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Noninvasive imaging methods are sought to objectively predict early response to therapy for high-grade gli-
oma tumors. Quantitative metrics derived from diffusion-weighted imaging, such as apparent diffusion coeffi-
cient (ADC), have previously shown promise when used in combination with voxel-based analysis reflecting
regional changes. The functional diffusion mapping (fDM) metric is hypothesized to be associated with vol-
ume of tumor exhibiting an increasing ADC owing to effective therapeutic action. In this work, the reference
fDM-predicted survival (from previous study) for 3 weeks from treatment initiation (midtreatment) is compared
to multiple histogram-based metrics using Kaplan–Meier estimator for 80 glioma patients stratified to re-
sponders and nonresponders based on the population median value for the given metric. The ADC histo-
gram metric reflecting reduction in midtreatment volume of solid tumor (ADC � 1.25 � 10�3 mm2/s) by
�8% population-median with respect to pretreatment is found to have the same predictive power as the ref-
erence fDM of increasing midtreatment ADC volume above 4%. This study establishes the level of correlation
between fDM increase and low-ADC tumor volume shrinkage for prediction of early response to radiation
therapy in patients with glioma malignancies.

INTRODUCTION
Clinical oncology trials actively seek robust radiological mark-
ers of early response to cancer therapy to noninvasively guide
patient treatment plans. By measuring water mobility known to
be altered by tissue cellular constituents (1-3), diffusion-
weighted imaging (DWI) is able to provide information on
changes in tumor cellular density related to cytotoxic therapy
response (4-7). Growth of viable tumor leads to increased cell
density and reduced water mobility, while effective therapy
decreases cell density and increases water mobility. Higher wa-
ter mobility independent of therapy is also observed for necrotic
tissue (8, 9). DWI measurements are typically represented as
quantitative parametric diffusion maps of the apparent diffusion
coefficient (ADC) based on an assumed monoexponential DWI
signal decay with increasing diffusion-weighting strength (de-
noted by b-value) (5-7, 10). The therapy-related changes in the
ADC maps can be quantitatively characterized spatially by the
functional diffusion map (fDM) method within the general class

of parametric response mapping (PRM). These approaches
deal with tumor heterogeneity to display significant regional
change of treatment responsive/resistant voxels, while sup-
plying a global quantitative response metric (11-13). PRM
fDM has been shown to allow earlier prediction of glioma
therapy response and more accurate prediction of survival
relative to conventional neuroimaging metric (12). To pro-
vide robust alternative to invasive biopsies, the predictive
power of this promising method needs to be linked to changes
in tumor histopathological properties.

The fDM method (13) generally requires robust spatial reg-
istration of tumor volumes between longitudinal scans, which is
potentially dependent on specific registration algorithm param-
eters and thus may be prone to introducing additional repeat-
ability errors due to variation in image registration workflow.
The method also relies on precise tumor region/volume-of-
interest (ROI/VOI) definition and on matching voxels during
potentially rapid tumor growth or shrinkage. By virtue of the
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underlying statistical assumptions (14), fDM analysis includes
thresholding for significant change, which can be nonspecific to
the ADC range and tumor density as was originally proposed in
(13). Notwithstanding demonstrated promising predictive value
of the fDM metrics (11, 12), its direct relation to the biophysical
properties of dense versus necrotic tumor volumes has not yet
been clearly established. In principle, significant changes of fDM
may occur over the full range of ADC values (both for restricted
and less restricted diffusion (1)).

An alternative approach that forfeits retention of spatial
origin of voxels within tumor is to perform histogram analysis
of ADC voxel values (6, 15). Intralesion heterogeneity is retained
by the histogram, although direct spatial identification of re-
sponsive/resistant regions is lost. The histogram analysis ap-
proach has several benefits. First, this approach removes depen-
dence on technical performance of an image volume registration
step, as well as assumptions that regions of rapid tumor growth/
shrinkage are adequately coregistered. Second, the ADC histo-
gram inherently facilitates segmentation of tumor based on
tissue density reflected by water mobility (6). Third, this also
allows direct identification of naturally high water mobility
within cystic necrotic tumor tissue present before initiation of
treatment to potentially distinguish from additional necrosis (9)
resultant from cytotoxic treatment.

The purpose of the present study was to evaluate predictive
power of several histogram-based ADC metrics and their corre-
lation to fDM using quantitative DWI data from a common
cohort of patients with glioma treated by chemoradiation. Be-
cause the overall objective was a technical comparison of the
metrics, image processing and image segmentation were held
constant across metrics derivation, and “survival” was used as
the sole clinical outcome.

METHODOLOGY
This study analyzed Kaplan–Meier (KM) survival prediction for
multiple ADC histogram metrics versus reference fDM-derived
from quantitative DWI data including pretreatment (preTx) and
3-week midtreatment (midTx) imaging of a cohort of patients
with high-grade glioma that underwent chemoradiotherapy
treatment with longitudinal radiological surveillance (12). The
baseline preTx scan was acquired postsurgery/biopsy before the
start of treatment. The survival was assessed from the time of
the diagnosis. All quantitative DWI and statistical analysis was
performed using home-built routines developed in MATLAB 7
(MathWorks, Natick, MA). KM estimate of cumulative distribu-
tion function (CDF) for survival probability was generated using
MATLAB built-in “ecdf” routine. The KM stair-step graphs for
CDF censoring visualization were generated using MATLAB
Central “MatSurv” function (16).

Patient Cohort
Details on patient cohort, treatment schedule, and diffusion
scans are previously reported (12). Informed consent for images
and medical record use for research was approved by institu-
tional review board and renewed over the study period from
2000 to 2011. In total, 25 additional consented study subjects
(scanned between 2007 and 2011) with grade 3 and 4 primary
brain tumors were included into the present analysis and were

added to the 60 previously analyzed (2000 to 2006) (12). Overall
patient demographics, pathology grade, treatment plans, response
status, and imaging schedule were not significantly different from
the original study and are not detailed here. Both patient survival
(median months, 13.7 and 14.5) and pathology grade (3-to-4 ratios,
28% and 25%) were consistent between acquisition-date sub-
groups (Student’s t-test, P � .7), ensuring nominally unbiased
clinical outcome measures of the combined group. Only preTx and
3-week midTx imaging were included in this study owing to pre-
viously demonstrated relevance for early response survival predic-
tion by fDM (12). Only survival was used and no other clinical
outcomes such as time-to-progression were considered.

Imaging Studies
Clinical MRI scans including quantitative diffusion MRI and
standard MRI (fluid attenuation inversion recovery, T2-
weighted, and T1-weighted with gadolinium enhancement
[T1Gd] and without Gd enhancement) were performed for all
imaging endpoints on 1.5 T MRI system (General Electric,
Waukesha, WI; n � 45 patients) and on 3 T MRI scanner (Philips,
Best, The Netherlands; n � 40 patients). The 75% of the initial
(2000–2006) study scans were performed on1.5 T, while 3 T
scanner system was used exclusively for the (2007–2011) study
subgroup. Consistent with the nominal independence on the
acquisition-date, survival and pathology grade were not biased
by the scanner subgroups (P � .3).

DWI protocol prescribed single-shot echo-planar imaging
acquisition of three orthogonal–axial DWI scans with b-values � 0
and 1000 s/mm2 using a 16-channel head-coil. On the 1.5 T
system, 24 6-mm axial-oblique sections were acquired using a
22-cm field of view and 128 matrix (voxel size � 17.7 mm3)
repetition time � 10 000 ms; echo time � 71 to 100 ms, and
number of averages (NAV) � 1. On the 3 T system, at least 28
4-mm axial–oblique sections were acquired through the brain
using a 24-cm field of view and 128 matrix (voxel size � 14
mm3; repetition time � 2.636 milliseconds; TE � 46 ms; NAV �
1 for b � 0, and NAV � 2 for b � 1000 s/mm2. Parallel imaging
(sensitivity-encoding factor � 3) was used at 3 T to reduce spatial
distortion. PreTx and midTx scans for a given patient were per-
formed on the same system.

ADC Parametric Map Generation
The diffusion images for the three orthogonal directions were
combined into trace DWI to calculate an ADC map. All acquired
data were stored and distributed in Digital Image Communica-
tion in Medicine (DICOM) format (17). ADC was fit as a slope of
log-signal DWI as a function of b-value up to bmax � 1000
s/mm2. For previously published data subset (12), image regis-
tration volumes and tumor segmentations were reused from
prior analysis. For additional study subjects, the resulting low
b-value, high b-value, and ADC maps were exported as Meta-
image Header (MHD) format (18) for volumetric spatial registra-
tion to the anatomical pretreatment T1Gd images using the
Elastix toolkit (19) with full-affine transformation. The low
b-value DWI volume was used to drive image registration using
the mutual information figure of merit, and the resultant spatial
transformation was automatically applied to the corresponding
high b-value and ADC volumes. Tumor-encompassing ROIs pre-
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viously defined by two experienced (�20 years) radiologists on
the T1Gd images (coregistered to ADC maps) were imported into
3D Slicer (20) and converted to MHD ROI labels. These MHD VOI
masks were then imported to MATLAB and applied to ADC maps to
generate histograms of voxel ADC values within the defined tumor
VOI (Figure 1). Additional VOIs (median volume, 5.4 cm3; range,
3.6–7.6 cm3) were defined on 3 slices for frontal normal-appearing
white matter (contralateral to tumor) to confirm negligible system-
specific ADC bias (21, 22) in two scanner subgroups [median ADC
(�10�3 mm2/s): 0.785 (1.5 T) and 0.789 (3 T); P � .19].

ADC Histogram Metrics
Histogram “volume” metrics (in cubic centimeter units) were
generated by numerically integrating the voxels up to specified
ADC thresholds (without reference to spatial location other than
being within the specified tumor VOI) and multiplying by the

known image voxel volume. The upper thresholds for low-ADC
histogram portion (presumably reflecting more cellular-dense tu-
mor) were sampled from 0.25 to 1.5 in steps of 0.25 (�10�3 mm2/s).
The upper sampling bound of 1.5 (�10�3 mm2/s) was set to the
previously published ADC value for necrotic tumor tissue (8). The
standard whole-tumor histograms metrics, including ADC mean,
median, and standard deviation were likewise evaluated for preTx
and midTx imaging points separately and for their fraction-change
with respect to preTx. The thresholds for survival-based therapy
response prediction of each ADC histogram metric were dichoto-
mized by population median values.

fDM Reference Metrics and KM Analysis
fDM analysis was performed as previously described (12). Only
voxels present both in preTx and midTx tumor VOIs were strat-
ified according to their change in ADC value (Figure 2, A and B)

Figure 1. Left vertically arranged images (A, D) show ADC maps for preTx and midTx imaging time-points of 2 patients
with glioma that responded favorably (A) and did not responded (D) to chemoradiation therapy. Common scale for the
ADC maps is indicated by the color bar. The center panes (B, E) illustrate the corresponding tumor volume ADC histo-
grams (preTx: red, and midTx: blue) and tumor voxel volumes (filled) below ADC threshold of 1.25 (�10�3 mm2/s).
The corresponding integrated volumes of the dense tumor are listed in the legend. The spatial location of thresholded
histogram voxels is overlaid in red and blue on a single representative slice of each patient preTx and midTx T1Gd im-
ages on the right in (C, F), used as a reference for tumor ROI definition.

Voxel-Wise and Histogram Analyses of Glioma ADC Maps

TOMOGRAPHY.ORG | VOLUME 5 NUMBER 1 | MARCH 2019 9



into significantly increased (Vi, red, ADC change � 0.55 � 10�3

mm2/s), decreased (Vd, blue, �0.55 � 10�3 mm2/s), and the
remainder unchanged (Vo, green, within the 0.55 � 10�3 mm2/s
95% confidence interval [CI]). The total percentage of tumor
with significant increase in diffusion value was calculated as
100% � Vi/(Vi � Vo � Vd) and used as the reference fDM
biomarker.

The KM survival probability analysis was then performed
for the choice metrics with predetermined (population-median)

thresholds and the corresponding log-rank P-values (PKM). Me-
dian fDM threshold was Vi � 4% (PKM � 0.0008; Figure 2C;
magenta KM line), which reasonably agreed with the opti-
mized fDM threshold of 4.7% from the previous study (12)
corresponding to maximum area under (AUC) receiver oper-
ating curve (ROC). Note that compared to the typical stair-
step graphical representation (Figure 2C), the actual KM CDF
curves would terminate before the last “stair-step” to exclude
(unchanging) probability from the last censored patients (eg,

Figure 2. fDM metrics determined from midTx versus preTx ADC PRM scatter plots is overlaid on the T1Gd image inserts for
the same two patients [responder (A) and nonresponder (B)] as in Figure 1 histograms. The dashed diagonal lines indicate
95% CI for the change encompassing green voxels corresponding to tumor regions not altered by therapy. The solid yellow
line corresponds to the perfect fDM correlation. Red and blue areas mark tumor voxels with respective significant increase
and decrease in ADC midTX verus preTx (summarized in the legends). (C) shows stair-step graph for reference fDM KM sur-
vival analysis of responders (magenta) and nonresponders (cyan) based on a median response threshold of 4% fDM-increase
(magenta KM stair-step trend) for the whole glioma study population. Magenta and cyan KM trends correspond to the tumor
fDM, respectively, above and below median response threshold. Vertical tick-marks along KM trends indicate individual pa-
tients whose survival times have been censored. Dashed vertical line corresponds to the minimal survival time included into the
corresponding KM cumulative distribution function (CDF) probability analysis (excluding survival for the late censored
patients).

Voxel-Wise and Histogram Analyses of Glioma ADC Maps

10 TOMOGRAPHY.ORG | VOLUME 5 NUMBER 1 | MARCH 2019



at minimum CDF probability values of 0.07 and 0.3 for Figure
2C cyan and magenta trends, respectively).

Predictive power of each KM estimator was quantified by
the mean cumulative probability difference (mCPD) between KM
CDF curves (0.21 for reference fDM in Figure 2C). The KM curves
for each sampled ADC metric were linearly interpolated to the
common time-since-diagnosis axis corresponding to the fDM
reference. The time-dependent survival probability differences
between KM responder and nonresponder curves were corre-
lated to that of the fDM reference to determine metrics with
maximum KM “alignment” to the fDM. Pearson correlation,
RfDM, with PR � .05 was considered significant. KM-length was
determined as the minimal length of the two survival CDF
curves for each metric. Similarity index was assessed by product
of RfDM and KM-length ratio, LR, with respect to the fDM non-
responder reference (Figure 2C; vertical dashed line marks the
end of the corresponding CDF at 35 months).

RESULTS
Figure 1 illustrates ADC histogram analysis for the representa-
tive responder and nonresponder tumors using a low-ADC vol-
ume threshold of 1.25 � 10�3 mm2/s (ie, only counting voxels
within VOI having an ADC below this value) to favor inclusion
of dense tumor while excluding necrotic regions. The corre-
sponding ADC maps (Figure 1, A and D) depict quantitative
regional diffusion changes in response to therapy, more pro-
nounced for the responder (Figure 1, A–C) (survival, �27
months), relative to the nonresponder in Figure 1, D–F (survival,
�9 months). The low ADC tumor component between midTx
and preTx is quantified by a 9 cm3 decrease of integrated dense
tumor volume for the responder (Figure 1B) versus a 4 cm3

increase for nonresponder (Figure 1E). That is, the fractional
change in the low-ADC component of the histogram (59% de-
crease) owing to an upward shift, and shape change is enhanced
by exclusion of the high ADC contribution that attenuates
whole-tumor volumetric change (32% decrease) and whole-
tumor mean ADC (30% increase). The low-ADC histogram voxel
overlays on T1Gd images (Figure 1, C and F) further illustrate

how influence of the preexisting necrotic portion of the tumor is
reduced by this analysis. Conversely, the nonresponder had an
increase in dense tumor volume (by �28%) despite a reduction
in whole-tumor volume (�6%). Although only central-tumor
slices are shown in Figure 1, the histogram VOI analysis in-
cluded all tumor slices.

Figure 2 illustrates fDM analysis for the same 2 subjects
with diagnostic changes related to tumor response metrics (Fig-
ure 2A: Vi � 13%, red, and Figure 2B: Vd � 4.5% blue voxels)
observed predominantly toward lower ADC values (�1.5 �
10�3 mm2/s). The red or blue fDM voxels marking regions with
respective significant increase or decrease in ADC are evidently
clustered in the lower half of midTx versus preTx values for a
responder (Figure 2A, red) and nonresponder (Figure 2B, blue).
The voxels with significantly higher midTX ADC for responder
are distributed more uniformly across the ADC range of dense
and necrotic tumor ([1.25 � 2.25] � 10�3 mm2/s). However, the
necrotic portion of the tumor does not significantly contribute
to Vi in fDM analysis owing to high baseline ADC. Much lower
red fDM volume shifted toward higher (necrotic) midTX ADC
(�1.5 � 10�3 mm2/s) is observed for nonresponder in Figure 2B
with a noticeable increase in blue fDM voxel areas correspond-
ing to lower (dense-tumor) ADC (�1.25 � 10�3 mm2/s) for
midTx. As in Figure 1, fDM difference overlays are on a single
slice (Figure 2, inserts), whereas the fDM analysis spans the full
tumor volume.

The responder versus nonresponder KM thresholds for the
select test histogram characteristics based on population-wise
median values are summarized in Table 1 along with their KM
mCPD and percent-similarity index to the fDM CDF reference
(Figure 2C). These median thresholds were used for the corre-
sponding KM survival analysis shown in Figure 3. Other histo-
gram metrics (not included) has shown �50% absolute similar-
ity to fDM KM reference. Low predictive power was observed for
all preTx metrics (median response threshold, PKM � .1, mCPD �
0.06), reflecting dependence of response on the therapy admin-
istration. As expected, the corresponding KM CDF (Figure 3, A,
D, and G) have shown low absolute similarity (�35%) to refer-

Table 1. Population-wise Median KM Response-Threshold, mCPD, and Similarity to Reference KM fDM for
Select ADC Histogram Metrics

Metric Median KM Threshold (PKM
a) mCPD Similarity Index (%)

preTx Mean ADC (10�3 mm2/s) 1.19 (0.36) 0.06 20

midTx Mean ADC (10�3 mm2/s) 1.25 (0.0033) 0.2 13

% Changeb Mean ADC 1.83 (0.05) 0.17 51

preTx Volume (cm3) 32.5 (0.75) 0.05 35

midTx Volume (cm3) 27.6 (0.38) 0.1 13

% Changeb Volume �0.8 (0.011) 0.18 �87

preTx LowADC Volc (cm3) 17.6 (0.51) 0.04 �18.6

midTx LowADC Volc (cm3) 15 (0.047) 0.14 �86

% Changeb LowADC Volb �7.8 (0.0006) 0.22 �92.5

a P-value of population-wise median KM response-threshold.
b % Change � 100% (midTx � preTx)/preTx.
c Volume of tumor with ADC �1.25 � 10�3 mm2/s.
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ence KM fDM (Figure 2C) that was based on changes between
midTx and preTx. Significant enhancement of KM CDF separa-
tion (PKM � 0.003–0.05, mCPD � 0.17–0.2) was observed for
midTx ADC (Figure 3E) above a median response threshold of
1.25(�10�3 mm2/s), as well as for change in whole-tumor mean
ADC and total tumor-volume differences above versus below
1%–2% (Figure 3, C, E, and F). However, a notably high number
(fourteen) of censored patients (Figure 3E, magenta ticks) made
CDF estimate for midTx ADC metric unreliable beyond 21-
months survival (Figure 3E, dashed). The similarity of the frac-
tional volume KM to reference fDM was �87%, notably higher
than that for significant (midTx and fractional change) ADC
metrics, consistent with volumetric nature of the fDM analysis.
This is also consistent with observation of high KM similarity

(�86%) for low-ADC volume midTx (Figure 3H). The general
color “flip” for responder KM trends based on volume metrics
(Figure 3, A–C, G–I, cyan) versus ADC metrics (Figure 3, D–F,
magenta) reflected negative change in tumor volume versus
positive change in ADC metrics related to higher probability of
survival.

The best KM survival probability CDF estimator in Figure 3I
(with maximum mCPD � 0.22 and minimum PKM � 0.001) was
based on the fraction low-ADC volume shrinkage (cyan KM
trend). This estimator used combined tumor volume change and
tumor density (ADC-threshold � 1.25 � 10�3 mm2/s) informa-
tion. The fractional low-ADC volume metric clearly showed
similar predictive power (relative distance between KM CDF) as
reference fDM KM (Figure 2C, mCPD � 0.21) based on the

Figure 3. KM survival probability analysis results are summarized as stair-step graphs for conventional histogram met-
rics of total T1Gd tumor volume in (A–C), mean ADC in (D–F), and low ADC (�1.25 � 10�3 mm2/s) histogram volume
in (G–I). Magenta and cyan KM trends correspond to the tumor characteristics, respectively, above and below median
response threshold for the studied ADC histogram metrics. The color flip from cyan to magenta for responder KM trends
(with higher probability of survival) between mean ADC (D–F) and volume-based metrics (A–C, G–I) reflects negative
change in tumor volume versus positive change in ADC metrics. Time-dependent distance between KM curves reports on
predictive power of the studied histogram metrics. Vertical tick-marks along KM trends indicate individual patients whose
survival times have been censored. Dashed vertical line corresponds to the minimal survival time included into the corre-
sponding KM CDF probability analysis (excluding survival for the late censored patients).

Voxel-Wise and Histogram Analyses of Glioma ADC Maps

12 TOMOGRAPHY.ORG | VOLUME 5 NUMBER 1 | MARCH 2019



increased fDM PRM midTx (“magenta” trend). The reliable CDF
estimate for both reference (Figure 2C) and fractional low-ADC
volume (Figure 3I) was confirmed by a small number (two) of
patients censored beyond minimal CDF values of the corre-
sponding KM trends (at survival probabilities of 0.3 and 0.07).
The bulk of the KM differences between responders and nonre-
sponders was evidently related to the low ADC volume midTx
(Figure 3H), rather than preTX volume (Figure 3G), confirming
that the functional response was triggered by treatment. The
decreasing low-ADC volume midTX versus preTx (less than
�8%, PKM � 0.001) in Figure 3I, was significantly (negatively)
correlated to increasing fDM (�4%, PKM � 0.001) in Figure 2C
and Table 1 (�92.5%), confirming fDM relation to shrinking
tumor volume.

DISCUSSION
The decrease in low-ADC volume was found to be a good
predictor of KM survival (treatment response) most similar to the
fDM reference. The strong alignment between KM curves for
fDM and low-ADC volume metrics confirms that the early re-
sponse prediction power of increasing fDM likely stems from
decreasing volume of shrinking dense tumor observed as early
as 3 weeks after radiation therapy for glioma tumors. Interest-
ingly, the fDM population-median KM threshold for responders
versus nonresponders of 4% was still close to 4.7% that maxi-
mized AU-ROC as previously determined (12) despite the addi-
tional 25 subjects. Another supporting observation is that the
population-median response threshold for mean ADC-based KM
survival probability midTx corresponded to the dense tumor
low-ADC integration limit of 1.25 � 10�3 mm2/s. The proximity
of median thresholds for fractional ADC and tumor volume
changes to 0% likely reflected KM sensitivity to the sign of the
effect (increasing ADC and decreasing volume) rather than ab-
solute metric value. The fact that no significance was observed
for preTx low-ADC volume itself, suggested that midTx volume
change was indeed reflective of the therapy efficacy. This spe-
cific relation to reduction of the dense tumor ADC volume and
treatment option provided independent evidence for the bio-
physical origin of the fDM predictive power. Our analysis effec-
tively revealed that fDM portions with low-ADC midTx report
on the therapy response.

The main limitation of this study was that the data analysis
was restricted to only two imaging end points, precluding eval-
uation of relative longitudinal changes in the histogram metrics
over the full course of radiological surveillance. Furthermore,
the KM thresholds were not optimized by AU-ROC analysis or
cross-validation. These restrictions were intentional for the
largely technical aims of this study to determine the ADC his-
togram metrics that had early response prediction power similar
to the reference fDM, as shown by previous work (12), and to
maximize method consistency across histogram and fDM anal-
yses, reducing dependence on any residual study bias. For this
reason, ADC histograms were derived from the same coregis-
tered image sets and the same tumor segmentations as used to
generate the reference fDM metrics, even though ADC histogram
analysis can be performed on non-coregistered images. This
study design precluded evaluation of sensitivity of low-ADC

histogram-based segmentation to image registration-related er-
rors. For ADC histogram threshold method, the specific voxel
locations are less important, and hence higher immunity is
potentially expected to coregistration errors. This should be a
topic of a future study.

Others have applied alternative ADC histogram-based anal-
yses in the context of newly diagnosed (6, 10, 15) and recurrent
(23) glioblastoma to predict response to antivascular chemo-
therapy used alone or in combination with radiation treatment.
Technical aspects of histogram analysis varied. Bimodal mixed
normal distribution fitting of the whole tumor ADC histogram
into means of the low-ADC curve and high-ADC curve was
performed by Pope et al. (10, 15, 23). In contrast, Wen et al. (6)
analyzed specific percentile points of the ADC histogram. How-
ever, both methods consistently found greater predictive con-
tent in the low-ADC regime. Prediction metrics in both of these
alternative histogram approaches were expressed in physical
diffusion units (ie, square millimeter per second), whereas the
method presented in this study focused on volume (ie, in cubic
centimeter units) of ostensibly dense tumor defined by an ADC
below a specified value, 1.25 � 10�3 mm2/s.

The low-ADC volume approach presented here parallels
similar logic used to assess traditional response metrics based
on tumor shrinkage assessed by conventional neuroimaging
(24-26), although it exploits tumor density segmentation qual-
ities inherent in diffusion mapping. A common feature in these
various diffusion histogram approaches and fDM (or PRM) is a
framework to deal with tumor heterogeneity and to avoid inclu-
sion of preexisting cystic/necrotic portions of the tumor that can
attenuate sensitivity to therapeutic changes in viable tumor.
Response to treatment (or tumor progression) can be spatially
nonuniform as well, and fDM/PRM provides means to map
responsive/resistant/progression regions (11, 12, 27).

The current study design amplified ADC measurement sen-
sitivity to the therapeutic effect by performing longitudinal
patient surveillance scans on the same MRI system. Although
desirable, this level of control may be challenging in the clinical
setting. When multiple scanners are used, systematic biases may
increase between-scan variability (eg, due to spatial b-value bias
for anatomy at different offsets from isocenter (21, 22). For
longitudinal studies, these errors may potentially increase the
population histogram noise and attenuate the absolute ADC
measurement sensitivity to the therapeutic effect. In principle,
such systematic errors should be monitored similar to normal-
appearing white matter analysis in this study [or using phan-
toms with known ADC (21, 22)] and, when present, corrected
using MRI system gradient characteristics before population
ADC histogram analysis.

In conclusion, fDM changes diagnostic of early therapy
response for high-grade glioma tumors are confirmed using
comprehensive analysis of multiple ADC histogram metrics.
Reduction in solid (non-necrotic) tumor volume correlates with
low-ADC fDM changes. Histogram-based ADC segmentation
facilitates elimination of high-mobility (necrotic) tissue, allow-
ing for focusing on shrinkage of low-mobility (cellular-dense)
tumor regions.
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