Figure 8a shows the conductance as a function of the incident electron
energy for a well width Lw = 4 nm for T = 5 K, this function is calculated by means of
Equation (10), each curve corresponds to a different donor density level, the black solid
curve is for nd = 1.2× 1018 [1/cm3], and the red dashed curve is for nd = 10× 1018 [1/cm3].
For the given value of Lw, the system presents a single resonant state; note that as the
donor density increases, a blue shift occurs in the conductance peaks, and these quasi-
stationary states are ordered from the system with the lowest nd to the system with the
highest nd, 0.1213 eV, and 0.1299 eV, respectively. It should be noted that for both curves,
the resonant peak average width remains approximately independent of the donor density
in the system. The intensity of the resonant peaks must reach the maximum value, that
is, a 100% probability of electronic transmission when the energy of the incident electrons
exactly coincides with the energy of the quasi-stationary states inside the well; this result
was expected since the system is in equilibrium or equivalently without applied fields.
Figure 8b shows the self-consistent potential corresponding to each donor density with
which the curves in Figure 8a were calculated. Notice how the height of the central region
changes with the increase of nd, taking the quasi-stationary state towards higher energies.
This figure also shows the position of the quasi-stationary states inside the well for each
nd. It must be taken into account that the conductance at the calculated temperature, that
is, T = 5 K, differs very little from the conductance at room temperature, which is in
agreement with experimental results such as those mentioned in [53].
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Figure 8. (a) Conductance for Lw = 4 nm, for two different donor concentrations in units of
G0 = e2/πh̄2, solid black line nd = 1.2× 1018 [1/cm3], and dashed red line nd = 10× 1018 [1/cm3].
(b) Corresponding self-consistent potentials. The curves were calculated at T = 5 K.

Table 1 presents in detail the value of the quasi-steady state corresponding to the two
donor concentrations calculated, as well as their difference ∆E. The value of the potential
in the center of the well and its difference for both configurations is also included. As
mentioned above, the highest energy state corresponds to the system with the highest
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donor density. The energy difference between the states corresponding to the two concen-
trations is 8.6 × 10−3 eV, while the potential difference reaches a value slightly greater than
8.8 × 10−3 eV.

Table 1. Energy associated with the conductance peaks and potential at the center of the well and
their differences ∆E for the two calculated concentrations, the data correspond to Figure 8.

nd (1018 [1/cm3]) 1.2 10 ∆E (10−3 eV)

V (eV) 0.0105 0.0193 8.8

E1 (eV) 0.1213 0.1299 8.6

Figure 9a shows the conductance as a function of the energy of the incident electron for
a well width Lw = 10 nm and T = 5 K, each curve corresponds to a different donor density
level as in Figure 8 for Lw = 4 nm. The black solid curve is for nd = 1.2× 1018 [1/cm3],
and the red dashed curve is for nd = 10× 1018 [1/cm3]. With the increase in the well
width, the number of resonant states in the system increases; this is evident by comparing
Figures 8a and 9a. For this greater width, the same shift behavior of the states towards
higher energies occurs as the donor density increases. The two curves present a very
sharp peak for the first state inside QW and two more peaks of greater amplitude for an
intermediate energy state and for the state closer to the continuum.
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Figure 9. (a) Conductance for Lw = 10 nm, for two different donor concentrations in units of
G0 = e2/πh̄2, solid black line nd = 1.2× 1018 [1/cm3], and dashed red line nd = 10× 1018 [1/cm3].
(b) Corresponding self-consistent potentials. The curves were calculated at T = 5 K.

As detailed in Table 2, the system with nd = 1.2× 1018 [1/cm3] presents three peaks in
conductance with energies of 0.046 eV, 0.143 eV, and 0.299 eV respectively, in the same way,
the system with nd = 10× 1018 [1/cm3] also presents three peaks with energies of 0.056 eV,
0.152 eV, and 0.308 eV respectively. For both configurations, there are three conductance
peaks. Table 2 also shows the energy difference ∆E between each of the states corresponding
to the different configurations, as well as the potential difference in the center of the well.
The difference in energy becomes smaller for the highest states, that is, the states closest
to the continuum are practically unchanged by the difference in donor concentration. An
important conclusion is that the average width of the conductance peaks is independent
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of the density of donors in the system; what is modified is the position of the peaks,
generating a shift towards higher energies. Figure 9b shows the self-consistent potential
profile corresponding to each donor density with which the curves in Figure 9a were
calculated. For this greater well width, the central region height is modified in a more
significant way as compared to the depth of the smaller well width as nd is increased. This
figure also shows the position of each of the states for the two calculated concentrations.

Table 2. Energy associated with the conductance peaks and potential at the center of the well and
their differences ∆E for the two calculated concentrations, the data correspond to Figure 9.

nd (1018 [1/cm3]) 1.2 10 ∆E (10−3 eV)

V (eV) 0.0138 0.0235 9.7

E1 (eV) 0.0463 0.0558 9.5
E2 (eV) 0.1432 0.1523 9.1
E3 (eV) 0.2986 0.3076 9.0

Comparison with Experimental Data

One way to test the method is through comparison with experimental results. In this
subsection, a comparison is made with experimental results obtained by Muttlak et al. [54]
in 2018, in which the authors presented an experimental study of InGaAs/AlAs resonant
tunneling diodes designed to improve the diode characteristics by varying geometric
characteristics. Figure 10 shows a diagram of the simulated device that is made up of
nine layers, of which the DBRTD (Double Barrier Resonant Tunneling Diode) zone, the
spacer layers that are on both sides of the DBRTD zone, and zones 1, 2, and 8, 9, which
is where donors are added to the system. This arrangement of layers is connected to two
electronic reservoirs that are also presented in the figure.

9

8
7

6
54

3

2

Bottom Electrode

Top Electrode

1

D
B
R
TD

Figure 10. RTD structure composed of 9 layers that are expanded in detail in Table 3. DBRTD stands
for Double-Barrier Resonant Tunneling Diode.

Table 3 shows in detail the characteristics of the materials, as well as the layer dimen-
sions and the donor densities corresponding to those presented in Figure 10. The outer
regions are composed of In0.53Ga0.47As with large dimensions compared to the central
region of the device, the DBRTD region is made up of two AlAs barriers with equal widths
of 1.1 nm and the QW region is In0.8Ga0.2As with a width of 3.5 nm.
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Table 3. Parameters corresponding to each of the layers in Figure 10.

Parameters by Layer

Layer Material Dimensions (nm) Doping (n+ cm−3)

1 In0.53Ga0.47As 400 1 × 1019

2 In0.53Ga0.47As 25 3 × 1018

3 In0.53Ga0.47As 5
4 AlAs 1.1
5 In0.8Ga0.2As 3.5
6 AlAs 1.1
7 In0.53Ga0.47As 5
8 In0.53Ga0.47As 25 3 × 1018

9 In0.53Ga0.47As 45 2 × 1019

Figure 11 shows the self-consistent potential corresponding to the background of the
conduction band obtained using the parameters presented in Table 3 at a temperature
of 300 K that comes from an experimental development. The white region in the figure
corresponds to the conduction band of the system, and the red segment indicates the
first quasi-stationary state inside the well that has an energy of 0.67 eV and is near the
bottom of the well. Note how the initially flat potential is modified considerably due to
the electronic redistribution generated by the self-consistent method that considers the
effect of the density of donors in the outer layers (regions 1, 2, 8, and 9). Note how the
system is asymmetric concerning the center of the QW due to the asymmetry in the regions
outside the DBRTD; these differences are both geometric and form the density of donors in
each layer.
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E0 = 0.67 eV

Figure 11. Self-consistent potential corresponding to the conduction band obtained numerically with
the experimental parameters detailed in Table 3.

Figure 12 shows a comparison between the results using our model for the self-
consistent calculation of the conduction band bottom profile and later use it to calculate the
transmission through the Schrödinger equation in the system and finally using Equation (13)
which corresponds to a Landauer approach, calculating the current density in the device.
The red dots (a) correspond to the current density due to resonant tunneling, including
the scattering effects simulated as additional resonances in the system, and the blue points
(b) correspond to the current density obtained only by resonant tunneling, while the
black stars are the experimental points. The simulation parameters that correspond to the
characteristics of the materials, the dimensions, as well as the donor density are presented
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in Table 3 at a temperature of 300 K, which corresponds to the temperature reported on the
experimental level.
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Figure 12. Comparison between simulated results using Equation (13) (red and blue dots) and
experimental results [54] (black stars).

In the region between 0 V and 0.46 V, there is a very good correspondence of the
simulated results with the experimental ones, with a change in the current density between
0 and 10.9 [mA/µm2] approximately, which corresponds to the maximum value generated
by the resonance between the incident electrons and the first quasi-stationary state inside
the well shown in Figure 11. For values greater than 0.46 V, the simulation presents a drop
in current density representing an NDR. For voltages higher than 0.5 V, the current in the
system is mainly due to dispersion effects (this is evident due to the difference between the
blue points and the red points in this region), due to possible impurities in the interlayer
regions that can eventually contribute to electronic transport in the system. On the other
hand, because the experimental temperature is 300 K, it is important to consider dispersion
effects due to thermionic emission and electronic absorption of phonons, processes that
can provide electrons with enough energy to tunnel through barriers and contribute to
current density [55,56]. These effects are included in the model by adding three additional
resonances to the simulated one at positions 1.02 eV, 1.12 eV, and 1.81 eV, respectively. These
effects correspond to the red dots in Figure 12 that generate a current peak between 0.5 V
and 0.7 V and exponential-like behavior for voltages higher t.

4. Conclusions

The wave functions, quasi-stationary states, and self-consistent potentials, among
other electronic properties in a double-barrier resonant tunneling diode system based
on GaAs and InGaAs, were calculated by solving the equations in each step using the
finite-element method. Employing the Schrödinger equation, the probabilities of electronic
transmission were calculated considering variations in geometric parameters such as the
width of the central well and non-geometric parameters such as the density of donors in
the layers outside the barrier region. Additionally, the system has been converged out of
equilibrium to analyze the response of the internal quasi-stationary states to an external
potential difference applied to the contacts, obtaining a redshift in all transmission peaks
regardless of the donor density used. A way has been found to tune the system, particularly
the position or quantity of quasi-stationary states inside the central well, by modifying the
bias voltage, modifying the width of the central well, and modifying the density of donors
in the system. Once the system was characterized through the probability of electronic
transmission, the Landauer formalism was used to calculate the electric current density
that circulates through the diode for different well widths and different donor densities.
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An important conclusion is that the first current peak is obtained for lower voltages in the
case of the narrower width of the central well. On the other hand, when the donor density
is lower, the current peaks reach a higher value for the simulated parameters. For the cases
studied, it is possible to show NDR. For the system under study, the cut-off frequency
was calculated, analyzing geometric and non-geometric variations. A maximum value of
0.52 THz has been found for the RTD of Lw = 4 nm and nd = 10× 1018 [1/cm3].

The conductance in the double barrier system was calculated, changing the dimensions
of the well and the density of donors, obtaining multiple peaks of conductance for a width
of 10 nm and a single peak for a width of 2 nm. The increase in concentration only modifies
the position of the peaks, but does not change the shape of the conductance function.
Finally, the theoretical procedure was applied to an experimental system reported in recent
literature; this is a non-symmetric system based on InGaAs with AlAs barriers consisting
of nine regions. The current density at room temperature for this system was compared,
obtaining satisfactory results for calculating the position of the first resonance in the system
and the magnitude of the current density at this point. Likewise, the converged parameters
for the experimental comparison do not exceed 3% error compared to the same parameters
reported in the literature. These results indicate that this system could be a good candidate
for potential applications in various science or engineering fields.
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