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Abstract

Elevated homocysteine is an important risk factor that increases cerebrovascular and neurodegenerative disease
morbidity. In mammals, B vitamin supplementation can reduce homocysteine levels. Whether, and how, hibernating
mammals, that essentially stop ingesting B vitamins, maintain homocysteine metabolism and avoid cerebrovascular
impacts and neurodegeneration remain unclear. Here, we compare homocysteine levels in the brains of torpid bats,
active bats and rats to identify the molecules involved in homocysteine homeostasis. We found that homocysteine
does not elevate in torpid brains, despite declining vitamin B levels. At low levels of vitamin B6 and B12, we found no
change in total expression level of the two main enzymes involved in homocysteine metabolism (methionine
synthase and cystathionine β-synthase), but a 1.85-fold increase in the expression of the coenzyme-independent
betaine-homocysteine S-methyltransferase (BHMT). BHMT expression was observed in the amygdala of basal
ganglia and the cerebral cortex where BHMT levels were clearly elevated during torpor. This is the first report of
BHMT protein expression in the brain and suggests that BHMT modulates homocysteine in the brains of hibernating
bats. BHMT may have a neuroprotective role in the brains of hibernating mammals and further research on this
system could expand our biomedical understanding of certain cerebrovascular and neurodegenerative disease
processes.
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Introduction

Homocysteine is a sulfur-containing amino acid and a risk
factor involved in cerebrovascular and neurodegenerative
diseases [1–5]. The elevation of homocysteine may result in
the dysfunction of endothelial and smooth muscle cells in the
vascular wall. Endothelial injuries such as the inhibition of
cellular binding sites for tissue plasminogen activator [6],
decreasing expression of thrombomodulin [1,7], and production
of endoplasmic reticulum stress and growth arrest [8] are
observed in hyperhomocysteinemic animals. The effect of
hemostasis, induced by homocysteine, promotes blood clotting
and reduces fibrinolysis [9]. Elevated homocysteine impairs
smooth muscle cells by inducing a proliferative state, and
migration from the media to the intima of the vessel [10]. These
homocysteine-induced changes may initiate the pathogenesis
of atherosclerosis [10] which can lead to vascular diseases in

the brain. Elevated homocysteine expression is also known to
play an important role in neurodegenerative diseases including
brain atrophy, dementia and cognitive impairment [4,11,12].
For example, homocysteine is elevated in patients with
confirmed Alzheimer’s disease [11,13,14]. Homocysteine
causes excitotoxic and oxidative injury to hippocampal neurons
in cell cultures and in vivo [15], and hyperhomocysteinemia due
to dietary folate deficiency endangers dopaminergic neurons in
models of Parkinson’s disease [16].

Homocysteine metabolism involves remethylation or
transsulfuration (Figure 1) [17,18]. During remethylation,
homocysteine is methylated to methionine by methionine
synthase (MS, EC 2.1.1.13), which is ubiquitous, or by betaine-
homocysteine S-methyltransferase (BHMT, EC 2.1.1.5), whose
expression is mainly restricted to the liver and kidney [19].
During transsulfuration, homocysteine is irreversibly converted
into cysteine by cystathionine β-synthase (CBS, EC 4.2.1.22)
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and cystathionine γ-lyase (CγL, EC 4.4.1.1) in the liver, kidney,
pancreas and small intestine [17]. Both the remethylation and
transsulfuration of homocysteine involve B vitamins:
methionine synthase requires folic acid and vitamin B12 as
substrates or cofactors, and cystathionine β-synthase is a
vitamin B6-dependent heme protein. Inadequate levels of one
or more B vitamins contribute to elevated homocysteine levels
and neurological damage [20,21]

Some mammals reduce body temperature, metabolic rate
and other physiological processes during hibernation, which is
an adaptive strategy in response to winter [22–24]. Hibernation
involves fasting [22] and may therefore be a critical time during
which the metabolism of homocysteine is inhibited because of
B vitamin deficiency. How fasting mammals avoid elevated
homocysteine and its negative neurological impacts remains
unknown.

Bats are the second most abundant mammal species on
earth and the majority of microbats hibernate [25]. Recent
research has revealed protective mechanisms in the brain
tissue of hibernators [26–28], and hibernating species are
emerging as ideal research models for neurological disease
[29–32]. In this study, we investigate brain tissue in torpid and
active Rickett’s big-footed bats (Myotis ricketti) to determine
patterns of homocysteine homeostasis and metabolism during
fasting. We aimed to (1) identify whether BHMT, MS and CBS
are involved in homocysteine metabolism in the brain and

describe expression patterns in different brain regions, and (2)
give the likely role and importance of these enzymes in
homocysteine regulation, describe the nature of selection
operating on underlying genes. While expanding our
understanding of adaptations to hibernation and fasting, this
research will also contribute to the broader biomedical
prevention and treatment of human cerebrovascular and
neurodegenerative diseases.

Materials and Methods

Ethics statement
All procedures involving the capture of bats and collection of

samples were carried out in strict accordance with the
Guidelines and Regulations for the Administration of
Laboratory Animals (Decree No. 2, the State Science and
Technology Commission of the People’s Republic of China on
November 14, 1988) and were approved by the Animal Ethics
Committee at East China Normal University (ID no:
AR2012/03001).

Collection of animals and tissues
Hibernating male M. ricketti (n = 14) were captured from

Fangshan Caves (39°48′ N, 115°42′ E), Beijing, China. Seven
animals were immediately euthanized and their core body (Tb)

Figure 1.  Homocysteine metabolism.  Homocysteine is metabolized to methionine by remethylation and cystathionine by
transsulfuration. Coenzymes are shown in gray. BHMT, betaine-homocysteine S-methyltransferase; DMG, dimethylglycine; MAT,
methionine adenosyltransferase; SAM, S-adenosylmethionine; SAH, S-adenosylhomocysteine; SAHH, S-adenosylhomocysteine
hydrolase; MS, methionine synthase; THF, tetrahydrofolate; SHMT, serine hydroxymethyltransferase; CH2THF, methylene
tetrahydrofolate; CH3THF, methyl tetrahydrofolate; CBS, cystathionine β-synthase; CγL, cystathionine γ-lyase.
doi: 10.1371/journal.pone.0085632.g001
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and surface (Ta) temperatures were 13 ± 2°C and 9 ± 1°C,
respectively. Seven M. ricketti were euthanized 48 h after
arousal and their core body temperature (Tb) was 35 ± 2 °C.
Non-hibernating Rousettus leschenaultii (n = 4) were captured
in Mashan county (23°55′ N, 108°26′ E), Guangxi, China.
These animals (Tb = 35 ± 2 °C) were sacrificed 48 h after
capture by cervical dislocation. Male rats (n = 4) were obtained
from Sino-British Sippr/BK Lab Animal Ltd (Shanghai, China).
Brain tissue was rapidly removed and collected in 2 ml
cryotubes and stored at -80°C.

B vitamins, homocysteine and betaine assays
Vitamin B6, vitamin B12, folate, homocysteine and betaine

levels in brain tissue and blood were determined using vitamin
B6 (TSZ-E80574), vitamin B12 (TSZ-E80166), folate (TSZ-
E80542), homocysteine (TSZ-E30175) and betaine (TSZ-
S25623) assay kits (Yanyu Chemical Reagent Inc., Shanghai)
according to the manufacturer’s instructions. Brain tissue (20
mg) was homogenized in 200 μl PBS (137 mM NaCl, 2.7 mM
KCl, and 10 mM Na2HPO4). The homogenate was then
centrifuged at 14,000 xg, 4°C for 15 min, and the supernatant
was assayed for B vitamins, homocysteine and betaine levels
[33]. Blood was obtained by cardiac puncture and centrifuged
for 15 min, and plasma was frozen at -80°C for use. The 96-
well microplate was incubated at 37°C for 30 min each with
sample and HRP-reagent. After adding A and B developer
buffers, the reaction last 10 min, and was stopped using stop
solution. OD450 was measured within 15 min. B vitamins,
homocysteine and betaine concentrations in samples were
quantified by comparing OD450 values against those of known
concentration. Results (mean ± SD) are from three separate
experiments (n = 3 per group) and analyzed using Student’s t-
tests (two-tailed). A P value < 0.05 was considered significant.

Western blots
Brain proteins were extracted from bats and rats. The tissue

was homogenized by lysis buffer (0.22 M Tris-HCl (pH 6.8),
8.8% SDS, 44.4% glycerol) and centrifuged at 12,000 xg, 4°C
for 10 min. The supernatant was heated at 100°C for 10 min
and then used for western blotting. Brain proteins of the rat
were used as a positive loading control. Proteins in each
sample (10 μg/lane) were separated by 10% SDS-PAGE and
then transferred onto 0.2 μm PVDF membranes (Millipore,
USA) with an electro-blotting apparatus (GenePure, Taiwan).
The PVDF membranes were blocked in blocking solution
containing 5% skim milk and 1% BSA at 4°C for 12 h, and then
reacted with a series of primary antibodies including anti-BHMT
(1:2500), anti-MS (1:250), and anti-CBS (1:1000). The anti-
BHMT (ab96415) and anti-MS (ab9209) were acquired from
Abcam Corporation, and anti-CBS (sc-67154) was purchased
from Santa Cruz Biotechnology, Inc. Antibodies were selected
based on the ability to combine with conserved epitopes of
target proteins of many mammalian species. After washing,
blots were reacted with appropriate secondary antibodies and
visualized according to the instructions of the ImmobilonTM

Western Chemiluminescence HRP substrate kit (Millipore,
USA). Images were captured using ImageQuantTM LAS-4000
(Amersham Biosciences, USA), and detected bands were

quantified with ImageQuantTM TL (v 7.0, Amersham
Biosciences, USA). The intensity of each band was normalized
to β-actin (sc-47778, 1:5000, Santa Cruz Biotechnology
Corporation). Results (mean ± SD) were calculated from four
repeats and then analyzed using Student’s t-tests (two-tailed).
A P value < 0.05 was considered statistically significant.

BHMT assay
Sample preparation and BHMT activity measurement were

carried out following standard protocols [34–36] with several
modifications. Brain tissue (0.1 g) was homogenized in 500 μl
potassium phosphate buffer (40 mM, pH 7.5) containing 1 mM
DTT. The homogenate was centrifuged at 18,000 xg, 4°C for
15 min, and the supernatant fraction was used for BHMT
assay. The protein concentration of each sample was assayed
with the Quick StartTM Bradford protein assay kit (Bio-Rad,
USA) according to the manufacturer’s instructions.

The 280 μl standard mixture contained 10 mM DL-Hcy, 3.25
mM betaine, 50 mM Tris-HCl (pH 7.5) and preparing sample
(80 μl). Assays were started by transferring the tubes to a 37°C
water bath for 1–2 h. Following incubation, the mixture was
chilled in ice water and centrifuged at 12,000 xg, 4°C for 15
min. Phenyl isothiocyanate as the derivatization reagent, was
added to the supernatant. After standing at ambient
temperature for 10 min, n-hexane was used to remove organic
substances, and the water-soluble substances were filtered
(0.22-μm filter) for use.

Samples were analyzed on a HPLC system equipped with
separations module (Waters e2695) and a PntulipsTM BP-C18
(5 μm, 4.6 x 250 mm) with a 0.8 ml/min flow rate. Methionine
was monitored by a photodiode array detector (Waters 2998)
with an excitation wavelength of 254 nm. HPLC data were
collected and analyzed using the Great Resource Health
Standard Inc. (Shanghai) database. Methionine in a sample
was identified and quantified by comparing the peak retention
time and peak volume of the sample to internal standard
methionine. Blanks contained all of the components except for
the reactants DL-Hcy and betaine, and their values were
subtracted from sample values. We compared the amount of
methionine to reflect brain BHMT activity in torpid and active M.
ricketti (n = 3 per group). All samples were assayed in three
repeats, and data analyzed using two-tailed Student’s t-tests.
Enzyme activity is expressed as nmol/h/mg protein.

Immunohistochemistry
Brain tissue was fixed in 4% paraformaldehyde buffer

solution for 24 h after sampling. A series of graded alcohols
and xylene were used for dehydration and clearing of tissue.
Brain serial-sections (6 μm) were prepared after being paraffin-
embedded. Hydrogen peroxide solution (3%) was used to stop
endogenous peroxidase activity after the brain sections were
rehydrated, and then blocked with bull serum albumin (0.3%).
After rinsing with phosphate buffer solution (PBS, 0.1 M/L),
brain sections were incubated in affinity-purified primary
antibody (anti-BHMT, 1:1000, abcam, ab96415) diluent
overnight at 4°C. Simultaneously, normal rabbit IgG (sc-2027,
1:2000, Santa Cruz, USA) and PBS were used to replace the
primary antibody in control groups. After washing with 0.1 M/L
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PBS, slices were reacted with corresponding secondary
antibody (about 45 min at 37°C) and then antigen-antibody
complexes were detected using ChemMateTM EnVisonTM/HRP
complex (including diaminobenzidine, DAB) as a peroxidase
substrate (GK500705, Gene Tech). Results were visualized
under an optical microscope (Lecia DM2500, Germany). All
pictures were taken under the same microscope with uniform
parameters after brain sections were mounted with xylene
sealant.

Because bat brain atlases are not available, the mouse brain
atlas [37] was used to localize the distribution of BHMT. We
evaluated immunostaining for BHMT in the brains obtained
from torpid and active M. ricketti bats (n = 3 per group). Images
of the slices at 50× magnification were captured and analyzed
using Image Pro Plus (Immagine Computer, Italy). Staining
intensity was computed as integrated optical density (IOD) from
four sections of expressed regions. The IOD was calculated
from three arbitrary fields with the same area for each section.
Data were analyzed using Student’s t-tests (two-tailed).

Molecular evolution analyses and homology modeling
of bat BHMT

The coding regions of Bhmt were sequenced for 12 bat
species from seven families (Table S1), including three non-
hibernating species: Eonycteris spelaea, Rousettus
leschenaultii and Cynopterus sphinx (Pteropodidae); and nine
hibernating species: Taphozous melanopogon
(Emballonuridae), Miniopterus fuliginosus (Miniopteridae),
Pipistrellus pipistrellus and Myotis ricketti (Vespertilionidae),
Artibeus lituratus and Leptonycteris yerbabuenae
(Phyllostomatidae), Hipposideros armiger and Hipposideros
pratti (Hipposideridae), and Rhinolophus ferrumequinum
(Rhinolophidae). The available published sequences (in
Ensembl database) of two other species, Pteropus vampyrus
(Pteropodidae) and Myotis lucifugus (Vespertilionidae), were
also incorporated in molecular analyses. Details (BHMT
accession numbers and thermal physiology) of all species are
listed in Table S1.

We selected M. ricketti to identify sequences of Bhmt from
the brain and liver, and found they were consistent. Some bat
species do not express BHMT in brain tissue, and so all cDNA
sequences are cloned from liver tissue. Following standard
protocols, total RNAs were isolated from liver tissue using
Trizol reagent (Invitrogen) and were reverse-transcribed to
cDNA with the RNAiso Plus kit (TaKaRa). Using primers (Table
S2), all PCR products were isolated and purified using the Gel
Extraction kit (Qiagen), and then ligated into pGEM-T Easy
Vector (Promega). Correct recombinant clones were
sequenced using the Terminator kit on an ABI 3730 DNA
sequencer (Applied Biosystems).

The BHMT nucleotide sequences of 14 species were aligned
using Clustal X [38]. The pairwise dN/dS ratio (ω value, non-
synonymous substitution rate/synonymous substitution rate)
was calculated using Swaap v1.0.3 to determine selective
pressure acting on Bhmt [39,40]. Data were analysed using
two-tailed Student’s t-tests and a P value < 0.05 was
considered significant.

To determine whether amino acid residue divergence
between hibernating and non-hibernating bats is related to
BHMT function we simulated BHMT structure in bats. The
amino acid sequences of bat BHMT were deduced from
corresponding nucleotide sequences. Structure-based amino
acid sequence alignments were carried out by T-Coffee
(Expresso mode) to determine the amino acid residue
conserved in hibernators but diverged in non-hibernators [41].
The BHMT amino acid sequence of Rattus norvegicus with
known structure (1UMY, O09171), was selected as the
template for alignment. The corresponding amino acid
sequence files of M. ricketti were imported into SWISS-MODEL
for homology modeling of BHMT structures [42]; PyMol was
used to display the 3D structures and illustrate model results.

Results

Vitamin B, homocysteine and betaine levels in torpid M.
ricketti

We measured levels of vitamin B6, vitamin B12 and folate in
torpid M. ricketti and non-torpid/non-fasting M. ricketti, R.
leschenaultia and rats. We found that torpid M. ricketti had
lower levels of B6 and B12 (vitamin B6: 4.09 ± 0.08 ng/g;
vitamin B12: 15.03 ± 1.11 ng/g) compared to non-torpid M.
ricketti (vitamin B6: P < 0.001; vitamin B12: P < 0.001) (Table
1). There was no difference in the folate concentration in both
groups of M. ricketti (torpid: 194.95 ± 3.75 ng/g; active: 191.46
± 8.17 ng/g) (Table 1).

Brain homocysteine levels in M. ricketti during torpor were
approximately 10% lower than active M. ricketti (0.137 ± 0.003
vs. 0.153 ± 0.003 μmol/g, P < 0.001) (Figure 2A). Plasma
homocysteine was also decreased in torpid M. ricketti
compared to active M. ricketti (10.277 ± 0.774 vs. 11.826 ±
0.662μmol/L, P < 0.001) (Figure 2B). No difference was found
between active M. ricketti and rats (0.150 ± 0.013 μmol/g,
12.122 ± 0.453 μmol/L) in brain tissue and blood.
Homocysteine levels in R. leschenaultia (0.203 ± 0.017 μmol/g)
were approximately 33–48 % higher than torpid and active M.
ricketti and rats in the brain (P < 0.001), but there was no

Table 1. Concentrations of vitamin B6, vitamin B12 and
folate in the brain.

 Concentration (ng/g)c

Animal groupa,b Vitamin B6 Vitamin B12 Folate
M. ricketti (AF) 4.80 ± 0.09 17.49 ± 0.38 194.95 ± 3.75

M. ricketti (H-NF) 4.09 ± 0.08d 15.03 ± 1.11d 191.46 ± 8.17

R. leschenaultii (AF) 5.60 ± 0.16 21.77 ± 0.75 224.34 ± 27.45

R. norvegicus (AF) 4.80 ± 0.36 17.46 ± 0.30 197.48 ± 10.23
a Three (n = 3) animals in each group were analysed.
b AF and H-NF represent bats treated with food in the active state and non-food in
the hibernation state, respectively.
c Concentrations are mean ± SD.
d Statistical significance (P < 0.001) was found between AF and H-NF groups of M.

ricketti.
doi: 10.1371/journal.pone.0085632.t001
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significant difference in plasma homocysteine among R.
leschenaultia (12.345 ± 0.604 μmol/L), active M. ricketti and
rats.

The expression pattern of betaine was different between
brain tissue and plasma (Figure 3A, B). Brain betaine levels in
torpid M. ricketti (6.239 ± 0.626 ng/g) were similar to content in
active animals (5.859 ± 0.430 ng/g), but torpid M. ricketti had
lower levels of plasma betaine than active M. ricketti (1.879 ±
0.501 vs. 3.415 ± 0.292 ng/mL, P < 0.001). Betaine levels in
the brains of active M. ricketti were higher compared to the rat
brain (4.212 ± 0.413 ng/g, P < 0.001), but betaine levels in
plasma of M. ricketti were lower than rats (6.042 ± 0.731
ng/mL, P < 0.001). Betaine levels of R. leschenaultia in the

Figure 2.  Expression levels of homocysteine in brain and
plasma.  Homocysteine expression levels were determined in
the brains (A) and plasma (B) of torpid M. ricketti (MT), active
M. ricketti (MA), R. leschenaultii (R) and rats. Data are
expressed as mean ± SD from three separate experiments with
n=3 per group. The letters (a,b) between groups represent
statistical differences P < 0.001. ** denotes statistical
significance (P < 0.001) between torpid and active M. ricketti.
doi: 10.1371/journal.pone.0085632.g002

brain (3.015 ± 0.560 ng/g) and plasma (1.556 ± 0.122 ng/mL)
were lower than active M. ricketti and rats (P < 0.001).

Western blot validation of enzymes involved in
homocysteine metabolism

The expression levels of BHMT, MS and CBS were
investigated in the brain of hibernating bats (Figure 4A). BHMT
levels were 1.85-fold higher in torpid M. ricketti compared to
active M. ricketti (Figure 4B); BHMT was not expressed in non-
hibernating R. leschenaultia and rats (Figure 4A). There was
no difference in total expression level of MS and CBS of torpid
and active M. ricketti, and levels were similar to those in rats.
Two clear bands of CBS near 63 kDa were detected and the

Figure 3.  Betaine levels in brain and plasma.  Brain betaine
(A) and plasma betaine (B) were tested in torpid M. ricketti
(MT), active M. ricketti (MA), R. leschenaultii (R) and rats.
Three (n = 3) animals in each group were analysed. Results
are expressed as mean ± SD of three repeats. The letters (a,b)
between groups represent statistical differences P < 0.001. **
denotes statistical significance (P < 0.001) between groups.
doi: 10.1371/journal.pone.0085632.g003
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amount of the bands showed reciprocal expression patterns
between torpid and active states of M. ricketti bats. In R.
leschenaultia, MS expression levels were higher and CBS
expression levels lower compared to M. ricketti and rats (Figure
4B).

BHMT activity assay
More methionine was produced in torpid M. ricketti compared

to active M. ricketti (0.432 ± 0.105 vs. 0.201 ± 0.054 nmol/h/mg
protein) in brain tissue. Relative activity of BHMT was
calculated by dividing the production amount of methionine by
the relative expression level of BHMT, and revealed that there
was no significant difference in BHMT relative activity between
torpid and active M. ricketti (0.233 ± 0.057 vs. 0.201 ± 0.054
nmol/h/mg protein) (Figure 5). In addition, we noticed that the
product level was lower in brain tissue compared to liver tissue

[36], which may be due to BHMT expression levels in the brain
being at least 100-fold lower than in the liver (unpublished
data).

BHMT immunohistochemistry
MS and CBS is usually expressed in mammalian brains

[3,43], and the expression levels in the brain tissues of M.
ricketti were found to be similar to that in rats. However, BHMT
is only expressed in M. ricketti brains, and previous
experiments showed that BHMT is mainly detected in the liver
and kidney [19]. To identify the distribution of BHMT in
neuroanatomical locations that may be involved in the
hibernation process, brain tissues from torpid and active M.
ricketti were stained for BHMT expression. We found that
BHMT was abundantly expressed in the telencephalon,
including some regions of the cerebral cortex (such as the

Figure 4.  Western blot analysis.  Expression levels of BHMT, MS and CBS were determined by Western blot (A). MT, torpid M.
ricketti; MA, active M. ricketti; R, R. leschenaultii. All samples are from brain tissue. Arrows indicate predicated molecular weight
(kDa) of proteins. (B) Relative expression levels of the proteins are represented as mean ± SD. Statistical significance by two tailed
Student’s t-tests: *P<0.05, **P<0.001.
doi: 10.1371/journal.pone.0085632.g004
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retrosplenial granular cortex, retrosplenial agranular cortex,
primary motor cortex, secondary motor cortex, medial parietal
association cortex, lateral parietal association cortex and
primary somatosensory cortex, hindlimb region) (Figures 6A)
and the amygdala of basal ganglia (Figures 6C). Integrated
optical density of BHMT staining was increased in the cerebral
cortex and no significant change was found in the amygdala of
torpid M. ricketti (Figure 6B, D).

Selection pressure on Bhmt and structure analysis
To investigate the evolution track of BHMT, the selection

pressures on Bhmt of hibernating and non-hibernating bats
was calculated. The encoding regions of Bhmt were cloned,
sequenced and analysed from four non-hibernating and ten
hibernating species of bat to determine Bhmt adaptation to
hibernation (Table S1). To compare differences in selection
pressure, we divided sequences into two groups (non-
hibernation and hibernation) based on clear physiological
characteristics (Figure S1 and Table S1). We found that BHMT
is under strong purifying selection and the ω (dN/dS) value was
lower than 0.18. A stronger selection constraint was found in
hibernators than non-hibernators (Figure 7).

We aligned corresponding amino acid sequences of BHMT
on the basis of required sequences (Figure S1). This showed
high similarity between BHMT in the bat and rat whereby M.
ricketti BHMT had a 96% similarity to rat BHMT (Figure 8A,
Figure S1). Homology modeling revealed bat BHMT is
composed of four identical subunits, which consisted mostly of
a (α/β)8 barrel (Figure 8A) [44]. Most amino acids were
conserved in bats, but four amino acid sites (at positions 78,
149, 150 and 330) were different between non-hibernating and
hibernating bats (Figure 8). Position 78 was changed from Ala

Figure 5.  BHMT activity assay.  The production amount of
methionine represents BHMT relative activity. All results (mean
± SD) are from three separate experiments with n = 3 per
group. Torpid and active states of M. ricketti are tested.
Statistical significance is determined by Student’s t-tests (two
tailed). * denotes nmol/h/mg protein.
doi: 10.1371/journal.pone.0085632.g005

in hibernating bats to Gly in non-hibernating bats (Figure 8B).
Position 149 and 150 locating in α3 helix were variable from
Leu/Met and Lys to Ile and Arg, respectively. Ser330 was
situated in segment (residues 316-349) in hibernating bats, and
was substituted by Thr330 or Pro330 in non-hibernating bats
(Figure 8C).

Discussion

This study confirms that homocysteine does not accumulate
in brain tissue of torpid M. ricketti, despite declining B vitamin
levels from fasting. One reason for this pattern could be that
the key catalyzing homocysteine enzymes BHMT, MS and
CBS do not decline during hibernation. Another explanation is
the role of other molecules in the control of hibernation. For
example, one of the products of homocysteine metabolism,
methionine, is an essential amino acid in mammals because it
is not synthesized de novo [3]. Methionine and its metabolic
products are involved in multiple fundamental biological
processes (Figure 1) [43] and methionine is catalized to
become S-adenosylmethionine (SAM, an important methyl
donor) by methionine adenosyltransferase (MAT). Several
studies have demonstrated that the transcription and
translation of many genes are regulated by methylation during
mammalian hibernation. Methylated DNA has a strong impact
on gene expression [24]. Hibernation-nonresponsive genes
show enhanced methylation of their promoter regions to switch
off transcription [24]. In addition, some enzymes, such as
protein phosphatase 2A (PP2A) involved in tau phosphorylation
in hibernation, can be activated by methylation of its catalytic
subunit [45]. Therefore, methylation may require more SAM,
which promotes homocysteine methylation and results in a
decrease in homocysteine in brain tissue.

The amount of homocysteine in the brain of non-hibernating
R. leschenaultia is higher than for M. ricketti and rats. It is
possible that the normal range of homocysteine is wider in R.
leschenaultia or there exists other mechanisms to prevent
homocysteine injury. BHMT was not detected in the brains of
R. leschenaultia and rats, but MS is higher in R. leschenaultia
brain tissue than M. ricketti, suggesting that MS is crucial to the
homocysteine methylation pathway when BHMT is absent. In
addition, we found that brain homocysteine, MS and CBS
levels in torpid M. ricketti were similar to rats (Figures 2, 4)
except for BHMT expression. Whether the normal range of
homocysteine homeostasis in hibernating bats can be judged
using parameters from rats needs to be verified.

Hyperhomocysteinemia has been diagnosed based on the
plasma homocysteine concentration in clinical medicine [9]. In
this study, we found that plasma homocysteine is not increased
in M. ricketti during hibernation and indicate that homocysteine
concentration is maintained at a normal level in blood and brain
tissues regardless of whether M. ricketti hibernates, which is
beneficial to protect hibernators from atherothrombosis and
thrombosis. The amount of plasma homocysteine in non-
hibernating R. leschenaultia is close to active M. ricketti and
rats, which is different from the condition in the brain between
these species. The data reported here suggest that
homocysteine levels are not consistent between blood and
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local tissue, and it is necessary to measure homocysteine in
both.

Moreover, BHMT expression is elevated in the brains of
torpid M. ricketti, compared to active animals, and its relative
activity does not differ across the two states. The BHMT/
betaine system exhibits a protective effect from homocysteine-
induced injury [46] and BHMT deficiency leads to the elevation
of total homocysteine concentration in Bhmt-/- mice [47]. BHMT
is a key modulator of homocysteine when expression or activity
of other enzymes is abnormal [48,49]. The inherent kinetic
properties of the enzyme are likely important [43] and
compared with MS and CBS, BHMT has a lower Km for sulfur-
containing substrates [43]. BHMT can utilize homocysteine at
relatively low concentrations and has a high affinity for
homocysteine. Elevated BHMT in the brain during hibernation

strongly suggests that BHMT play a role in the regulation of
homocyteine during this state.

Hibernation inhibits betaine sourced from food and overall
reduced metabolism results in a decrease in plasma betaine
during hibernation (Figure 3B). However, brain betaine levels
were not different between torpid and active M. ricketti (Figure
3A). The physiologic function of betaine is either as the methyl
donor involved in BHMT-catalyzed homocysteine metabolism
or as an osmolyte protecting cells, proteins and enzymes from
environmental stress (such as extreme temperature in
hibernation) [50]. The difference in betaine levels in the brain
and plasma suggests that hibernators adjust the betaine
distribution for homocysteine metabolism and brain protection.
Furthermore, several studies have reported that the synthesis
and reserves of acetylcholine are lower during hibernation than
when active [51]. Acetylcholine (as a neurotransmitter) may be

Figure 6.  Immunohistochemical detection of BHMT in the brains of M. ricketti.  After series of coronal sections, BHMT
expression was identified in the cerebral cortex (Cx) and the amygdala (Am) of basal ganglia between torpid and active states in M.
ricketti. Immunopositivity was dark-brown in the cytoplasm of cells. The four photomicrographs indicate encephalic regions and
states: cerebral cortex, torpid state (A, left lane); cerebral cortex, active state (A, right lane); amygdala, torpid state (C, left lane);
amygdala, active state (C, right lane). Quantitative analysis of BHMT immunostaining in cerebral cortex (B) and amygdala (D).
Three (n = 3) animals in each group were analysed. Relative integrated optical densities are shown as mean ± SD. *P < 0.05 (two
tailed Student’s t-tests). CxT, the cerebral cortex of torpid M. ricketti; CxA, the cerebral cortex of active M. ricketti; AmT, the
amygdala of torpid M. ricketti; AmA, the amygdala of active M. ricketti.
doi: 10.1371/journal.pone.0085632.g006
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broken down to choline and oxidized to betaine when nerve
conduction is reduced during hibernation [19,22]. Therefore,
BHMT-catalyzed reactions play an important role in betaine
homeostasis in addition to homocysteine levels.

The total amount of MS and CBS did not vary between torpid
and active M. ricketti, but their function could be influenced
during hibernation. B vitamin supplementation (vitamin B6,
vitamin B12 and folate) and strengthening of the transulfuration
and transmethylation pathways could lower homocysteine
levels and slow the accelerated rate of neurological disease
[12,52,53]. However, B vitamins are not synthesized by
hibernators themselves, and fasting during hibernation leads to
reduced intake of vitamin B6 and vitamin B12 in torpid bats.
The brain is not the main storage organ of B vitamins in bats
[54], and they are not quickly transported to the brain because
of the lower flow velocity of blood [32,55]. These factors may
inhibit the involvement of MS and CBS in transmethylation and
transsulfuration. Meanwhile, the transsulfuration pathway is
inactivated when methyl transfer (such as the process involving
SAM) requirements are high [56], consistent with the idea that
homocysteine levels are usually determined by remethylation
rather than transsulfuration during fasting [57,58]. Interestingly,
following declining vitamin B6 and vitamin B12, the level of
folate did not vary between torpid and active bats (Table 1).
This observation could be explained by the “methyl trap”
considering that vitamin B12 deficiency reduces the activity of
MS. It leads to the accumulation at other folate forms [59,60]
and could inhibit folate converting to tetrahydrofolate (THF).
These processes may discount the roles of MS and CBS
during hibernation and make the role of BHMT more important
in homocysteine homeostasis. However, two bands of CBS
detected in M. ricketti bats exhibit a reciprocal expression
pattern between torpid and active states (Figure 4A), which

Figure 7.  Selective pressure on Bhmt.  Selective pressure
on BHMT was determined by comparing the ω value
(ω=dN/dS, dN: non-synonymous substitution rate, dS:
synonymous substitution rate) for several species of non-
hibernating (black bar) and hibernating (gray bar) bats. Data
are presented as mean ± SD. Statistical significance was
determined by Student’s t-tests (two tailed), **P < 0.001.
doi: 10.1371/journal.pone.0085632.g007

suggests the occurrence of post-translational modifications
(PTMs) on CBS. PTMs (e.g., sumoylation and methylation) are
known to be intensively involved in regulation of CBS activities
[61–64]. Whether catabolism of homocysteine by
transsulfuration pathway is reduced in torpid bats due to
decreased B vitamins and PTMs of CBS remains to be
investigated. Thus, the increased level of BHMT, reduced
activity of transsulfuration pathway, and lower production of
homocysteine could together maintain the homocysteine level
during bat torpor.

Immunocytochemistry revealed that the cerebral cortex and
the amygdala of basal ganglia were the main encephalic
regions of BHMT distribution. Elevated homocysteine levels
may result in the formation of neurofibrillary tangles (NFTs),
which are severe in the cerebral cortex and amygdala in AD
patients [65]. BHMT expression in these two regions may
modulate homocyteine levels and decrease production of
homocystine-induced NFTs in order to prevent relative
neurological damage during hibernation.

Furthermore, Bhmt is found under strong purifying selection
(ω < 0.18) and there exists a stronger selective constraint in
hibernating bats (Figure 7), indicating that this gene is very
conservative and reflects a higher functional constraint on
BHMT protein [33]. The significant difference in selective
pressure between hibernators and non-hibernators may be the
result of environmental stressors, such as low temperature and
food shortage [33]. This analysis supported the functional
importance of BHMT during hibernation.

The functional importance of BHMT in control of
homocysteine levels in the brain of torpid bats is further
supported by the observation that the amino acid residues of
BHMT is more conserved in hibernating bats than that in non-
hibernating bats (Figure 8). Three (positions 78, 150 and 330)
of four different sites (positions 78, 149, 150 and 330) were
100% conserved in all ten hibernating bats but were diverged
in four non-hibernating bats compared to other mammal
species (Figure S1). Amino acid Ala78 links loop L2 (residues
79–95) and residues Phe76 and Tyr77 that are critical for
substrate binding (Figure 8B) [44,66]. Phe76 has been included
in the betaine-binding site and involved in properly orienting the
Hcy, and Tyr77 is contributing to the hydrophobic core for
betaine and provides a hydrogen bond for betaine [44]. On the
other hand, loop L2 presents mobility by playing an essential
role in Hcy binding [44]. Therefore, Ala78 as a linker between
the two regions may play a role to influence substrate binding.
Amino acid site 330 located in segment 316–349 (chain B) is
stacked to a helix (residues 381–407) of the interacting subunit
(chain D), which contributes to the tetramerization of AB and
CD [44]. The amino acid change at position 330 may influence
BHMT structural stability, especially when Ser330 was
substituted by Pro330 (Figure 8C). The substitutions at
positions 78 and 330 change the side chain distance between
these residues and their adjacent amino acids, whether the
alteration of van der Waals’ forces among the residues affects
BHMT function remains to be investigated (Figure 8B, C).

We found for the first time that BHMT is expressed in the
brains of mammals. Expression in the cerebral cortex and
amygdala, and strong purifying selection in BHMT, suggest that
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hibernators regulate BHMT expression to decrease
homocysteine-induced brain damage. This research builds on
our understanding of homocysteine homeostasis and this is
essential to develop treatments for human cerebrovascular and
neurodegenerative diseases. It is clear that BHMT is important
to homocysteine homeostasis in brain tissue and the

distribution and function of BHMT in other tissues and species
is an exciting area of further research.

Figure 8.  Homology modeling of bat BHMT.  (A) BHMT tetramer of bat consists of chain A (red), B (green), C (orange) and D
(purple). Bat BHMT was superposed to the 3D-structure of BHMT of rat (Rattus norvegicus, O09171) (gray). Four amino acid
residues (Ala78, Leu/Met149, Lys150 and Ser330) that are conserved in all hibernators of bats but are varied among non-
hibernators of bats are shown in blue. (B) Amino acid residue at position 78 linking the residues Phe76 and Tyr77 for substrate
binding and loop L2 (residues 79–95) is Ala78 in hibernating bats (upper lane) but is Gly78 in non-hibernating bats (lower lane), in
which the side chain distances between positions 78 and their adjacent residues Phe76 and Tyr77 are rearranged. (C) Ser330 in
hibernating bats is different from Thr330 or Pro330 in non-hibernating bats, which may influence binding of the dimers AB to CD,
especially the substitution of Pro330. Glu391 and Arg395 of chain D were stacked to the segment 316–349 of chain B, and dotted
lines indicate the distance from Glu391/Arg395 to residues at position 330. All structures are represented by PyMol.
doi: 10.1371/journal.pone.0085632.g008
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Supporting Information

Figure S1.  Alignment of amino acid sequences of BHMT.
Amino acid sequences ranging from 22 to 354 were aligned
from bats and human. Amino acid site numbers are referenced
to mature human BHMT. The amino acid sites indicated by
asterisk (*) mean that the corresponding amino acids are
different between hibernating (H) bat group and non-
hibernating (N) bat group.
(TIF)

Table S1.  The accession numbers and heterothermy
condition in bat species.
(DOCX)

Table S2.  Primers used for amplification of Bhmt gene
from 12 bat species.

(DOCX)
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