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Introduction
The combination of state-of-the-art instrumentation for the 
temporal surveillance of biological specimens, along with deep 
learning-based image processing techniques, offers promising 
opportunities to advance fundamental scientific research. We 
have used the latest advancements in image data processing 
using neural networks with different backbones and have pro-
posed a method for segmenting chronic lymphocytic leukaemia 
(CLL) cells, which is an initial step towards further analyses of 
cell image data. Accurate image segmentation of cells is neces-
sary to determine their morphological characteristics, which are 
important indicators of cell properties. Accurate cell segmenta-
tion is also a primary step towards successful cell tracking during 
in vitro migration analyses. Although most studies address the 
efficient detection of cancer cells from blood samples, our study 
addresses the need to segment cells in brightfield time-lapse 

microscopy images to study cell migration and changes in cell 
morphology using readily available computational technologies.

Our experiments answer the following questions:

•• What are the most suitable new deep learning algorithms 
for cell detection in brightfield images?

•• What is the best way to separate instances of individual 
objects? Comparison of three approaches. Which 
approach works best in our data?

•• What parameters can be used to characterise cells? How 
do the values of these parameters vary depending on the 
different approaches?

To address this, we conducted a comprehensive comparative 
analysis using a variety of neural network architectures and 
tested their performance with different backbones.
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ABSTRACT

OBjeCTIveS: This article focuses on the detection of cells in low-contrast brightfield microscopy images; in our case, it is chronic lympho-
cytic leukaemia cells. The automatic detection of cells from brightfield time-lapse microscopic images brings new opportunities in cell mor-
phology and migration studies; to achieve the desired results, it is advisable to use state-of-the-art image segmentation methods that not 
only detect the cell but also detect its boundaries with the highest possible accuracy, thus defining its shape and dimensions.

MeThODS: We compared eight state-of-the-art neural network architectures with different backbone encoders for image data segmenta-
tion, namely U-net, U-net++, the Pyramid Attention Network, the Multi-Attention Network, LinkNet, the Feature Pyramid Network, Deep-
LabV3, and DeepLabV3+. The training process involved training each of these networks for 1000 epochs using the PyTorch and PyTorch 
Lightning libraries. For instance segmentation, the watershed algorithm and three-class image semantic segmentation were used. We also 
used StarDist, a deep learning-based tool for object detection with star-convex shapes.

ReSuLTS: The optimal combination for semantic segmentation was the U-net++ architecture with a ResNeSt-269 background with a data 
set intersection over a union score of 0.8902. For the cell characteristics examined (area, circularity, solidity, perimeter, radius, and shape 
index), the difference in mean value using different chronic lymphocytic leukaemia cell segmentation approaches appeared to be statisti-
cally significant (Mann–Whitney U test, P < .0001).

COnCLuSIOn: We found that overall, the algorithms demonstrate equal agreement with ground truth, but with the comparison, it can be 
seen that the different approaches prefer different morphological features of the cells. Consequently, choosing the most suitable method for 
instance-based cell segmentation depends on the particular application, namely, the specific cellular traits being investigated.
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The need for precision cell segmentation  
of CLL cells

CLL is a chronic disease with significant genetic, morphologi-
cal, and phenotypical heterogeneity. The condition exhibits 
considerable clinical variability among patients with respect to 
prognosis and clinical course, ranging from slow and stable to 
extremely aggressive.1 CLL is characterised by the progressive 
accumulation of CD5+, CD23+, and CD19+ B cells in the 
peripheral blood, bone marrow, lymph nodes and spleen.2 
Recent investigations have shown that variations in the size of 
CLL cells are indicative of their activation status, polarisation, 
and motility compared to the population of smaller CLL cells 
and indicate that the functional differences observed in vitro 
may reflect a different in vivo leukaemic potential, probably 
responsible for the heterogeneous characteristics of the disease 
and may contribute to different clinical manifestations in CLL 
patients.3 In addition, a negative prognostic value was found to 
be associated with atypical CLL cell morphology.4 Although 
CLL cells in peripheral blood are floating freely, their migra-
tion to and from the bone marrow is essential for their sur-
vival,5 thus, a deeper understanding of the morphology and 
migratory behaviour of CLL cell subpopulations can be useful 
for both fundamental research and precision medicine.

Furthermore, state-of-the-art studies focus on automated 
detection and classification of cells from blood smear to per-
form accurate segmentation of tumour cells from normal 
cells,6-8 classification of different types of blood cells,9,10 or 
detection of specific properties of blood cells, such as deform-
ability11 and velocity.12

Cell segmentation methods

The investigation of cell segmentation has garnered growing 
interest in recent years due to the importance of cell morphol-
ogy as a crucial phenotypic characteristic that provides insight 
into a cell’s physiological condition. Furthermore, the delinea-
tion of cell boundaries is frequently necessary for the subse-
quent analysis of intracellular processes at the nanoscale or for 
studying cellular interactions at the millimetre scale. Therefore, 
cell segmentation is a major challenge in image data analysis 
due to its relevance in understanding cellular behaviour and 
enabling comprehensive investigations into various biological 
phenomena.13

Automated segmentation and detection of cells from opti-
cal microscopy and other imaging devices, particularly time-
lapse microscopy, can be a valuable addition in addressing 
various biological questions that are heavily based on single-
cell analysis. During the past decade, the field has evolved sig-
nificantly, incorporating both conventional and machine 
learning-based methodologies.14

Traditional (conventional) methods for image segmentation.  
Conventional techniques rely on predefined rules and 

heuristics to separate foreground objects from the background. 
Currently, the field of conventional cell segmentation algo-
rithms encompasses a range of methodologies. These include 
techniques such as thresholding,15 watershed segmenta-
tion,16-18 and active contour segmentation,19-21 which are 
known to have an over-segmentation bias when the images are 
contaminated with noise. However, the advent of machine 
learning has revolutionised cell segmentation, enabling the 
development of sophisticated algorithms capable of learning 
and adapting to complex image patterns.22

Traditional methods are often combined and integrated 
into automated workflows,23,24 not only to accelerate the seg-
mentation procedure but also to complement the pre- and 
post-processing stages of neural networks.25 They can also be 
effectively used in data annotation to streamline the generation 
of training data, which is essential for training neural 
networks.26,27

Deep learning-based segmentation and object detection. The cur-
rent trend in microscopic cell image segmentation is based on 
machine learning and deep learning methods, which have 
gained dominance in cell segmentation and other fields in the 
last decade. The increasing complexity of microscopy images 
and the limitations of conventional approaches in cell segmen-
tation have prompted substantial advancements in these tech-
niques, which can be broadly categorised into supervised and 
unsupervised methodologies.28,29 Supervised methods involve 
the development of mathematical functions or models through 
training data to enable the accurate prediction of new samples. 
Conversely, unsupervised machine learning algorithms operate 
independently of pre-assigned labels or scores in the training 
data. In particular, clustering methods have emerged as the pre-
dominant unsupervised techniques for addressing these 
challenges.30-33

In general, there are two main approaches to image segmen-
tation, namely semantic and instance segmentation. In seman-
tic segmentation, the objective is to assign a class label to each 
pixel in an image without explicitly distinguishing between 
individual instances of the same class. Conversely, the second 
category, instance segmentation, aims to differentiate between 
individual instances belonging to the same class. However, 
unlike semantic segmentation, instance segmentation does not 
provide predictions for all pixels in an image and focuses solely 
on predicting one particular type of object, namely, the fore-
ground, while disregarding other objects present in the 
background.34,35

Cell segmentation requires instance segmentation because 
in microscopic images, individual cells touch, and using seman-
tic segmentation alone results in the touching cells acting as a 
single object. Thus, a major challenge in cell segmentation is to 
design reliable feature representations that can recognise cell 
boundaries with high accuracy. To address this, there are several 
possible approaches. The first involves classifying each pixel 
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into a semantic class and grouping pixels of the same class into 
individual instances,34 which can be achieved, for example, by 
applying connected component analysis.36 This approach 
requires the most accurate semantic segmentation possible to 
achieve the precise categorisation of pixels in the cell-back-
ground transition region. Another approach involves localising 
each cell via rough shape representation using axis-aligned 
bounding boxes37 or convex polygons for each pixel.38 This 
approach is categorised as object detection rather than seg-
mentation, in which object detection algorithms offer the 
capability to generate bounding boxes around individual cells. 
The process of drawing bounding boxes involves the labelling 
of two points in spatial coordinates and can exhibit greater effi-
ciency compared with pixel-level annotation. In addition, the 
use of bounding boxes facilitates straightforward differentia-
tion of overlapping objects.39 In scenarios where pixel-level 
segmentation is necessary, object detection can be followed by 
post-processing techniques that establish accurate boundaries 
for each object.40

Consequently, a transition from pure semantic segmenta-
tion to instance-aware semantic segmentation is imperative. A 
viable approach involves incorporating a narrow artificial back-
ground ridge, measuring one pixel in width between the touch-
ing elements within the actual segmentation mask.41

For comparison, we selected different types of architectures 
developed for image segmentation and object detection. These 
networks differ in their structures on the desired results. The 
requirements of an optimal network vary with respect to the 
input data and the purpose of use. We defined the basic require-
ments as segmentation accuracy, ie, defining the boundary of 
an object as accurately as possible and distinguishing it from 
the background.

U-net and U-net++. U-net is a neural network architec-
ture known for its encoder-decoder network structure, which 
enables end-to-end solving of semantic segmentation tasks, 
even when the training data set is limited. The U-net network, 
proposed by Ronneberger et al,42 builds on the foundation 
established by Shelhamer et al43 and their use of fully convolu-
tional networks.

An important common feature of encoder-decoder net-
works used in image segmentation tasks is the integration of 
skip connections. In the U-net architecture, these skip connec-
tions are achieved by concatenating up-sampled feature maps 
and incorporating convolutions and non-linearities between 
each up-sampling step. These skip connections improve gradi-
ent flow and enable the transfer of information between the 
down-sampling and the up-sampling paths by connecting each 
pair of encoder-decoder layers, thus proving its effectiveness in 
recovering full spatial resolution at the network output and 
making fully convolutional methods suitable for accurate 
semantic segmentation.44

Since its introduction in 2015, the U-net network has expe-
rienced a rapid rise in the field of medical and biological image 

data evaluation; naturally, various versions of it are emerging, 
namely 3D U-net,45 Residual U-net,46 Attention U-net,47 
Inception U-net,48 Dense U-net,49 R2 U-net,50 U-net++,51 
SE U-net,52 and many other networks that make use of an 
ensemble of U-nets.53-56

In our study, we employed the U-net++ architecture, which 
incorporates nested and dense skip connections. The funda-
mental premise underlying this architecture is that the model 
can capture intricate details of foreground objects by progres-
sively enhancing high-resolution feature maps from the 
encoder network before merging them with semantically 
enriched feature maps from the decoder network. U-net++ 
comprises an encoder and decoder linked by a sequence of 
nested dense convolutional blocks. The primary purpose 
behind U-net++ is to close the semantic gap between the fea-
ture maps of the encoder and decoder prior to fusion.51

The Feature Pyramid Network (FPN). Feature pyramids are 
a fundamental element within recognition systems designed 
to detect objects across various scales. The concept of feature 
pyramids was originally introduced by Lin et al,57 with the aim 
of effectively leveraging multiscale features for tasks involving 
object detection and recognition. FPN is constructed on top of 
a backbone network, typically a pre-trained convolutional neu-
ral network (CNN) like ResNet or VGGNet, and is responsible 
for extracting features from the input image. Feature pyramid 
networks enable these CNNs to capture features at distinct lev-
els of abstraction and spatial resolution. The uppermost levels 
of the pyramid encompass high-level features that are semanti-
cally rich but possess a lower spatial resolution compared to the 
lower levels of the pyramid. On the contrary, the lower levels 
of the pyramid exhibit high spatial resolution but contain less 
semantic information in comparison with the higher levels. By 
integrating features from multiple scales, the FPN facilitates 
robust and precise object detection and recognition.

The Multiscale Attention Net (MA-Net). Attention is an 
important mechanism that can be used for a variety of deep 
learning models in many different domains.58 Attention mech-
anisms have been introduced into computer vision to simulate 
the human ability to detect salient regions in complex scenes 
and have been successfully applied in many areas, including 
semantic segmentation.59-62 MA-Net was first proposed by 
Fan et al63 for the segmentation of the liver and tumours. Apply 
self-attention modules in the bottleneck of the U-net architec-
ture. The first module, the Position-wise Attention Block, is 
used to obtain spatial dependencies between pixels in feature 
maps, while the second module, the Multiscale Fusion Atten-
tion Block, considers the channel dependencies between any 
feature maps.

The Pyramid Attention Network (PAN). The PAN is an 
architectural design that aims to enhance the feature represen-
tation capabilities of CNNs by incorporating attention mecha-
nisms. It was inspired by the attention mechanism to provide 
precise pixel-level attention for high-level features extracted 
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from CNNs and was designed to capture both local and global 
contextual information in an image. This is achieved by using 
two modules: The Feature Pyramid Attention module provides 
pixel-level attention information and increases the receptive 
field by utilising a pyramid structure, and the Global Attention 
Up-sample module exploits high-level feature maps to guide 
low-level features recovering pixel localisation. By effectively 
integrating attention mechanisms at different scales, the PAN 
architecture enables the network to capture meaningful context 
and enhance its power for image classification, object detec-
tion, and semantic segmentation.64

LinkNet. LinkNet was initially designed to address the 
requirements of real-time semantic segmentation of visual 
scenes. It follows an architectural paradigm to that of U-net 
and other segmentation networks, featuring an encoder on the 
left and a decoder on the right. The achievement of temporal 
efficiency in LinkNet is due to the specific interconnections 
established between the encoder and the decoder. This entails 
selectively directing the input of each encoder layer to its corre-
sponding decoder output, thereby facilitating the segmentation 
process. Because of this strategy, the decoder can function with 
reduced parametrisation in each layer, contributing to improved 
temporal efficiency.65 LinkNet was employed in Araújo et al66 
for the segmentation of melanoma skin cancer in combina-
tion with transfer learning and fine tuning. Although LinkNet 
makes efficient use of parameters and a number of operations 
in real-time applications, it lags behind U-net in accuracy.

DeepLabV3 and DeepLabV3+. DeepLabV3 is a state-of-
the-art model in the domain of semantic segmentation; it uti-
lises atrous convolution and post-processing via fully connected 
conditional random fields.67 Using atrous convolution, Deep-
LabV3 achieves an expansion of the receptive field of filters 
without increasing the number of parameters, facilitating the 
acquisition of local and global contextual information. This is 
accomplished through the introduction of voids within convo-
lutional kernels, consequently regulating the spacing between 
the values utilised for convolutional computation. Dilated con-
volutions support exponential expansion of the receptive field 
without loss of resolution or coverage and provide explicit con-
trol over the resolution of features generated by CNNs.68

DeepLabV3+ expands on the foundations of DeepLabV3 
by incorporating an encoder-decoder architecture. This archi-
tecture employs DeepLabV3 as an encoder module and a sim-
ple yet effective decoder module. The encoder module handles 
multiscale contextual information by employing atrous convo-
lutions across various scales. In contrast, the decoder module 
further enhances the precision of segmentation outcomes in 
relation to object boundaries.69

Methods
For our experiments, we selected image sequences featuring 
CLL cells isolated from a single patient, which were captured 
using brightfield time-lapse microscopy. A detailed description 

of the conducted experiments and the resulting image data are 
presented below.

Sample preparation and image acquisition

Peripheral blood mononuclear cells were isolated by density 
gradient centrifugation from a patient with a very high per-
centage (> 95%) of lymphocytes. CLL cells were identified 
and then sorted by gating for CD19+, with > 99% purity. Small 
(s-CLL) and large (l-CLL) cells were sorted by gating by the 
size of the smallest and largest portions of CLL cells in the 
CLL population (20% each). From 2.5 million CLL cells, 
approximately 350 000 s-CLL and 250 000 l-CLL cells were 
sorted and cultured in complete foetal bovine serum, 2 mM 
L-glutamine, supplemented with 10% heat-inactivated foetal 
bovine serum, 2 mM L-glutamine, 100 U mL−1 penicillin and 
100 µg mL−1 streptomycin. Cells s-CLL and l-CLL were 
treated separately with CpG (3 µg mL−1), cultured in a climate-
controlled chamber (37 °C and 5% CO2) for 24 h and then 
placed on a heated microscopy stage (37 °C and 5% CO2). Cell 
polarisation and motility were monitored by time-lapse video 
microscopy of cells for 60 min and recorded using Gen5 soft-
ware and a BioTec Cytation 5 reader at a final magnification of 
200× (Figure 1). The camera used was a Blackfly BFLY-U3-
23S6M, with an objective Olympus lens (size: 20; numerical 
aperture: 0.45; objective PSF Sigma: 0.806) and an image size 
of 1224 × 904 pixels.

Comparison of state-of-the-art neural network 
architectures for semantic segmentation of CLL cells

In this study, our primary aim was to detect CLL cells (rounded, 
touching low-contrast objects) from brightfield time-lapse 
microscopy images. To accomplish this, we conducted a com-
prehensive analysis utilising a variety of neural network 

Figure 1. Brief description of the input image data. The appearance of 

typical chronic lymphocytic leukaemia cells: (orange) rounded cell with a 

blurry dark edge, brighter inner ring part, and darker middle; (blue) 

nontypical: non-rounded shape (red).
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architectures. Specifically, the neural networks evaluated in our 
study included the ones described in Section 3; namely U-net, 
U-net++, the Multiscale attention Net (MA-Net), LinkNet, 
the FPN, DeepLabV3, DeepLabV3+ and the Pyramid 
Attention Network (PAN). The purpose of utilising these 
architectures was to facilitate the accurate identification and 
localisation of CLL cells within the acquired BF images with-
out distinguishing individual cells in the case of their contact.

The training process involved training each of these net-
works for 1000 epochs using PyTorch and PyTorch Lightning 
libraries. Using segmentation models,70 we incorporated vari-
ous backbone encoders into neural networks, namely 
InceptionResNetV2,71 ResNeSt-269,72 ResNet-152,46 
ResNeXt-101_32x32d,73 and VGG19.74

Compared variables
Loss function. The Dice coefficient, or the Dice-Sørensen 

coefficient, is a common metric for pixel segmentation that can 
also be modified to act as a loss function:
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The Dice-Sørensen coefficient is calculated by taking twice the 
count of elements shared by both sets and dividing it by the 
sum of the elements in each set. In general, the purpose of loss 
functions is to compute a metric that the model should try to 
minimise throughout the training process.

Intersection over union metric. In image segmentation, inter-
section over union (IoU) is a primary metric for evaluating 
model accuracy. The IoU is the intersection ratio of the area 
between the ground truth (GT) and the segmentation mask 
(TP = true positive) to the union of TP, the predicted area out-
side the ground truth (FP = false positive), and the number of 
pixels in the GT area not predicted by the model (FN = false 
negative):
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We calculate IoU in two ways: the per-image IoU and the data 
set IoU. The per-image IoU means that we first calculate the 
IoU score for each image and then compute the mean of these 
scores. IoU of the data set means that we aggregate the inter-
section and union over the whole data set and then calculate 
the IoU score. The difference between IoU per data set and the 
IoU per image can be observed in data sets with ‘empty’ images 
(ie, images without a target class). Empty images have a large 
influence on the IoU per image and much less influence on the 
IoU of the data set.

Training. The graphics processing unit hardware used for this 
test was an NVIDIA V100 with 32 GB of VRAM.75 The orig-
inal CLL images had a resolution of 1224 × 904 pixels with a 

colour depth of 16 bits; for labelling and training, we chose  
224 × 224 pixel cutouts. Each network was run for 1000 
epochs, and there was no restriction on the time it took to train.

Proposed workflow for instance segmentation of 
CLL cells and other lymphoblast-like cells

The preceding investigation aimed to identify the optimal neu-
ral network to effectively detect CLL cells in brightfield 
microscopy. The process involved semantic segmentation, 
where each pixel within the images was assigned specific values 
based on the probability of being part of the target object or the 
background. To achieve instance segmentation, which is par-
ticularly advantageous in this context (as it enables differentia-
tion between touching and overlapping objects), requires 
another step in the post-processing stage. Since the methods 
for achieving instance-based cell segmentation depend on the 
annotation of the data itself, an overview of three types of 
workflows is given below (Figure 2).

First step–data annotation. There are several procedures avail-
able to separate individual segmented cells, some of which 
require specific preprocessing steps. These steps influence cell 
segmentation during the annotation of image data, the initial 
phase of image segmentation. In this study, we used three types 
of data annotation, each tailored to the subsequent cell seg-
mentation procedure. Basic annotation involves creating a 
binary mask, distinguishing between two classes: black repre-
senting the background and white representing cells. By slightly 
modifying this mask (adding a 1-pixel border between cells 
and then algorithmically outlining each cell), a mask of three 
classes was created (green – cell, red – background, blue – 
boundary). The output of a neural network trained on such 
data comprises predictions for these three classes, including the 
cell-background boundary. The last type is the annotation of 
each cell separately, that is, each cell corresponds to a different 
pixel value. To create these masks, it is possible to use freely 
available tools and plugins, eg, Labkit in ImageJ,76 Annota-
torJ,77 or QuPath.78

Instance segmentation methods. In this study, we used three 
types of approaches to perform instance-based cell image seg-
mentation. The first is the application of traditional image 
analysis algorithms to the segmented image through 2-class 
segmentation (Section 4 Materials and methods), the second is 
the application of these algorithms to the data obtained 
through 3-class segmentation, and the third is the use of the 
StarDist detector,38 which uses a lightweight neural network 
based on U-net and works similarly to most detection algo-
rithms; however, instead of axis-aligned bounding boxes, it pre-
dicts a star-convex polygon for each pixel to represent the 
shapes. StarDist is widely used to detect convex-shaped objects, 
such as cell nuclei. It is available as a library written in Python 
and as a tool in Fiji/ImageJ,79 where it is also part of the Track-
Mate80 cell tracking tool.
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A typical algorithm used in post-processing to separate 
objects is the watershed algorithm, which interprets pixel val-
ues as local topography or elevation, facilitating the demarca-
tion of object boundaries within images. Although the output 
of a 2-class segmentation framework can be post-processed 
using this algorithm, more precise results were obtained 
through 3-class segmentation (Figure 3).

The resulting segmented images were then processed using 
Fiji/ImageJ software. Since the data set contained time series 

content, ie, images taken through a device designed for time-
lapse microscopy, the Fiji/ImageJ plugin TrackMate with inte-
grated threshold object detector was used to obtain cellular 
characteristics (area, circularity, solidity, perimeter, radius, and 
shape index). The input was a sequence of 47 images in .png 
format of 1280 × 928 pixels, converted to 8-bit depth in binary 
format, and the output is a .csv table with the positions of 
detected cells and their characteristic. The post-processing 
pipeline of U-net++ 2-class and U-net++ 3-class segmenta-
tion outputs is depicted in Figure 4.

Results
The following section summarises the results of both parts of 
the study, the first is the selection of the most appropriate 
architecture for semantic segmentation, followed by a compari-
son of approaches to creating instance-based cell segmentation 
and a comparison with the widely used StarDist tool.

Comparison of different neural network 
architectures for semantic segmentation of CLL cells

Although some of the network architectures converged to the 
solutions faster than others, as seen in Figure 5, where the FPN 
network has a lower loss function value faster than other net-
works, and the same can be observed in Figure 6.

Finally, U-net++ had the best results in terms of the loss 
function and all IoU metrics. From the loss graphs, the IoU 
metric chart (Figure 7) and the results in Table 1, U-net++ 
provides the best results, followed by U-net and MA-Net. 
U-net, U-net++, and MA-Net were primarily designed for 
medical image segmentation. It was found that the attention 
mechanisms applied in the MA-Net do not improve the final 
score in the segmentation of CLL cells. However, MA-Net 
outperformed U-net in the Test Dataset-IoU metric with the 
ResNet-152 backbone, where it provided the second-best 
result. It also has the advantage of having shorter training times 
than U-net++, but this metric does not play a significant role 
in the case of this application. The optimal combination was 
U-net++ architecture with ResNeSt-269 backbone, with an 
IoU score of 0.8902.

An example of the input and neural network output can be 
seen in Figure 8, where outputs from both DeepLab architec-
tures have blurry outputs, and LinkNet has some undesired 
artefacts, which can be corrected in post-processing. A single 
image slice of several cells was selected and then compared 
across all outputs. The highlighted values represent the best 
result in each measured category.

Comparison of different approaches for instance 
segmentation of CLL cells

For the characteristics examined (area, circularity, solidity, 
perimeter, radius, and shape index), the difference in mean 
value using different CLL cell segmentation approaches 
appeared to be statistically significant (Mann–Whitney U test, 
P < .0001). Figure 9 shows the distribution of the values of the 

Figure 2. The workflow was tailored to processing and evaluating 

brightfield microscopy images of CLL cells and cells with similar 

morphology. The input comprises microscopy images or image 

sequences, the dimensions of which require adjustment depending on 

the semantic segmentation algorithm employed. Image cutouts with 

dimensions of 224 × 224 pixels and 256 × 256 pixels (StarDist) were 

utilised for neural network training. Preprocessing entails image 

normalisation and augmentation. Masks are prepared based on the 

segmentation type: 2-class, 3-class, instance. Post-processing involves 

employing traditional image processing methods such as thresholding 

and the watershed algorithm.
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Figure 3. Proposed workflow containing post-processing steps leading to instance segmentation of CLL cells with utilising U-net++. The watershed 

algorithm was used on the output of the U-net++ model. The result revealed that certain cell boundaries were not detected with the necessary precision, 

potentially impacting subsequent analyses. Consequently, we decided to adopt an alternative approach: the three-class segmentation method. In this 

scenario, we found that the boundaries of touching cells were more effectively resolved.

Figure 4. Post-processing pipeline. Difference in procedure when using 2-class and 3-class prediction. In the case of 3-class prediction, the output is an 

RGB image in which the cell boundaries are already detected during prediction, which facilitates post-processing because it is not necessary to use cell 

separation algorithms, in this case the watershed algorithm, which creates a 1-pixel gap between cells.
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Figure 5. Training loss per epoch for each network.

Figure 6. Validation loss for each epoch.

Figure 7. Best dataset-IoU score for architecture and backbone.
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different cell characteristics using three different approaches, 
2-class U-net++, 3-class U-net++, StarDist (custom model). 
From these graphs, the differences are mainly in the distribu-
tion of outliers. Another finding is the characteristic 
‘CIRCULARITY’, which acquires a small variance when 
using the StarDist detector, while its variance is larger when 
using other post-processing procedures.

Subsequently, the effectiveness of each approach to fit the 
manually labelled data was compared (GT). Individual 
approaches were found to differ primarily in the nature of cell 
segmentation, not in the overall IoU score (Figure 10). 
Individual approaches were also compared with each other.

Discussion
Deep learning has exerted substantial influence across multiple 
domains in the realm of image processing, including computer 
vision, image classification, semantic segmentation, instance 
segmentation, and panoptic segmentation. In the domain of 
medical imaging, as well as cell segmentation and tracking, 
CNN and deep learning models have demonstrated their abil-
ity to achieve state-of-the-art accuracy, primarily by effectively 
harnessing both local and global image features.71

Our methodology for segmenting time-lapse microscopy 
images of CLL cells involved a comprehensive evaluation of 
state-of-the-art neural network architectures, resulting in the 
selection of the optimal model for segmenting CLL cells. 
This chosen methodology also outlines procedures applicable 
to segmenting time-lapse images of other cell types in bright-
field microscopy, with the primary focus being on accurately 
defining cell boundaries, a prerequisite for successfully deter-
mining their characteristics. Furthermore, we investigated 
different network backbones to identify the optimal configu-
ration, ultimately finding that the combination of the 
U-net++ network with the ResNeSt-269 backbone was the 
most effective for our specific application. The choice of the 
appropriate method for cell segmentation depends on the 

quality and quantity of the input data but also on the experi-
ence of the evaluator. In this case, the cells have a relatively 
regular, circular to ellipsoidal shape but vary in size and con-
tain irregularities. However, irregularities may have a signifi-
cant effect on the evaluation of the experiments performed. 
For these reasons, accurate identification of object shapes in 
microscopic images is essential. The workflows mentioned 
demonstrate the possibilities to segment this type of image 
data, ie, to separate individual cells as accurately as possible, 
which is also important for subsequent monitoring of cell 
motility and migration.

The effectiveness of the proposed methods is based on the 
following points.

(a) By comparing the combinations of backbone and 
advanced deep learning architectures for image seman-
tic segmentation, the most efficient was selected and 
used in the two proposed methods.

(b) Then 3-class segmentation was applied to the pro-
posed method, where the pixels of the training data 
were segmented into object (cell), cell boundary and 
background classes. The image data labelled in this 
way was then used for training.

(c) 3-class segmentation, in contrast to 2-class segmenta-
tion, shows a more precise separation of individual 
cells, ie, creating instances without the need to apply 
an additional post-processing algorithm, for example, 
watershed, which is not always efficient.

Conclusion
The result of the whole study is a comparison of methods that 
can assign characteristics to image data/cells, which can then 
be used in the study of cell migration. The main objective of 
the study is to show differences in cell segmentation using dif-
ferent approaches and how they can affect the resulting meas-
urements. Our next objective is to develop an optimal 

Table 1. The results for the backbone resnet152.

NETwORK PARAMETERS TRAINING TIME LOSS TEST DATA SET

 (MILLIONS) (MM: SS) IOU (%)

U-net 67.2 21:41 0.0165 87.21

U-net++ 83.6 30:10 0.0149 88.88

MA-Net 182 25:31 0.0242 87.37

LinkNet 65.8 21:02 0.0517 86.76

FPN 60.8 15:39 0.0272 84.01

DeepLabV3 74.3 18:49 0.0572 75.57

DeepLabV3+ 61.3 48:33 0.0394 83.50

PAN 58.9 16:46 0.0581 80.35
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Figure 8. Comparison of the detail of the image in the output from the neural networks used to detect CLL cells in the brightfield time-lapse microscopy 

image. In the magnified images, the different segmentations of this detail can be observed, as well as the cell boundaries; yellow was added to make the 

details more visible. It is desirable that the neural network detects pixels belonging to cells with the highest possible probability, that there is the most 

obvious transition between the cell and the background.
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algorithm for tracking CLL cells. Subsequent research will 
investigate the potential of CLL cellular characteristics to pre-
dict disease progression, which could be beneficial for preci-
sion medicine. The difference in the mean value of some 

cellular parameters using the different approaches to segmen-
tation was found to be statistically significant; however, the 
different approaches differed in the nature of cell segmenta-
tion, not in the overall IoU score.

Figure 9. Boxplots showing the variability of a given cell parameter (area, circularity, solidity, perimeter, radius, shape index) when using a specific 

method, namely U-net++ 2-class segmentation, U-net++ 3-class segmentation and StarDist (custom model).
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