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This study proposes two novel methods for determining the muscular internal force (MIF)
based on joint stiffness, using an MIF feedforward controller for the musculoskeletal
system. The controller was developed in a previous study, where we found that it could be
applied to achieve any desired end-point position without the use of sensors, by providing
theMIF as a feedforward input to individual muscles. However, achievingmotion with good
response and low stiffness using the system, posed a challenge. Furthermore, the
controller was subject to an ill-posed problem, where the input could not be uniquely
determined. We propose two methods to improve the control performance of this
controller. The first method involves determining a MIF that can independently control
the response and stiffness at a desired position, and the second method involves the
definition of an arbitrary vector that describes the stiffnesses at the initial and desired
positions to uniquely determine the MIF balance at each position. The numerical simulation
results reported in this study demonstrate the effectiveness of both proposed methods.
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1 INTRODUCTION

Humans are able to easily achieve specific complex movements by manipulating the structure of the
human body. The human body structure can be described in terms of a musculoskeletal structure in
which muscles, corresponding to actuators, cover bones and joints. Joint angle and stiffness can be
adjusted by contracting the muscles, thus allowing the individual to perform complex motions.

A number of robots that can imitate this musculoskeletal structure have recently been
investigated. Marques et al. (Marques et al., 2010) developed a human coexistence robot that
imitates the musculoskeletal structure, while a research group including Inaba (Mizuuchi et al., 2006;
Asano et al., 2016) developed another musculoskeletal structure-imitating humanoid robot. Verrelst
et al. (Verrelst et al., 2005) developed a biped robot actuated with antagonistic pneumatic artificial
muscles. This robot can control joint stiffness and achieve stable walking. Niiyama et al. (Niiyama
et al., 2012) developed a double legged robot with a musculoskeletal structure that emulates an
athlete’s physique and style of running. Their robot had the capability of running stably for 4 m.
Niiyama et al. (Niiyama et al., 2007) developed a jumping robot with a musculoskeletal structure that
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could perform big leaps. The results of these studies indicate that
the musculoskeletal structure functions as a feedback system
when undergoing instantaneous movements; thus, an
understanding of the musculoskeletal structure can be used to
develop robots that can perform previously difficult-to-achieve
motions.

In a previous study, we proposed a muscular internal force
(MIF) feedforward controller for a musculoskeletal system (Kino
et al., 2009, 2013). This controller could be used to attain any
desired position without the use of sensors, by providing aMIF as a
feedforward input to the associated muscle. The controller input
would create a potential field in the musculoskeletal system;
allowing the system to converge at the desired position when
this potential field achieved a stable equilibriumpoint at the desired
position. This end-point convergence is influenced by muscle
arrangement (Kino et al., 2017). The MIF must be increased to
obtain a desirable control response, through increase in system
stiffness. Subsequently, reducing the MIF to lower the stiffness
causes the responsiveness to deteriorate. As a result of the
correlation between response and stiffness, it is challenging to
simultaneously achieve high-response motion and low system
stiffness. Furthermore, the controller is affected by an ill-posed
problem where, its input cannot be uniquely determined due to
the muscle redundancy of the musculoskeletal system.

To tackle this muscle redundancy, Buchler et al. (Buchler et al.,
2018) proposed a variance-regularized control that can achieve high
accuracy trajectory tracking in the musculoskeletal system. In
addition, Jantsch et al. (Jantsch et al., 2011) proposed a new
controller based on computed torque control and a method for
obtaining themuscle Jacobian by usingmachine-learning techniques
for the musculoskeletal system. Their method indicates that
trajectory control and force control can be achieved. Katayama
and Kawato (Katayama and Kawato, 1990) proposed a parallel-
hierarchical neural network model based on a feedback-error-
learning scheme, in the field of exercise physiology. This model
requires repeated trials; however, it is capable of achieving rapid
movements that have otherwise been difficult to achieve using a
feedback controller. A tendon driven robot equivalent to the
musculoskeletal system has been explored (Viau et al., 2015).
However, position control methods, like the feedforward
controller method from our previous study (Kino et al., 2009,
2013), have not been fully explored.

Further, various studies have been conducted on methods for
contributive employment of redundancies (Klein and Huang, 1983).
For instance, it has been observed that redundancy can be used to
avoid specific robot attitudes (Mayorga and Wong, 1988) and
obstacles (Baillieul, 1986; Chirikjian and Burdick, 1990) during
motion. In addition, redundancies can be used to optimize
torques in the robotic structure (Suh and Hollerbach, 1987),
avoid restrictive joint movement (Shimizu et al., 2008), and apply
stiffness (Svinin et al., 2002) and impedance control (Albu-Schaffer
et al., 2003). Yoshikawa (Yoshikawa, 1985) suggested that the
operability of a manipulator can be improved using redundancy;
while, Hanafusa et al. (Hanafusa et al., 1981) and Nakamura et al.
(Nakamura and Hanafusa, 1987) proposed control methods for
achieving sub-tasks, based on the prioritization of robot actions. In
parallel wire-driven systems (Sui and Zhao, 2004; Behzadipour and

Khajepour, 2006), system actuation redundancy can be used to
generate internal wire forces. The stiffness of the system can be
changed by controlling these internal forces, thus indicating that
robot performance and versatility can be improved by manipulating
the robot’s redundancy. Hence, redundancy has several potential
advantages. Meanwhile, sensors are mostly utilized in methods that
employ redundancy. The musculoskeletal system continues to
encounter muscle redundancy. The musculoskeletal system can
achieve various kinds of motion by utilizing muscle redundancy
without the addition of a new actuator.

The primary objective of this study is, to resolve the issues in the
MIF feedforward controller proposed in previous studies. We
began by eliminating the foremost issue of correlation between
the response and stiffness. Further, the MIF that separately sets the
response and stiffness was determined, and the ill-posed problem
was solved. In this study, a new generic method for determining
MIF using joint stiffness was developed, as an approach to
improving the control performance of our previously developed
MIF feedforward controller. The proposed method involves the
application of an approach derived from Nakamura (Nakamura
andHanafusa, 1987), which includes prioritized application of sub-
tasks to increase the stiffness of joints at desired positions by way of
redundancy. This approach was used to develop two specific MIF
determination methods: one involving the independent setting of
response and stiffness, and the other involving the unique
determination of MIF. The first method was used to identify
the MIF that can independently determine the response and
stiffness at a desired position, while the second was used to
determine an arbitrary vector that reflects the stiffness at the
initial and desired positions, and uniquely defines the balance of
MIFs at each position.

The remainder of this paper is organized as follows. Section 2
describes the kinematics of the musculoskeletal system. Section 3
describes the MIF feedforward system used to control the
musculoskeletal system. In Section 4, describes the
development of a joint stiffness matrix of the musculoskeletal
system. The two methods and their simulation results are
presented in Sections 5 and Section 6, respectively.

2 MUSCULOSKELETAL SYSTEM

The musculoskeletal system considered in this study is shown in
Figure 1. The system comprised of two links and six muscles. The
joint had one degree of freedom and could rotate when muscle
tension was applied through the link. A joint with one degree of
freedom requires at least two muscles to drive its link in the
clockwise and counter-clockwise directions because muscles can
only produce shrinkage forces; as a result of which, this system
has an actuation redundancy. Additionally, we assumed that the
movement of the system was unaffected by the force of gravity
because the system was set in the x-y plane.

The muscle consisted of a combination of wire and motor
instead of a pneumatic actuator (Kino et al., 2017). The muscles
were connected to an anchored base, and to each link. The
anchoring was set at an explicit offset that influenced the
convergence of the MIF feedforward controller (Kino
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et al., 2009, 2013). In our analysis of the muscular
arrangement, we employed a set of parameters that
converged at a desired position. Although, as mentioned
above, the influence of gravity is also not considered;
however, the muscular internal force feedforward
controller is able to achieve system movement under the
influence of gravity from a result of an other study (Matsutani
et al., 2019b).

2.1 Relation Between Muscle and Joint
Spaces
The relation between the muscle length vector q(θ) �[q1, . . . , q6]T and the joint angle vector θ � [θ1, θ2]T within
the musculoskeletal system is given by

q(θ) �

���������������������������������
(h1 + a1C1 − s1S1)2 + (d1 − a1S1 − s1C1)2

√
���������������������������������
(h2 − a2C1 − s2S1)2 + (d2 − a2S1 + s2C1)2

√
���������������������������������
(h3 + a3C2 − s3S2)2 + (d3 − a3S2 − s3C2)2

√
���������������������������������
(h4 − a4C2 − s4S2)2 + (d4 − a4S2 + s4C2)2

√
������������������������������������������������
(u1 + L1C1 + u3C12 − b3S12)2 + (b1 − L1S1 − u3S12 − b3C12)2

√
������������������������������������������������
(u2 − L1C1 + u4C12 + b4S12)2 + (b2 − L1S1 + u4S12 − b4C12)2

√

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(1)

where Li (i � 1, 2) is the link length, aj (j � 1, . . . , 4), bj, dj, hj, uj, sj are
the muscular arrangement parameters, as shown in Figure 1, Ci and
Si are defined in terms of i as Ci � cos θi and Si � sin θi, respectively,
andC12 and S12 are defined asC12 � cos (θ1 + θ2) and S12 � sin (θ1 +
θ2), respectively. By differentiating Eq. 1 with respect to time,

FIGURE 1 | Musculoskeletal system.
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the relation between the muscle contractile vector _q(θ) ∈ R6

and the joint angular velocity vector _θ ∈ R2 can be obtained:

_q(θ) � −W(θ)T _θ, (2)

where W(θ) ∈ R2×6 is the Jacobi matrix showing the relation
between the respective vectors, which is given by

W(θ) � − zq(θ)T
zθ

. (3)

The relation between the joint torque vector τ(θ) �[τ1(θ), τ2(θ)]T and the muscle tension vector α(θ) ∈ R6 can
be obtained based on the principle of virtual work as

τ(θ) � W(θ)α(θ). (4)

The inverse relationship to that given in Eq. 4 is expressed as

α(θ) � W(θ)+τ(θ) + I6 −W(θ)+W(θ)( )ke, (5)

� W(θ)+τ(θ) + v(θ), (6)

where I6 ∈ R6×6 is a unit matrix, ke ∈ R6 is an arbitrary vector,
v(θ) ∈ R6 is the MIF vector, and W(θ)+ ∈ R6×2 is a pseudo
inverse matrix of W(θ) defined by

W(θ)+ � W(θ)T W(θ)W(θ)T( )−1. (7)

The MIF vector v(θ) corresponds to the internal force applied
within the muscle. This vector belongs to the null space, that is, it is
a muscle tension component that cannot generate joint torque and
satisfies the following equation

W(θ)v(θ) � 0. (8)

As a result, the musculoskeletal system was subjected to an ill-
posed problem because the MIF vector corresponding to a given
joint torque could not be uniquely determined.

2.2 Relation Between Task and Joint
Spaces
The relation between the end-point position vector x(θ) � [x,y]T and
the joint angle vector θ of the musculoskeletal system is given by

x(θ) � L1C1 + L2C12

L1S1 + L2S12
[ ]. (9)

By differentiating Eq. 9 with respect to time, the relation
between the end-point velocity vector _x(θ) ∈ R2 and the joint
angular velocity vector _θ can be obtained as

_x(θ) � J(θ) _θ, (10)

Where J(θ) ∈ R2×2 is the Jacobi matrix showing the relation
between the respective vectors.

3 MUSCULAR INTERNAL FORCE
FEEDFORWARD CONTROLLER

The MIF feedforward controller, developed in our previous study
(Kino et al., 2009, 2013) was used to positionally control the

musculoskeletal system. In this method, the controller inputs a
balancingMIF at a desired joint angle of θd into the muscles of the
musculoskeletal system. This control input has been expressed
using Eqs 5, 6 as

α(θ) � v(θd)
� I6 −W(θd)+W(θd)( )ke. (11)

Under this method, control was obtained using only
kinematics; the input of any physical parameters or sensor
information of the musculoskeletal system was not required.
The Jacobi matrix W (θd) had a constant value at all times,
across all joint angular displacements because the matrix was
obtained using the desired joint angle θd. Additionally, the
control input was constant when the arbitrary vector ke was
constant.

When the shrinkage direction of the muscle was set at a
positive, the muscle tension α(θ) also had a positive
value because the muscle can produce only tension or
shrinkage. Therefore, the elements vdl (l � 1, . . . , 6) of the
MIF v(θd) � [vd1, . . . , vd6]T needed to satisfy the following
equation:

vdl > 0. (12)

Under this control method, the arbitrary vector ke was set
freely within a range satisfying Eq. 12.

Joint torque cannot be generated at a joint angle of θ � θd to
the muscle, by applying the control input detailed in Eq. 11:

W(θd)v(θd) � 0. (13)

The control input is a muscle tension component that does
not generate joint torque because the MIF vector v (θd) belongs
to the null space of the Jacobi matrix W (θd). By contrast, at
joint angles of θ ≠ θd the control input v (θd) cannot be
considered to be a vector belonging to the null space of
W(θ). It is possible for a control input v (θd) to generate a
joint torque because v (θd) can be decomposed into two
components: a muscle tension component that does not
generate joint torque and the vector v(θ) that belongs to the
null space:

W(θ)v(θd) � 0 or W(θ)v(θd)≠ 0. (14)

Using the abovementioned characteristics, the MIF controller
generated joint movement.

The convergence of the motion end-point was related to the
potential P generated by the MIF v (θd) (Kino et al., 2009, 2013),
which is defined as

P � q(θ) − q(θd)( )Tv(θd). (15)

A musculoskeletal system movement converged on a
desired joint angle θd when the angle dependent on
muscular arrangement, corresponded to a stable equilibrium
point in P (Kino et al., 2009, 2013). Moreover, the muscular
arrangements that were used to attain convergence were
identified based on the results of our previous studies (Kino
et al., 2009, 2013).
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4 JOINT STIFFNESS MATRIX

The joint stiffness matrix Kj(θ) ∈ R2×2 of the musculoskeletal
system (Nakiri and Kino, 2009) is given by

Kj(θ) � −zτ(θ)
zθ

. (16)

Here, because the joint torque τ(θ) was generated by the MIF
controller, the joint stiffness matrix was derived from Eqs 4, 11 as
follows:

τ(θ) � W(θ) I6 −W(θd)+W(θd)( )ke
�W(θ)Y(θd)ke. (17)

For convenience, the Jacobi matrix W(θ) from Eq. 3 is
rewritten as

W(θ) �
− zq(θ)T

zθ1

− zq(θ)T
zθ2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � wa(θ)

wb(θ)[ ]. (18)

The joint stiffness matrix in Eq. 17 can be re-expressed in
terms of its matrix elements as

τ1(θ)
τ2(θ)[ ] � wa(θ)Y(θd)ke

wb(θ)Y(θd)ke[ ]. (19)

Equation 19 can then be substituted into Eq. 16 to obtain

Kj(θ) �
−zwa(θ)

zθ1
Y(θd)ke −zwa(θ)

zθ2
Y(θd)ke

−zwb(θ)
zθ1

Y(θd)ke −zwb(θ)
zθ2

Y(θd)ke

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (20)

Also, from Eq. 18,

zwa(θ)
zθ2

� zwb(θ)
zθ1

. (21)

The joint stiffness matrix Kj(θ) is a diagonal matrix for which
the elements can be obtained using

Kj(θ) � K11(θ) K12(θ)
K12(θ) K22(θ)[ ], (22)

from which the following is derived as

K11(θ) � −zwa(θ)
zθ1

Y(θd)ke

K12(θ) � −zwa(θ)
zθ2

Y(θd)ke

K22(θ) � −zwb(θ)
zθ2

Y(θd)ke

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(23)

In this study, Eq. 23 was used to model two methods of MIF
determination. Using the first method, anMIF that eliminates the
correlation between the response and stiffness at the desired
position was determined. Using the second method, an arbitrary

vector describing the stiffness at the initial and desired positions
to uniquely determine the balance ofMIFs at a given position, was
defined.

5 METHOD FOR DETERMINING
MUSCULAR INTERNAL FORCE USING
JOINT STIFFNESS AT THE DESIRED
POSITION

In this section, a novel method for determining the MIF, which can
eliminate the correlation between the response and stiffness at a
desired position, is proposed. Under this method (Method 1), the
MIF at the desired position was determined using the joint stiffness.

At a joint angle of θ � θd, the matrix in Eq. 23 becomes

Kr(θd) � Z(θd)ke, (24)

Where

Kr(θd) � K11(θd), K12(θd), K22(θd)[ ]T,

Z(θd) �

−zwa(θd)
zθ1

Y(θd)

−zwa(θd)
zθ2

Y(θd)

−zwb(θd)
zθ2

Y(θd)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ R3×6.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(25)

The arbitrary vector ke is obtained as the inverse of Eq. 24:

ke � Z(θd)+Kr(θd) + I6 − Z(θd)+Z(θd)( )β, (26)

where the matrix Z(θd)+ ∈ R6×3 is a pseudo inverse matrix of the
matrix Z (θd) defined by

Z(θ)+ � Z(θ)T Z(θ)Z(θ)T( )−1, (27)

where β ∈ R6 is an arbitrary vector that was set freely within the
range satisfying Eq. 12. A block diagram of the application of the
MIF controller using Method 1 is shown in Figure 2.

5.1 Simulation Results
The simulated positioning control of the musculoskeletal system
shown in Figure 1 was conducted to assess the ability of Method
1. This simulation shows that the MIF can eliminate the
correlation between the response and stiffness at the desired
position using Method 1. In these simulations, an end-point
stiffness ellipsoid (Tsuji et al., 1995) was used to obtain a visual
representation of the stiffness. Under this approach, the desired
stiffness was represented as the end-point stiffness
Ke(x(θ)) ∈ R2×2, and a joint stiffness Kj(θ) corresponding to
the end-point stiffness was calculated. The relation between the
end-point and joint stiffnesses is given by

Kj(θ) � J(θ)TK e(x(θ))J(θ). (28)

TheMIF can be determined by substituting the elements of the
desired joint stiffness, K11 (θd), K12 (θd), and K22 (θd), calculated

Frontiers in Robotics and AI | www.frontiersin.org September 2021 | Volume 8 | Article 6997925

Matsutani et al. Methods for Determining Internal Force

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


from the end-point stiffnesses Ke (x (θd)), respectively, into
Eq. 26.

The results of positioning control using each input determined
by three desired end-point stiffness matrixes Ke1 (x (θd)), Ke2 (x
(θd)), and Ke3 (x (θd)) were compared in this simulation. The
simulation employed a conventional method (CM) (Kino et al.,

2013), which minimized the norm of the MIF as a comparison
target. The arbitrary vector using CM is given by

ke � c 1.0 1.0 1.0 1.0 1.0 1.0[ ]T. (29)

The result of the simulation performed by setting c � 70 is
expressed as CM1 and that for c � 115 is expressed as CM2.
Table 1 lists the physical parameters and muscular arrangements
of the musculoskeletal system, respectively, and Table 2 lists the
initial and desired parameters. The arbitrary vector β was set as
follows:

β � 150 1.0 1.0 1.0 1.0 1.0 1.0[ ]T. (30)

Table 2 lists the values of results obtained using Method 1 as
determined by Eq. 30.

The results of the simulations are shown in Figure 3 ∼ 4.
Figure 3A shows the transient responses of the end-point
position; Figure 3B compares the control inputs; Figure 3C ∼
Figure 3F show the end-point stiffness ellipsoids and loci of the
end-point positions in the task space, respectively; Figure 4A
compares the end-point stiffness ellipsoids; Figure 4B compares
the end-point stiffness ellipsoids of CM2 and Ke2 (x (θd));
Figure 4C compares the loci of the end-point position in the

FIGURE 2 | Block diagram of MIF controller using proposed Method 1.

TABLE 1 | Parameters of musculoskeletal system.

Parameter i = 1 i = 2

Mass mi [kg] 1.678 0.950
Length Li [m] 0.315 0.234
Moment of inertia Ii [kgm

2] 0.011 0.004
Joint viscosity μi [Ns/rad] 1.0 1.0

Parameter j = 1 j = 2 j = 3 j = 4

Muscular arrangement parameter

aj [mm] 120 120 120 120
bj [mm] 20 20 20 20
dj [mm] 20 20 20 20
hj [mm] 50 50 50 50
uj [mm] 50 50 50 50
sj [mm] 10 10 10 10

TABLE 2 | Initial parameters and the results using Method 1.

Parameter Value

Initial end-point position x0 [0.1,0.3]T [m]
Desired end-point position xd [−0.2,0.2]T [m]
End-point stiffness matrix Ke1 (x (θd)) 56 −28

−28 42[ ]
End-point stiffness matrix Ke2 (x (θd)) 104 −88

−88 96[ ]
End-point stiffness matrix Ke3 (x (θd)) 38 −15

−15 25[ ]
Joint stiffness vector Kr1 (x (θd)) [1.680, −0.073, 3.797]T
Joint stiffness vector Kr2 (x (θd)) [0.960, −0.042, 9.487]T
Joint stiffness vector Kr3 (x (θd)) [1.320, −0.121, 2.244]T

ke determined using Ke1 (x (θd)) [164.9, 135.2, 83.0, 18.4, 55.6, 20.9]T
ke determined using Ke2 (x (θd)) [164.9, 135.2, 331.7, 295.8, 29.4, 20.9]T
ke determined using Ke3 (x (θd)) [164.9, 135.2, −18.7, 30.2, 60.2, 20.9]T

Calculation result Kr1 (x (θd)) [1.680, −0.073, 3.797]T
Calculation result Kr2 (x (θd)) [0.960, −0.042, 9.487]T
Calculation result Kr3 (x (θd)) [1.320, −0.121, 2.244]T
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task space of CM2 and Ke2 (x (θd)). From Figure 3A, Figure 3C ∼
Figure 3F, it is seen that the end-point positions converge at the
desired position. The end-point stiffness ellipsoids
corresponding to 0.1-s intervals on the end-point
trajectories are shown in Figure 3C ∼ Figure 3F. In
Figure 3D and Figure 3F, the major axis of the ellipsoid is
shortened and the end-point trajectory bulges outward. In
Figure 3E, the major axis of the ellipsoid is lengthened and the
end-point trajectory suppresses the outward bulge. Although
Figure 3F shows an end-point trajectory that is equivalent to

the trajectory in Figure 3D, the end-point stiffness ellipsoids at
the desired positions differ and the control inputs vd3, vd4 are
significantly reduced, as shown in Figure 3B. Those results
show that Method 1 can achieve low stiffness without
sacrificing the response.

A comparison of the stiffness ellipsoids KeR1, KeR2, KeR3

obtained using the target end-point stiffnesses Ke1, Ke2, Ke3,
respectively, is shown in Figure 4A. Figure 4A also shows the
stiffness ellipsoids of CM1. In addition, joint stiffness vectors
Kr which were used in determining the MIF, and joint

FIGURE 3 | (A) Comparison of transient responses of end-point position at different desired end-point stiffnesses. (B) Comparison of control inputs. (C) Loci of
end-point positions and end-point stiffness ellipsoid in the task space produced using CM1. (D) Loci of end-point positions and end-point stiffness ellipsoid in the task
space produced using the stiffness matrix Ke1. (E) Loci of end-point positions and end-point stiffness ellipsoid in task space obtained using the stiffness matrix Ke2. (F)
Loci of end-point positions and end-point stiffness ellipsoid in task space obtained using the stiffness matrix Ke3.

FIGURE 4 | (A)Comparison of stiffness ellipsoids obtained using each desired end-point stiffness. (B)Comparison of stiffness ellipsoids obtained using the desired
end-point stiffness Ke2 and CM2. (C) Comparison of loci of end-point positions at the desired end-point stiffnesses Ke2 and CM2.
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stiffness vectors Kr which were realized by control, are shown in
Table 2. These results depict that the size of the ellipsoid changed,
and the desired end-point stiffness used for determining the
arbitrary vector ke was achieved. However, the ellipsoids showed
almost no change in the direction of the major axis. As the
direction of the major axis is dependent on the posture of the
musculoskeletal system, it is difficult to have a significant impact
through the controller input. However, when the arbitrary vector c
was set by constructing an end-point stiffness ellipsoid that had the
same length as the major axis at the Ke2 ellipsoid, CM2 incurred an
overshoot, whereas high stiffness was realized, as shown in
Figure 4B and Figure 4C. Method 1 can realize high stiffness
without causing an overshoot and can eliminate the correlation
between the response and stiffness at the desired position.

5.2 Evaluation of End-point Stiffness
Ellipsoid
The characteristics of the ellipsoid were evaluated by changing
the direction of the major axis using trial and error, to uncover
the relation between the end-point stiffness Ke (x (θd)) and axis
direction, because, as discussed in the preceding section, it is
difficult to significantly change the direction of the major axis
of the end-point stiffness ellipsoid using control input. The
stiffness matrix at the time of inputting the MIF, determined
using a conventional method, was used as reference. The
elements of the standardized stiffness matrix were changed
to rotate the longest axis of the ellipsoid in the clockwise
direction. This change was made using trial and error because
the relationship between the elements and rotational direction
remains unidentified. The MIF calculated based on the
stiffness matrix indicates that it satisfied Eq. 12 and was

less than 500. If the conditions are satisfied, same elements
are changed; otherwise, other elements are modified to rotate
the axis in a counter-clockwise direction. Furthermore, the
axis length was not evaluated because the lengths of the major
and minor axes of the ellipsoid were altered simultaneously
while maintaining a constant length ratio. The response of the
end-point position was also not considered.

The results of varying the direction of the major axis of the
end-point stiffness ellipsoid are shown in Figure 5 and listed in
Table 3. It can be observed through the results that the
parameters were changed within a range at par with the
norm of MIF being less than 500. Figure 5 shows the major
axis direction at eight end-point positions. In addition, the
end-point position x � [−0.1,0.1]T was excluded from the
evaluation because it was beyond an effective movable
range. The minimum change in the angle of c � 2.1° was
attained at the position x8 � [−0.1,0.2]T, while the maximum
change in the angle of c � 42.8° occured at x3 � [−0.3,0.1]T. These
results indicate that the direction of the end-point stiffness ellipsoid
generated by the application of Method 1 is dependent on the
posture of the musculoskeletal system. In this case, the relation
between the stiffness matrix parameter Ke (x (θd)) and the major
axis direction cannot be clarified due to position difference.

5.3 Evaluation of Modeling Error
Next, the influence of the musculoskeletal system, including
modeling error, was evaluated. The modeling error that
occurred during the application of Method 1 to an actual
musculoskeletal system could not be ignored. However, the
error was justified, as it was difficult to model the actual
system accurately. Therefore, the influence of muscular
arrangements, including modeling error, was evaluated. In this
evaluation, it was assumed that errors in muscular arrangements
occurred because of an assembly error in the musculoskeletal
system. The proposed method was evaluated as a true value using
the parameters listed in Table 1. The evaluation function of the
end-point position and joint stiffness vector is defined as

Ee � ‖xf − xd‖ (31)

Ek � ‖Krf − Kr‖, (32)

where xf is an end-point position of a simulation finish time and
Krf is the joint stiffness vector at xf.

FIGURE 5 |Change in orientation of major axis of ellipsoid with end-point
position.

TABLE 3 | Major axis of ellipsoid as a function of end-point position.

End-point position Rotation angle of Major
Axis

x1 � [−0.3,0.3]T 6.5°

x2 � [−0.3,0.2]T 5.8°

x3 � [−0.3,0.1]T 42.8°

x4 � [−0.2,0.3]T 10.6°

x5 � [−0.2,0.2]T 12.2°

x6 � [−0.2,0.1]T 12.6°

x7 � [−0.1,0.3]T 15.7°

x8 � [−0.1,0.2]T 2.1°
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One cause for the error in muscular arrangements is the
assembly error of the musculoskeletal system. In this case, it
was considered that large errors do not occur in the
measurement values because muscular arrangements can be
easily measured. Therefore, randomly selected values from a
range of error rates of 5% were used as actual muscular
arrangements. The MIF was determined using five muscular
arrangements and three stiffness matrices, and the evaluation
function was also calculated. Table 4 lists the average values of
the five evaluation functions. The evaluation function of the
joint stiffness vector was larger than that of the end-point. This
is because the joint stiffness vector was calculated using the
end-point and muscular arrangement. The evaluation function
of the joint stiffness vector became larger because it was
difficult to estimate the accurate joint stiffness vector when
modeling errors occurred. In particular, the evaluation
function of the joint stiffness vector using Ke2 (x (θd)) was
larger than all the other values. This function synergistically
became larger because the evaluation function of the end-point
was larger than the other values. We propose a robust position
control method for the arrangement error at this point
(Matsutani et al., 2019a). A decrease in the error of the
end-point position as a result of combining the proposed
method with the discussed control method is expected. It
was assumed that the decrease in the error of the joint
stiffness vector was caused by the impact of the end-point
position.

5.4 Evaluation of Arbitrary Vector β
We then investigated the influence of the arbitrary vector β on the
control result. In this evaluation, the MIF was determined using
the end-point stiffnesses Ke1 (x (θd)) listed in Table 2 and the
arbitrary vectors β derived from Eq. 33 ∼ (Eq. 35). The
simulation results obtained by applying the resulting MIFs
were then compared.

β1 � 150 1.0 1.0 1.0 1.0 1.0 1.0[ ]T (33)

β2 � 5 1.0 1.0 1.0 1.0 1.0 1.0[ ]T (34)

β3 � 500 1.0 1.0 1.0 1.0 1.0 1.0[ ]T. (35)

Table 5 lists the arbitrary vectors ke derived from
application of Method 1, using the outputs of Eq. 33 ∼
(35); the simulation results are shown in Figure 6.
Figure 6A shows the transient responses of the end-point
position; Figure 6B and Table 5 compare the control inputs;
Figure 6C and Figure 6D show the end-point stiffness
ellipsoids and loci of end-point positions in the task
space, respectively. The results obtained using the
arbitrary vector β1 were identical to those shown in

Figure 3D and were therefore, not repeated. It can be
observed from Figure 3D and 6 that, while the stiffness
ellipsoids at the desired position were the same, the transient
responses of the end-point position differed. While
analyzing the changes in end-point stiffness during
movement, it was observed that the ellipsoids varied
significantly near the initial position, but converged
completely near the desired position. This occurs because
the arbitrary vector β affected only the second term
of Equation 26, a term that has no effect on the end-
point stiffness matrix Ke1 (x (θd)). This is so, because it
becomes a vector that belongs to the null space of the
matrix when the end-point position is the desired
position. This indicates that Method 1 can be applied to
change the transient responses of the end-point position,
to achieve the desired end-point stiffness at the same
position.

Changing the arbitrary vector β from its value in Figure 6B
confirms that the arbitrary vector has no effect on the MIFs vd3
∼ vd6. Similarly, changing the end-point stiffness Ke (x (θd))
from its value inFigure 3B confirms that this factor has no
significant effect on the MIFs vd1, vd2. These results suggest
that muscles 1, 2 contribute to the maintenance of the transient
response of the end-point position while muscles 3 ∼ 6
contribute to the maintenance of end-point stiffness.
However, determination of the specific roles of the muscles
will require further investigation and is left as a subject for
future analysis.

6 METHOD OF DETERMINING MUSCULAR
INTERNAL FORCE USING STIFFNESS AT
THE INITIAL AND DESIRED POSITIONS
In this section, a novel method for uniquely determining
the MIF based on the stiffnesses at the initial and desired
positions (Method 2) has been introduced. By applying
Method 2, the stiffnesses at the respective positions can
be controlled while performing repetitive movements.
An example of this is the pick-and-place operation, in
which the stiffness is set to low when the robot picks up
an object, and set to high when the robot places the
object.

TABLE 4 | Evaluation function of the end-point position and joint stiffness vector.

Ke1 (x (θd)) Ke2 (x (θd)) Ke3 (x (θd))

Average value of Ee 0.047 0.065 0.051
Average value of Ek 0.670 2.046 0.654

TABLE 5 | Arbitrary vectors andMIFs determined mathematically using Method 1.

Arbitrary vector ke

β1 [164.9, 135.2, 83.0, 18.4, 55.6, 20.9]T
β2 [5.5, 4.5, 110.6, −12.0, 60.9, 0.7]T
β3 [549.8, 450.6, 16.3, 91.5, 42.8, 69.5]T

MIF v (θd)

β1 [154.6, 145.5, 69.0, 33.6, 36.1, 47.3]T
β2 [9.5, 0.5, 69.0, 33.5, 36.1, 47.3]T
β3 [504.6, 495.7, 69.2, 33.9, 36.0, 47.1]T
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For a balanced MIF v (θ0) input to a muscle at the initial joint
angle θ0, the joint stiffnessKj (θ0) at θ0 was derived from Eq. 23 as
follows:

K11(θ0) � − zwa(θ0)
zθ1

Y(θ0)ke

K12(θ0) � − zwa(θ0)
zθ2

Y(θ0)ke

K22(θ0) � − zwb(θ0)
zθ2

Y(θ0)ke

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(36)

Similarly, for a balance of MIFs v (θd) at a desired joint angle
θd input to a muscle, the joint stiffness Kj (θd) at θd can be derived
from Eq. 23 as

K11(θd) � −zwa(θd)
zθ1

Y(θd)ke

K12(θd) � −zwa(θd)
zθ2

Y(θd)ke

K22(θd) � −zwb(θd)
zθ2

Y(θd)ke

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(37)

Equations 36 and 37 can be expressed in matrix form as follows:

Ku � Qke, (38)
where

Ku �

K11(θ0)
K12(θ0)
K22(θ0)
K11(θd)
K12(θd)
K22(θd)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ R6,

Q �

−zwa(θ0)
zθ1

Y(θ0)

−zwa(θ0)
zθ2

Y(θ0)

−zwb(θ0)
zθ2

Y(θ0)

−zwa(θd)
zθ1

Y(θd)

−zwa(θd)
zθ2

Y(θd)

−zwb(θd)
zθ2

Y(θd)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R6×6.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(39)

FIGURE 6 | (A) Transient response of end-point position as a function of arbitrary vector value. (B) Comparison of control inputs obtained using different arbitrary
vectors. (C) Loci of end-point positions and end-point stiffness ellipsoid in task space obtained using arbitrary vector β2. (D) Loci of end-point positions and end-point
stiffness ellipsoid in task space obtained using arbitrary vector β3.
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The arbitrary vector ke can be obtained as the inverse of Eq. 38 as
follows:

ke � Q−1Ku. (40)

The MIFs v (θ0) and v (θd) calculated using this arbitrary
vector correspond to the musculoskeletal system stiffening to
values of Kj (θ0) and Kj (θd) at positions θ0 and θd, respectively.
The application of Method 2 using the MIF controller is shown as
a block diagram in Figure 7.

6.1 Simulation Results
Method 2 was used to apply individual control inputs to the
musculoskeletal system as it carried out repetitive movements. By
changing the values of the arbitrary vector ke, different target end-
point stiffnesses were applied at various initial positions A, to
serve as control inputs to the muscle for moving the system from
A to a desired position B. Arbitrary values of ke were also applied
as desired end-point stiffnesses at B, using the method. The
simulated positioning control of the musculoskeletal system
shown in Figure 1 was conducted to evaluate the abilities of
Method 2. A simulation was performed to infer that the MIF
determined using Method 2, can realize the stiffness at two
positions. Table 6 lists the arbitrary vector determined using
Method 2 and the set of initial and desired positions, A and B,
used in the simulations, respectively.

In each simulation, the musculoskeletal system underwent
controlled movement from the initial position A to the desired
position B and then back from B to A. The results validated
the effectiveness of Method 2 in terms of controlling the
musculoskeletal system based on control of stiffness at the
end-point and other positions. The physical and muscular
parameters of the musculoskeletal system used in this
simulation are listed in Table 1.

6.1.1 Position Control for Moving From Position A to B
Further, the position control process for motion between
positions A and B was then simulated. The results of the
simulation are shown in Figure 8. Figure 8A shows the end-
point stiffness ellipsoids and loci of the end-point position in the
task space; Figure 8B shows the transient responses of the end-
point position; Figure 8C compares the respective control inputs.
It can be observed from Figure 8 that the end-point position
converged at the desired position xB, and that end-point stiffness
KeB was achieved at the desired position xB. As shown in
Equation 36, a balanced MIF of v (θA) at the initial position
was required to achieve an end-point stiffness of KeA at this
position. The end-point stiffness at the initial position xA in
Figure 8A differed from the end-point stiffness KeA because the
position control applied a balanced MIF v (θB) at the desired
position xB. The control input vdl determined by Method 2
(Figure 8C) satisfied Eq. 12.

6.1.2 Position Control for Moving From Position B to A
We then simulated position control for the movement from
position B to A. The results of this simulation are shown in
Figure 9. Figure 9A shows the end-point stiffness ellipsoids and
loci of the end-point positions in the task space. Figure 9B shows
the transient responses of the end-point position. While,
Figure 9C compares the control inputs. It can be observed
from Figure 9 that the end-point position converged at the
desired position xA and that an end-point stiffness KeA was
achieved at the desired position. The control input determined
by applying Method 2 (Figure 9C) satisfied Eq. 12. The results in
this section and the preceding one demonstrate that Method 2
can be applied to uniquely determine the MIF. It is difficult to
significantly alter the direction of the major axis of the end-point
stiffness ellipsoid using the control input because the end-point

FIGURE 7 | Block diagram of application of Method 2 using MIF controller.

TABLE 6 | Position A and B parameters and the arbitrary vector determined using Method 2.

End-point position A xA = [0.0,0.4]T [m]

End-point position B xB � [−0.2,0.2]T [m]

KeA � [ 25 −22
−22 61

]
End-point stiffness matrix

KeB � [ 142 −61
−61 102

]
Calculation result ke � [1068.0, −845.4, −669.7, 884.4, 447.0, 241.0]T
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stiffness depends on the posture of the musculoskeletal system.
However, this method can still be used to control the end-point
stiffnesses at the two positions effectively. In this study, the
control input can be uniquely determined using Method 2
because the control target is a two-link system with six
muscles. If Method 2 were used in a system with a greater
number of redundancies, it would not be possible to
determine the control input uniquely. Meanwhile, it was
considered to increase the selectable range of the direction of
the end-point stiffness ellipsoid. In addition, the control input can

be uniquely determined by setting subtasks according to the
redundancies in this case.

7 CONCLUSION

In this study, two new methods for determining MIF using joint
stiffness were developed, to solve the issues in a previously
developed musculoskeletal system MIF feedforward controller.
Using the first method (Method 1), a MIF that eliminates the

FIGURE 8 | (A) Loci of end-point positions during movement from positions A to B, and end-point stiffness ellipsoids in task space. (B) Transient response of end-
point position during movement from position A to position B. (C) Control input using MIF balancing at position A.

FIGURE 9 | (A) Loci of end-point positions during movement from positions B to A and end-point stiffness ellipsoids in task space. (B) Transient response of end-
point position during movement from position B to position A. (C) Control input using MIF balancing at position A.
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correlation between the response and stiffness at a desired position
was determined. Using the second method (Method 2), an
arbitrary vector that reflects the stiffnesses at the initial and
desired positions was determined, and applied to uniquely
determine the balance of MIFs at each position. Although it
was found to be difficult to significantly alter the stiffness using
the control input, as the end-point stiffness depends on the posture
of the musculoskeletal system, we believe that the proposed system
can be adapted to expand the region of feasible stiffness control
(Matsutani et al., 2017); and this will be a subject of our future
analysis. The proposedmethods can realize sensorless position and
stiffness control. In addition, by combining the existing control
method with the proposed method, runaway of movement at
sensor crashes can be prevented. Further, we plan to
experimentally verify this in a future study.

Furthermore, the MIF is expected to be combined with
feedback control in a future work. This paper describes the
evaluation of the musculoskeletal system, including the
modeling error. Feedforward control is incapable of handling
unanticipated contact. A combination of the MIF and feedback
control complement each other to improve accuracy. For
example, a stable region of feedback control that tends to
become unstable can be assured by combining feedforward

control based on the potential no needing an inverse dynamics
model (Matsutani et al., 2018). In future works, this combination
needs to be discussed in detail.
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