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Abstract: Tributyrin and essential oils have been used as alternatives to antimicrobials to improve
gut health and growth performance in piglets. This study was to evaluate the effects of a dietary
supplement with two encapsulated products containing different combinations of tributyrin with
oregano or with methyl salicylate on growth performance, serum biochemical parameters related
to the physiological status, intestinal microbiota and metabolites of piglets. A total of 108 weaned
crossbred piglets (Yorkshire × Landrace, 21 ± 1 d, 8.21 ± 0.04 kg) were randomly divided into three
groups. Piglets were fed with one of the following diets for 5 weeks: a basal diet as the control
(CON); the control diet supplemented with an encapsulated mixture containing 30% of methyl
salicylate and tributyrin at a dosage of 3 kg/t (CMT); and the control diet supplemented with an
encapsulated mixture containing 30% of oregano oil and tributyrin at a dosage of 3 kg/t (COT). At
the end of the feeding trial, six piglets from each group were slaughtered to collect blood and gut
samples for physiological status and gut microbiological analysis. The study found that the CMT
group was larger in feed intake (FI) (p < 0.05), average daily gain (ADG) (p = 0.09), total protein
(TP), albumin (ALB), glutathione peroxidase (GSH-PX) (p < 0.05), blood total antioxidant capacity
(T-AOC) (p < 0.05), and crypt depth in the ileum (p < 0.05) compared with the CON group. The genus
abundance of Tissierella and Campylobacter in the CMT group was significantly decreased compared
with the CON group. The CMT group also resulted in significantly higher activity in amino acid
metabolism and arginine biosynthesis compared with the CON group. The COT group was larger in
T-AOC, and the genus abundance of Streptophyta and Chlamydia was significantly increased in the
ileum compared with the CON group. Data analysis found a significantly high correlation between
the genus abundance of Chlamydia and that of Campylobacter in the ileum. The genus abundance of
Campylobacter was also positively correlated with the sorbitol level. In general, the results indicated
that the supplementation of both encapsulated mixtures in diet of weaned piglets could improve
the animal blood antioxidant capacity. Additionally, the encapsulated mixture of methyl salicylate
plus tributyrin improved the growth performance and resulted in certain corresponding changes in
nutrient metabolism and in the genus abundance of ileum microbial community.

Keywords: tributyrin; oregano essential oil; methyl salicylate; growth performance; microbiota;
metabolomics; piglets

1. Introduction

There were growing evidence that the stress response caused by weaning would
destroy the anti-oxidative balance [1], caused intestinal inflammation and damaged the
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intestinal barrier, furthermore worsened the absorptive capacity of the small intestine [2],
which would decrease growth performance and eventually cause economic losses [3].

The compatibility of organic acids and plant essential oils to mitigate the negative
effects of weaning stress at a lower cost had attracted much attention [4]. Butyric acid as a
short-chain fatty acid had a certain therapeutic effect on intestinal diseases by improving
intestinal morphology and reducing the rate of apoptosis [5]. Tributyrin, as a source of bu-
tyrate, that one molecule releases three molecules of butyrate directly in the small intestine,
could be used as an effective feed additive for weaned piglets to improve performance and
intestinal health of piglets [6]. Compared with other butyrates, tributyrin has acceptable
organoleptic characteristics and provides a higher and slowly released source of butyric
acid in the small intestine [7].

Oregano oil was derived from the natural plant oregano (Origanumvuelgare L.) [8].
The main components of the oregano oil extracted from leaves and flowers were pheno-
lic compounds, in which carvacrol and thymol had great antibacterial and antioxidant
properties [9]. Dietary inclusion of oregano oil has many benefits for the weaned piglets,
including strengthening immune response, improving antioxidant capacity and relieving
stress [10]. Methyl salicylate was also a kind of essential oil extracted from holly (I. purpurea
Hassk.), which has been used for its bactericidal and anti-inflammatory effects [11]. There
are few reports on the supplementation of methyl salicylate in animal diets. Additionally,
considerable attention has been paid to the potential use of organic acids and plant essential
oils to look for benefits in the animal.

Based on our previous study, tributyrin at dosage of 1.4 g per kilogram combined
with oregano essential oil (OT) or methyl salicylate (MT) respectively 0.6 g per kilogram
in powered form may have beneficial effects at the intestinal level of piglets, including
the morphological structure and microbiota communities [12]. However, both treatments
did not show significant differences in performance parameters. Here, we introduced the
encapsulated mixture of essential oil and tributyrin to avoid the lipophilicity and volatility
of plant essential oil. This study was aimed to investigate the role of dietary inclusion of
encapsulated mixture of tributyrin and essential oil or methyl salicylate in a granular form
to modulate the gut microbiota, metabolomics and intestinal morphology, and improving
serum antioxidant capacity and growth performance of weaned piglets.

2. Materials and Methods
2.1. Animals and Experimental Diets

A total of 108 weaned piglets (Yorkshire × Landrace, 21 ± 1 d, body weight 8.21 ±
0.04 kg), were allowed to three groups according to sex and weight, with 6 pens for each
group and 6 piglets for each pen. The piglets were fed with a base diet as the control (CON),
an antibiotic-free basal diet composed based on NRC weaned piglet nutritional standards,
or the control supplemented with an encapsulated mixture containing 30% of methyl
salicylate and tributyrin at a dosage of 3 kg/t (CMT); and the control diet supplemented
with an encapsulated mixture containing 30% oregano oil and tributyrin at a dosage of
3 kg/t (COT). Encapsulation was made mainly with calcium palmitate and the sample
products were provided by Lucta (Guangzhou) Flavours Co., Ltd. (Guangdong, China).
All animal procedures were performed in full accordance with the Regulation for the Use of
Experimental Animals in Zhejiang Province, China. This work was specifically approved
by the Animal Care and Use Committee of Zhejiang University (ethics code permit no.
ZJU20170529). The basic diet composition and nutritional level are shown in Table 1. The
experiment lasted for 35 days. The body weight was individually measured on day 0 and
day 35. Feed consumption was recorded every 3 days until the end of the experimental
period. At day 35, six piglets were selected from each group and euthanized by intra-
abdominal injection of 200 mg/kg pentobarbital sodium to collect biological samples.



Microorganisms 2021, 9, 1342 3 of 17

Table 1. Basal diet ingredients and chemical composition.

Items, g/kg

Ingredients
Corn 597

Soybean meal 105
Fermented soybean meal 55

Extruded soybean 100
Fish meal 40

Whey powder 30
Glucose 20

Wheat flour 4.4
Soybean oil 10

L-Lysine hydrochloride 3
L-Threonine 1.5

DL-Methionine 0.6
Choline chloride 1
Sodium chloride 3.5

Calcium hydrophosphate 9
Limestone 10

Vitamin-mineral premix 1 10
Nutrition composition

Digestible energy †, MJ/kg (calculated) 143.96
Crude protein 190.05

Calcium 10.15
Lysine 13.37

Methionine 4.11
1 Provided per kilogram of diet: retinyl acetate, 1.2 MIU; cholecalciferol, 2700 IU; rac-α-tocopheryl acetate, 75 mg;
menadione, 1.25 mg; thiamin, 1.5 mg; riboflavin, 2.5 mg; pantothenic acid, 40 mg; niacin, 34.4 mg; pyridoxol,
2.5 mg; biotin, 0.3 mg; folic acid, 3 mg; cobyrinic acid, 0.04 mg; Zn, 250 mg; Fe, 110 mg; Cu, 100 mg; Mn, 50 mg; I,
0.5 mg; Se, 0.5 mg. † Digestible energy was calculated.

2.2. Collection of Blood and Intestinal Samples

Blood samples were collected using a coagulation tube, centrifuged at 3000× g and
4 ◦C for 15 min. Serum was collected and stored at −20 ◦C. Ileum and colonic tissues and
contents were collected, and immediately frozen in liquid nitrogen and stored at −80 ◦C.
Ileum and colon tissue were also fixed with phosphate-buffered paraformaldehyde (4%,
pH 7.6) for further histological measurements. The pH value of the ileum and colon
contents was determined immediately.

2.3. Biochemical Analysis and Anti-Oxidatant Capacity Related Parameters of Serum

Concentration of serum albumin (ALB), globulin (GLB), albumin/globulin(A/G),
glutamic-pyruvic transaminase (ALT), glutamic-oxalacetic transaminase (AST), glucose
(GLU), lactate dehydrogenase (LDH), total cholesterol (TC), triglycerides (TG), total protein
(TP), uric acid (UA) and blood urea nitrogen (BUN) were determined by automatic blood
cell analyzer (XN-2000-A1, SYSMEX, Kobe, Japan). Anti-oxidant capacity related blood
parameters included methylene dioxyamphetamine (MDA), superoxide dismutase (SOD),
glutathione peroxidase (GSH-PX) and blood total antioxidant capacity (T-AOC), which
were measured using commercial kits (Nanjing Jiancheng Bioengineering Institute, Nanjing,
China) according to the manufacturer’s instructions).

2.4. Morphological Analysis of Ileum

The ileum tissue of the piglet was immersed in 10% neutral formalin and covered with
wax. The waxed tissue block was manually cut into 3 µm-thick sections, and subjected
to deparaffinization and dehydration. Then these sections were treated with different
concentrations of alcohol (100%, 95% and 75%) for 15 min, and stained with H&E [13].
An optical microscope system (Olympus Corporation, Tokyo, Japan) was used to obtain a
micrograph at a combined magnification of 100× using ImageJ software (National Institute
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of Health, Bethesda, MD, USA). Villus height and crypt depth were measured according to
a described method [3]. The ratio of villus height to crypt depth (VH/CD) was calculated.

2.5. Analysis of Short-Chain Fatty Acid in Colonic Content

A slightly modified method was used to detect short-chain fatty acids (SCFAs). Colonic
contents (0.4 g) were mixed and vortexed with 1.5 mL of phosphate-buffered saline (PBS).
The sample was centrifuged at 15,000× g for 15 min at 4 ◦C. The supernatant was added
with 25% metaphosphoric acid at a ratio of 9:1 (v/v), and then the supernatant was passed
through a 0.22 µm filter membrane to prepare a colon sample for short-chain fatty acid
(SCFA) analysis. A gas chromatograph (model: GC-2010; Shimadzu Corp, Kyoto, Japan)
equipped with a chromatographic column (HP-INNOWAX (19091N-133), 30 m × 0.25 mm
× 0.25 µm) was used to determine the VFA concentration in the sample [14].

2.6. 16S rRNA Sequencing Analysis

Microbial DNA was extracted from ileum contents using the QIAamp Fast DNA Stool
Minikit (Qiagen, Hilden, Germany) according to manufacturer’s protocols. The V3-V4
region of the bacteria 16S rRNA genes were amplified by PCR (95 ◦C for 3 min, followed
by 30 cycles at 98 ◦C for 20 s, 58 ◦C for 15 s, and 72 ◦C for 20 s and a final extension
at 72 ◦C for 5 min) using primers 341F 5’-CCTACGGGRSGCAGCAG)-3’ and 806R 5’-
GGACTACVVGGGTATCTAATC-3′. PCR reactions were performed in 30 µL mixture
containing 15 µL of 2 × KAPA Library Amplification ReadyMix, 1 µL of each primer
(10 µM), 50 ng of template DNA and ddH2O. Amplicons were extracted from 2% agarose
gels and purified using the AxyPrep DNA Gel Extraction Kit (Axygen Biosciences, Union
City, CA, USA) according to the manufacturer’s instructions and quantified using Qubit®

2.0 (Invitrogen, Carlsbad, CA, USA). After preparation of library, these tags were sequenced
on MiSeq/HiSeq platform (Illumina, Inc., San Diego, CA, USA) for paired-end reads of
500/250 bp. DNA extraction, library construction and sequencing were conducted at
Realbio Genomics Institute (Shanghai, China).

Tags, trimmed of barcodes and primers, were further checked on their rest lengths
and average base quality. 16S tags were restricted between 220 bp and 500 bp such that the
average Phred score of bases was no worse than 20 (Q20) and no more than 3 ambiguous N.
The copy number of tags was enumerated and redundancy of repeated tags was removed.
Only the tags with a frequency of more than 1, which tend to be more reliable, were
clustered into OTUs, each of which had a representative tag. Operational taxonomic
units (OTUs) were clustered with 97% similarity using UPARSE (http://drive5.com/
uparse/; accessed on 11 November 2020) [15] and chimeric sequences were identified
and removed using Userach (version 7.0). Each representative tags was assigned to a
taxa by RDP Classifer (http://rdp.cme.msu.edu/; accessed on 11 November 2020) [16,17]
against the RDP database (http://rdp.cme.msu.edu/; accessed on 11 November 2020)
using a confidence threshold of 0.8. OTU profiling table and alpha/beta diversity analyses
were also achieved by python scripts of QIIME (V1.9.1). Anosim was analyzed for the
microbial community structure, and Unifrac algorithm was used to calculate the distance
between the two samples. Heatmap was created using R (V3.5.1) “g plots” package.
Spearman correlation heat map was drawn by the R (V3.5.1) “corrplot” package. PICRUSt
(phylogenetic investigation of communities by reconstruction of unobserved states) is
based on 16S rRNA and reference sequence database to predict the functional composition
of metagenomics.

2.7. GC-TOF-MS and Metabolomics Data Processing

After extracting metabolites [18], all ileum contents were analyzed by GC-TOF-MS
analysis performed using an Agilent 7890 gas chromatograph coupled with a time-of-flight
mass spectrometer (J&W Scientific, Folsom, CA, USA). The system was equipped with a
DB-5MS capillary column. One microliter aliquot of sample was injected in splitless mode.
Helium was used as the carrier gas, the front inlet purge flow was 3mL min−1, and the

http://drive5.com/uparse/
http://drive5.com/uparse/
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http://rdp.cme.msu.edu/
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gas flow rate through the column was 1 mL min−1. The initial temperature was kept at
50 ◦C for 1min, then raised to 310 ◦C at a rate of 10 ◦C min−1, then kept for 8 min at 310 ◦C.
The injection, transfer line, and ion source temperatures were 280 ◦C, 280 ◦C and 250 ◦C,
respectively. The energy was −70 eV in electron impact mode. The mass spectrometry data
were acquired in full-scan mode with the m/z range of 50–500 at a rate of 12.5 spectra per
second after a solvent delay of 6.35 min.

Raw data analysis, including peak extraction, baseline adjustment, deconvolution,
alignment and integration, was finished with Chroma TOF (V 4.3x, LECO) software and
LECO-Fiehn Rtx5 database was used for metabolite identification by matching the mass
spectrum and retention index [18]. Finally, the peaks detected in less than half of QC
samples or RSD > 30% in QC samples were removed. Then, the missing values were filled
up by half of the minimum value. Internal standard normalization method was employed
in this data analysis. Data were scaled and logarithmically transformed to minimize the
impact of both noise and high variance of the variables. The final dataset containing the
information of peak number, sample name and normalized peak area was imported to
the MetaboAnalyst 4.0 (http://www.metaboanalyst.ca/; accessed on 10 January 2021) for
multivariate analysis. Orthogonal partial least squares discrimination analysis (OPLS-DA),
and t-test were performed between the two groups, with the FDR adjusted p value < 0.05
and the VIP > 1.5 being considered as significantly different metabolites. In addition,
commercial databases including KEGG (http://www.genome.jp/kegg/; accessed on 10
January 2021) were used for pathway enrichment analysis.

2.8. Statistical Analysis

Sample sizes were chosen empirically based on previous experiments. The piglet was
used as the experimental unit for blood, intestinal and microbial parameters, and data
from the pen for performance parameters. Data was analyzed by using SPSS 20 (SPSS Inc.,
Chicago, IL, USA). When the data satisfies the normal distribution and homogeneity of
variance, one-way of variance (ANOVA) was conducted and means were further compared
by using Tukey’s multiple comparison tests. The non-parametric Kruskal–Wallis test with
Dunn’s multiple comparisons test was used for a date that was not normally distributed.
Results are reported as means ± standard error of the mean (SEM). p < 0.05 was considered
as significant indicated by “*” and 0.05 < p < 0.1 was considered as a tendency.

3. Results
3.1. Growth Performance

The average body weight of piglets increased from 8.21, 8.10 and 8.31 kg at initial for
the CON, COT and CMT groups (Figure 1A), respectively, to 17.64, 17.74 and 19.24 kg in
the end (Figure 1B). The CMT group was larger in the FI compared with the CON group
(p < 0.05) and the COT group (p < 0.05), which increased by 13.9% and 11.6% respectively
(Figure 1C). These correspondingly tended to have larger ADG compared with the CON
group (p = 0.09), which increased by 15.9% (Figure 1D). Compared with the CON group, the
COT group only slightly increased the FI and the ADG by 2.1% which were not significant.
The difference on feed to gain ratio among the groups was not significant, although the
CMT group slightly reduced it by 1.5% whereas the COT group increased it by 1.7%
compared with the CON group (Figure 1E).

http://www.metaboanalyst.ca/
http://www.genome.jp/kegg/
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Figure 1. Growth performance of piglets in different treatments. (A) Initial body weight. (B) Final body weight. (C) Feed
intake. (D) Average daily gain. (E) Feed to gain ratio. Star (*) indicates that there are significantly different (at the 5%
threshold of the ANOVA) between groups.

3.2. Serum Biochemical Indices and Anti-Oxidative Capacity Parameters

There were no significant differences in A/G, LDH, TC, GLU, ALT, AST, BUN, UA
among the three groups (Figure S1A–H). The content of TG tended to increase in the CMT
group compared with the CON (p = 0.09, Figure 2A). ALB and TP content were significantly
higher in the CMT group than the CON group (p < 0.05, Figure 2B,C). MDA level had a
decreased tendency in the CMT group compared with the CON group (p = 0.08, Figure 2D).
There was no significant difference in SOD among different treatments (Figure S1I). Com-
pared with the CON group, the CMT group had significantly higher GSH-PX (p < 0.05,
Figure 2E) and T-AOC (p < 0.05, Figure 2F), and the COT group also had significant higher
T-AOC level (p < 0.05, Figure 2F).
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3.3. Ileum Morphological Analysis

The epithelial structure of the ileum in piglets from each group was normal, and the
intestinal mucosa was intact without significant pathological changes (Figure 3A). The
CMT group had an increased trend in villus length compared with the CON group (p = 0.06,
Figure 3B). The crypt depth was significantly higher in the CMT group than in the CON
group (p < 0.05, Figure 3C). There was no significant change in the ratio of VH/CD among
the different groups (Figure 3D).
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3.4. Intestinal Content pH and Colonic SCFAs Profile

There was no significant difference in the pH value of the colon of the piglets among
the three groups (Figure 4A). The CMT group had an increased trend in the content of total
SCFAs (p = 0.06, Figure 4B) and propionic acid compared with the COT group (p = 0.06,
Figure 4D). The CMT group had a significantly higher valeric acid content than the CON
group (p < 0.05, Figure 4G) and the COT group (p < 0.05, Figure 4G). The CMT group
also had an increased trend in the isovaleric acid content compared with the CON group
(p = 0.06, Figure 4H).
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SCFAs. (C) Acetic acid. (D) Propionic acid. (E) Butyric acid. (F) Isobutyric acid. (G) Valeric acid.
(H) Isovaleric acid. Star (*) indicates that there are significantly different (at the 5% threshold of the
ANOVA) between groups.

3.5. Compositional Profiles of the Intestinal Microbiota

Venn diagram showed that there were 359 and 345 common bacterial groups between
the CON group and the CMT group, and between the CON group and the COT group,
respectively. There were 17, 3 and 7 unique taxa in the CON, COT, CMT groups, respectively
(Figure 5A) determined by Wilcoxon signed-rank test. No significant difference was
found in alpha diversity such as Chao1 index and Simpson index among the three groups
(Figure 5B,C). The visualization of beta diversity showed that the experimental treatment
is meaningful (R > 0, Figure 5D). The relative abundance of bacterial taxa at the phylum
(Figure 5E) and genus level (Figure 5F) in piglets from different groups were shown. The
phyla Firmicutes showed a tendency to increase in abundance in the experimental groups
compared with the CON group (Figure 5E). The genus of Clostridium sensu stricto also
showed a tendency to increase in abundance in the experimental groups compared with
the CON group (Figure 5F). The ratio of Firmicutes/Bacteroidetes (F/B) tended to increase in
the CMT group compared with the CON group (Figure 5G). The heatmap summarized the
differences of three groups of bacteria at the genus level namely Streptophyta, Chlamydia,
Tissierella and Campylobacter (Figure 5H). Spearman correlation test showed that there was
a positive correlation between Campylobacter and Chlamydia (Figure 5I).
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Figure 5. The high-throughput sequencing of 16S rRNA in ileum contents of piglets. (A) Venn
analysis of bacterial OTUs composition among the three groups. (B) Chao1 index. (C) Simpson index.
(D) ANOSIM, analyses of similarities among the three groups of samples. (E) Proportional taxonomic
assignments at the phylum level from the three groups. (F) Proportional taxonomic assignments
at the genus level from three groups. (G) The ratio of F/B among the three groups. (H) Heatmap
cluster analysis of differential bacteria at genus level which has a contribution to group differences.
(I) Spearman correlation analysis of the differential bacteria.

A total of 190 Kos (Figure S2A) and 50 MetaCyc pathways (Figure S2B) were identified
with significant differences among the three groups. Compared with the CON group,
the expressions of KO0059, KO0626, KO1692, KO0249 and other genes related to fatty
acid metabolism in the CMT and the COT groups were up-regulated (Figure S2C). The
expression of quorum sensing and arginine biosynthesis-related genes such as KO2035,
KO2034, KO2032, KO2033 and KO5597 were up-regulated in the CMT group compared
with the CON group (Figure S2C). We found that the expression of toxin-related genes
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such as K18839, K10953 and K10938 were up-regulated in the COT group compared with
the CMT group (Figure S2C).

3.6. Overview of the Intestinal Metabolome

In this study, 686 peaks were detected and 482 metabolites were left after relative
standard deviation de-noising. Supervised orthogonal projections to latent structures-
discriminate analysis (OPLS-DA) were applied (Figure 6A–C) to visualize group separation
and find significantly changed metabolites. The OPLS-DA model among different groups
were as follows: R2X = 0.653, R2Y = 0.824, and Q2 = 0.279 (Figure 6A). The OPLS-DA model
between the CMT group and the CON group were as follows: R2X = 0.67, R2Y = 0.973
and Q2 = 0.632 (Figure 6B). The OPLS-DA model between the CMT group and the COT
group were as follows: R2X = 0.336, R2Y = 0.918, and Q2 = 0.568 (Figure 6C). The Q2
values all exceeded 0.4, indicating that these models were more reliable and that consistent
modeling and predictability were achieved. However, the OPLS-DA model between
the COT group and the CON group were as follows: R2X = 0.626, R2Y = 0.646, and
Q2 = −0.0417 (Figure S3A). Subsequently, we detected 25 differential metabolites among
the three groups. There were 17, 23 and 11 differential metabolites in the CON, CMT and
COT groups, respectively (Figure 6D,E, Figure S3B).

Exact mass data (m/z) from the KEGG and HMDB databases were used to anno-
tate the differential metabolites for pathway enrichment analysis (Figure 6F). Differential
metabolic pathways between each two group were shown (Figure 6G,H). The significant
differences in the expression of molecules were associated with galactose metabolism,
arginine biosynthesis, aminoacyl-tRNA biosynthesis, alanine, aspartate and glutamate
metabolism during the trial period. The level of methionine, serine, 2-ketobutyric acid
related to cysterine and methionmine metabolism in the CMT group were significantly
lower than in the CON group. Regarding arginine biosynthesis, the concentrations of
aspartic acid and N-alpha-Acety-L-ornithnine in the CMT group were significantly lower
than that in the CON group. Concerning aminoacyl-tRNA biosynthesis, aspartic acid in
the CMT group was also less than that in the CON group. Compared with the CMT group,
the COT group had a significantly higher concentration of glucose related to starch and
sucrose metabolism and neomycin, kanamycin and gentamicin biosynthesis, and also had a
significantly higher level of aspartic acid, maleic acid and 4-aminobutyric related to alanine,
aspartate and glutamate metabolism.
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3.7. Correlation of Characteristic Gut Microbiota and Metabolites

The correlation between differential gut bacteria and metabolites among the three
groups was expounded by Spearman correlation analysis (Figure 7). The genus Strepto-
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phyta was strongly positively correlated with 2-deoxytetronic acid, aspartic acid, meli-
biose, maleic acid, sucrose, neohesperidin, phenyl β-D-glucopyranoside hydrate, cytidine
monophosphate, 1,5-anhydroglucitol, 3,6-anhydro-D-galactose, tagatose and biphenyl
(p < 0.05), and highly positively correlated with 24,25-dihydrolanosterol, ergosterol, lactu-
lose and creatine (p < 0.05). The genus Campylobacter was strongly positively correlated
with Na, Na-dimethylhistamine and sorbitol (p < 0.05), and highly positively correlated
with 2-deoxytetronic acid and aspartic acid (p < 0.05).
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4. Discussion

Plant essential oil which had many beneficial effects on animal health has been exca-
vated [19]. Tributyrin was a new way to provide butyric acid, which was more efficient
in intestinal utilization than butyric acid [20]. Using the application of coating technol-
ogy could solve the disadvantage that essential oil could not reach the intestinal tract
effectively [21]. However, little is known either on the potential antibacterial mechanism
between plant-derived compounds and organic acids.

Methyl salicylate which has the special flavor of holly leaves was an additive generally
recognized as safe (GRAS) [22]. We speculated that the additive might have a similar
effect as a flavoring agent or sweetener to improve the palatability and inductivity of
feed or have an antioxidant capacity to help to maintain the quality of feed to promote
FI. Consequently, the great growth performance in the CMT group was presented by
alleviating the decrease of FI caused by weaning stress [23]. However, the COT group
had no significant improvement on growth performance, which was consistent with an
experiment of three diets with an oregano supplementation at 2 g, 4 g and 8 g per kg
feed [24]. The beneficial effect of dietary phytobiotics could be influenced by its dosage
and diet composition [25], so more tests are needed to verify the role of different dosage.
In addition, there is a limitation that the solo encapsulation vehicle was not determined on
the performance of piglets, which will be worth continuing investigation.

Serum biochemical indices can reflect growth performance, nutrition and health status
to a certain extent. TP is composed of ALB and GLB. ALB revealed a significant correlation
with body nutritional status, including ADG and feed conversion [26]. In this study, TP
and ALB in the CMT group with better growth performance were significantly higher
than the CON group. Consisted with the previous conclusion, in pigs, nutrition, body
growth and ALB synthesis were interdependent and ALB was considered one of the most
important predictors of performance, especially ADG [6]. The activities of GSH-PX and
T-AOC increased significantly in the CMT group than in the CON group. The COT group
had significantly higher T-AOC content than the CON group, which might result from
the anti-oxidant capacity of the phenolic hydroxyl compounds in plant essential oils. The
result was consistent with the previous report of inclusion of plant polyphenols to the
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diet [27]. T-AOC directly reflects the antioxidant capacity of the body, while enhanced
SOD and GSH-PX would reduce the concentration of superoxide anion and peroxide in
the body, as well as, lower concentration of serum MDA demonstrates the lower degree of
oxidative damage took place in the body. Overall, diet supplemented with an encapsulated
mixture of methyl salicylate and tributyrin could enhance the antioxidant capacity and
accelerate the protein synthesis.

Weaning stress would damage gastrointestinal structure [28]. Villus length and crypt
depth were correlated with the absorption surface and mucosal secretion [29]. Our results
confirmed that the structure of ileum in both the CMT and COT groups had been improved
and there was a positive relationship between serum antioxidant parameters and intestinal
morphology, which was consistent with the previous study that intestinal injury was
significantly reduced by SOD pretreatment [30]. The reason why the CMT group had
better intestinal morphology might be attributed to phenolic hydroxyl groups, which have
been reported to be beneficial to the maintenance of the intestinal integrity of piglets [31].
Another study has pointed out that tributyrin could strengthen the intestinal barrier via
promoting cell differentiation [32]. A previous study showed that SCFAs could affect
appetite and energy balance and regulate intestinal morphology [33]. SCFAs molecules
could be absorbed by colonic epithelial cells and converted into energy to maintain the
intestinal health of animals [34]. We examined the colonic SCFAs and found that valeric
acid and isovaleric acid in the CMT group increased compared with the CON group,
which was consistent with the conclusion of the previous literature data on the base diet
supplemented with 1.5 g/kg organic acid and 30 mg/kg essential oils [35]. However, it
was somewhat surprising since total SCFAs in the COT group appeared a tendency to
decrease, which is worth investigating.

In terms of α-diversity, compared with the CON group, the Simpson index and Chao1
index showed opposite variation in the CMT group. The significance of this finding rests
on the fact that there is still a great deal of controversy on the relationship between weight
or obesity and intestinal microbial diversity [36]. However, the F/B ratio in the CMT
group was increased, which was consistent with characteristics of obesity [37]. It is worth
noting that the phyla Proteobacteria containing a wide variety of pathogens, including
Escherichia coli, Salmonella and Helicobacter pylori had a relatively high abundance in the
CON group. As reported by several studies, oregano essential oil could inhibit the activity
of Escherichia colis [38]. In line with this, the COT group showed a decrease in the abundance
of Proteobacteria and Escherichia/Shigella. However, the antibacterial mechanism responsible
for methyl salicylate in the animals’ intestine requires further discussion. Interestingly,
compared with the CON group at the genus level, we found that the abundance of Tissierella
decreased in both the COT and CMT groups, but the abundance of Campylobacter decreased
only in the CMT group. Compared with positive bacteria, the structure of Campylobacter
had stronger resistance to plant essential oils and was more sensitive to organic acids [39].
These different responses might allow for the discrepancy of the COT group and the
CMT group on growth performance of piglets in this experiment. Moreover, as described
by Qin et al. the drug resistance of Campylobacter in the intestinal tract of livestock and
poultry in Asia was generally strong [40]. And through the correlation analysis, the
increase of Campylobacter in the COT group might be the cause of the increase in the
number of Chlamydia. Thus we tentatively linked the reason to the increasing abundance
of Chlamydia, which were associated with different pathologies [41]. One hypothesis
was that Veillonellaceae may be used as an index to measure the bactericidal ability of
antimicrobials [42]. In this study, the lower abundance of Veillonellaceae indicated that the
CMT group had a higher antimicrobial capacity. Additionally, a study found that microbial
composition may not be a major factor determining differences in feed efficiency [43]. The
CMT group had the higher FI but similar to feed to gain ratio compared with the CON
group, which might cause by improving intestinal integrity [44].

Intestinal microorganisms could produce bioactive molecules which affect host metabo-
lism [45]. PICRUST analysis showed that the genes related to fatty acid metabolism were
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significantly up-regulated in both the COT and CMT groups. Actually, butyric acid has
been proved to improve the energy metabolism of mitochondrial cells through activating
Adenosine 5‘-monophosphate (AMP)-activated protein kinase (AMPK), especially fatty
acid oxidation [46]. These reports indicated that the supply of butyric acid in the form
of tributyrin could alleviate the effect of weaning stress. Notably, in the CMT group, we
also found that the quorum sensing of bacteria was interfered, which may reduce the
drug resistance of bacteria by changing the ratio of Opp/Dpp about biofilm formation.
Consistently, evidence confirmed that plant essential oils could destroy the quorum sensing
of bacteria [47]. Whereas the information reflected by PICRUST was limited. Consequently,
we applied GC-MS non-targeted metabolomics to explain the functional difference. Via
the OPLS-DA model, we found that the metabolic level of the CMT group had significant
difference compared with the CON group, while there was no significant difference in the
metabolic level between the COT group and the CON group. The data showed that the
concentrations of L-serine, L-aspartic acid and L-methionine in the CMT group changed
significantly, which indicated bioavailability of amino acids and protein synthesis was
improved. Pathway analysis showed that differential metabolites were enriched in cysteine
and methionine metabolism, alanine, aspartic acid and glutamic acid metabolism, arginine
biosynthesis and so on. Additionally, several reports pointed out that the synthesis of
endogenous arginine related with growth performance and antioxidation of piglets [48,49].

Finally, we analyzed the correlation between differential bacteria and metabolites
to reveal the interaction between microorganisms and hosts. Although there is too little
information about Streptophyta, which was positively correlated with a variety of ma-
jor metabolites. We also found that there was a high correlation between sorbitol and
Campylobacter. The influence caused by a relative higher abundance of Streptophyta and
Campylobacter on the host is worth being investigated more.

5. Conclusions

In conclusion, dietary inclusion of an encapsulated mixture of methyl salicylate and
tributyrin improved the growth performance, antioxidant capacity, and intestinal villus
morphology, and modulated the microbiota and their metabolites. The results may hope-
fully serve as useful information for the use of encapsulated mixtures of methyl salicylate
and tributyrin as feed additives in piglets.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/microorganisms9061342/s1, Figure S1: Serum indices of different groups. (A) A/G. (B) LDH.
(C) TC. (D) GLU. (E) ALT. (F) AST. (G) BUN. (H) UA. (I) SOD. Figure S2: The differences of gene
expression among different groups analyzed by LEfSe. (A) LEfSe analysis based on Genomes (KEGG)
ortholog (KO) database. (B) LEfSe analysis based on the MetaCyc database. (C) The expression
of the top 20 KO genes respectively in different groups. Figure S3: Non-targeted metabonomics
derived from the GC/MS metabolite profiles of ileum contents. (A) OPLS-DA score map of separate
comparisons between the COT group and the CON group. (B) Significantly differential metabolites
between the COT group and the CON group.
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