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Abstract: Nowadays, new advances in society and health have brought an increased life expectancy.
However, at the same time, aging comes with complications that impact the development of au-
toimmunity, neurodegenerative diseases and cancer. These complications affect the quality of life
and impact the public health system. Specifically, with aging, a low-grade chronic sterile systemic
inflammation with self-reactivity in the absence of acute infection occurs termed inflammaging.
Inflammaging is related to an imbalanced immune response that can be either naturally acquired
with aging or accelerated due to external triggers. Different molecules, metabolites and inflammatory
forms of cell death are highly involved in these processes. Importantly, adoptive cellular immunother-
apy is a modality of treatment for cancer patients that administers ex vivo expanded immune cells in
the patient. The manipulation of these cells confers them enhanced proinflammatory properties. A
general consequence of proinflammatory events is the development of autoimmune diseases and
cancer. Herein, we review subsets of immune cells with a pertinent role in inflammaging, relevant
proteins involved in these inflammatory events and external triggers that enhance and accelerate
these processes. Moreover, we mention relevant preclinical studies that demonstrate associations of
chronic inflammation with cancer development.

Keywords: inflammaging; immunosenescence; SASP; immunotherapy; T cells; NK cells

1. Introduction: Immunosenescence and Inflammation during Aging, and its
Consequences in Cancer and Other Age-Related Diseases

Nowadays, the elderly population (>65-year-old) in Europe represents 19.7% of the
population. This number is predicted to continue increasing and reach 28.5% in 2050 [1].
With that in mind, those numbers will impact social life and public healthcare. Thus, a new
discipline termed “Geroscience” has emerged to decipher the link between mechanisms of
aging and susceptibility to age-related diseases [2,3].

Biologically, aging is associated with a physiological process of tissue degeneration
related to chronic inflammation [4]. This age-related chronic inflammation is highly as-
sociated with inflammaging, which was initially defined as a progressive increase of
proinflammation in aged organisms [5], leading to increased morbidity and mortality [6].
Currently, inflammaging is defined as the elevated low-grade chronic sterile systemic
inflammation with self-reactivity in the elderly in the absence of acute infection [7].

“Immunosenescence”, a process associated with aging that impairs the immune
function, is highly responsible for inflammaging. Different age-associated events cause
immunosenescence. Specifically, during aging, occurs a thymic involution that reduces the
pool of naïve T cells and amplifies the oligo-clonal expansion of memory T cells. These
events will cause a reduced immune repertoire diversity [8], leading to reduced ability
to fight infections and increased cancer incidence [9]. Thymic involution also leads to an
amplified release of self-reactive T cells and reduced capacity of T-regulatory (reg) cells to
suppress these self-reactive T cells and preserve immune homeostasis. Consequently, these
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events will enhance tissue damage with autoimmunity and chronic inflammation, being
essential contributors to inflammaging [7,10].

Immunosenescence also occurs in the BM, which constitutes the primary site of
hematopoiesis [11]. Thus, aging causes both a gradual replacement of the different cellu-
lar components of the BM by adipocytes and a skew towards the generation of myeloid
cells [12]. These changes negatively impact the repertoire and activity of T and B lympho-
cytes [13]. Moreover, this cellular degeneration in the BM will increase the production of
proinflammatory cytokines [12,14,15], impacting the activity of immune cells.

The innate immune system is also impacted by immunosenescence. Thus, neutrophil
and macrophage capacity for phagocytosis and subsequent elimination of dead cells is
reduced with aging [16,17]. Macrophages also acquire an increased polarization towards
M2 cells [18], and natural killer (NK) cells present a reduced capacity to secrete cytotoxic
molecules [19].

Overall, immunosenescent cells will not be able to remove senescent somatic cells that
also accumulate with aging [20–24] and are characterized by secretion of proinflammatory
molecules known as senescence-associated secretory phenotype (SASP) [25]. The SASP is
another crucial contributor to inflammaging [7,25]. This accumulation of senescent cells
will enhance the SASP promoting further inflammaging and accelerated aging [22] and
will contribute to cancer development [7,25,26]. Furthermore, the SASP transmits cellular
senescence to neighboring non-senescent cells [27,28], leading to enhanced senescence and
inflammaging.The SASP is also increased with anti-cancer therapies that induce senes-
cence in both immune and tumor cells, leading to enhanced inflammation and treatment
resistance [29,30].

Moreover, microbes debris of exogenous origin and cell debris of endogenous origin
are recognized through the pathogen-associated molecular pattern (PAMPs) and damage-
associated molecular patterns (DAMPs), respectively [31], the latter being part of the
SASP [32]. PAMPs and DAMPs become more abundant during aging, and PAMP stimula-
tion induces DAMP secretion by immune cells [33], leading to enhanced inflammaging.

This feedback occurring between immunosenescence and inflammaging explains the
involvement of both processes in age-related diseases, including cancer, neurodegenerative
diseases, metabolic diseases and cardiovascular diseases [7] (see Table 1). For instance,
Alzheimer’s disease is a chronic neurodegenerative disease with pathological accumulation
of amyloid-beta (Aβ) peptides and neurofibrillary tangles containing tau protein. Aβ

and tau deposition cause an age-dependent deterioration of the blood-brain barrier that
leads to the infiltration of immune cells into the central nervous system exacerbating the
neurodegenerative process and promoting inflammatory responses [33]. Type-2 diabetes is
a multifactorial metabolic disease with chronic hyperglycemia and dyslipidemia as main
pathological features. A chronic low-grade inflammation resembling inflammaging induces
insulin resistance and dysfunction of β-cells, emerging as a relevant factor contributing to
the development of diabetes [34].

In cancer, aging and chronic inflammation are highly involved in its development [35,36].
However, the intricate relationship between aging and cancer is not clear. In detail, half
of the cancers occur in individuals older than 70. Yet, whereas aging and cancer share
disease mechanisms, such as genomic instability, they also present opposite features,
such as hypoactive cells in aging vs. hyperactive cells in cancer [36].The role of chronic
inflammation in cancer is also controversial. Thus, inflammation is required initially
for immune surveillance; however, failure to resolve inflammation will promote tumor
growth [37,38]. The relevant impact of chronic inflammation in cancer is suggested by
different studies that estimate that 15–20% of cancers are inflammation-related [39].
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Table 1. Side effects of inflammaging.

Age-Related Diseases Mediators References

Atherosclerosis Secretion of IL1β, IL18 and IL6 among others [7,40]

Cardiovascular diseases CRP and IL6 in blood [7]

Frailty, Sarcopenia Inflammatory markers in blood, IL6 [41]

Decline of innate and adaptive immune system Immunosenescence [8,9]

Type 2 diabetes Secretion of IL1β among others [34,42,43]

Cancer CRP, IL6, immunosenescence [7,25,26,35,36,44,45]

Osteoporosis, bone remodeling IL1, IL6, TNFα [46]

Neurodegenerative disease Immune cells infiltration [33]

For instance, autoimmune diseases such asinflammatory bowel disease (IBD) increase
the risk of developing colorectal cancer [47]. Moreover, numerous studies have revealed
associations of high levels of inflammatory markers, such as C-reactive protein (CRP) [44]
and IL6 [45], with an increased risk of developing different types of cancer.

The relevant role of chronic inflammation in cancer and of the immune response in
the development of inflammaging should be considered incancer patients treated with
adoptive cellular immunotherapy. These treatments administer various immune cells
in patients, such as chimeric antigen receptor (CAR)-T cells [48], tumor-infiltrating lym-
phocyte (TIL) [49] or NK cells [50] which previously have been modified and expanded
in vitro. The in vitro expansion changes the phenotype of immune cells and their cyto-
toxic mechanisms that activate inflammatory forms of cell death [50–53]. For instance,
after encountering tumor cells, CAR-T cells [53] and NK cells [44] initiate pyroptosis, an
inflammatory form of cell death. Pyroptosis was initially described as a type of cell death
triggered by the innate immune system after recognition of intracellular pathogens by
intracellular receptors. Nucleotide-binding oligomerization domain (NOD)-like receptors
(NLRs), and among them NLRP3, belong to these receptors. They initiate the assembly
of inflammasomes that will activate caspase-1 leading to release of IL1β and IL18 and
the pore-forming protein gasdermin-D (GSDMD) the latter inducing pyroptosis [54]. Of
interest, in CAR-T cellimmunotherapy, NLRP3 activates pyroptosis with release of DAMPs,
IL1β and IL6 [53]. In addition, immune cells after encountering tumor cells release different
types of Granzymes (Gzm). Besides the classic GzmB, other inflammatory Gzm, such as
GzmA and GzmK, are involved in the anti-tumor activity of immune cells [55,56].

These relevant associations of inflammaging with an inadequate immune response
and the development of inflammatory diseases and cancer, added to the fact that cancer
associates with aging suggest their relevance in the field of cellular immunotherapy. Here,
we will review the contribution to inflammaging of different subsets of T cells and NK
cells, as they are administered in cancer patients, either unmodified or modified with a
CAR [51,57,58]. Moreover, the role of NLRP3 and inflammatory granzymes, activated
during the innate and adaptive immune response, will be presented, focusing on their
impact on inflammation. Other intrinsic and external inflammation triggers related to
cancer will be mentioned, and some preclinical models that associate inflammation with
cancer development will be cited.

2. Variation of T-reg Cells and Th17 Cells during Aging and Their Impact on the
Development of Inflammaging

Human centenarians represent a model with low inflammaging to study healthy aging.
Of interest, although those human centenarians present a systemic inflammatory state
(e.g., high levels of IL6 and IL8 in plasma), they also count on efficient anti-inflammatory
networks termed anti-inflammaging that compensate for inflammaging [59]. Analyses
of the immune cell populations in centenarians have concluded that longer survivors
present higher leucocytes with a higher number of naïve, activated/memory and effec-
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tor/memory CD4 and CD8 T cells [60]. Proteomic studies in centenarians also show a
pattern with less inflammaging and autoimmunity, increased B cell-mediated immune re-
sponse, higher expression of proteins involved in angiogenesis and enhanced intercellular
junctions [61].On the other side, elderly cancer patients, such as multiple myeloma (MM),
present immunosenescent T cells with deficient immune responses [62] that will increase
inflammaging.

Among the different subsets of T lymphocytes, we will focus on T-reg and Th17 cells
that share a common precursor and present opposing roles in developing inflammaging.
Thus, Th17 cells cause autoimmunity and inflammation, and T-reg cells inhibit their
activity [63]. Specifically, during aging, there is an increased production of Th17 cells
that will contribute to inflammaging [64] and a decrease in the functionality of T-reg cells
that will increase chronic inflammation [65]. Even though Th17 cells are very well-known
for their role in inflammation and autoimmunity, their role in cancer is less understood.
Notably, an intricate balance between T-regs and Th17 cells must be maintained to avoid
developing these pathologies [64,66,67].

2.1. Changes in the T-reg Cell Compartment during Aging and Impact in Inflammation
and Cancer

The impact of T-reg cells during aging should be analyzed considering the variation in
numbers and their functionality. As previously mentioned, thymic involution with aging
reduces the capacity of T-reg cells to suppress self-reactive T cells and preserve immune
homeostasis [7,10]. Two different origins have been described for T-reg cells. The first one is
the thymus, at the early stages of life, which gives rise to naturally occurring T-reg (nT-reg)
cells after escaping from the negative selection in the thymus, followed by appropriate
TCR stimulation. The second one is in the peripheral blood (PB) and secondary lymphoid
organs, where different triggers induce the expression of Foxp3 in naïve T cells, originating
inducible T-reg (iT-reg) cells. iT-reg cells have a similar phenotype and suppressive function
to nT-regs [68]. Data suggest that aging induces a decline in iT-regs and an increase in the
number of nT-reg cells [69].

Regarding the functionality, it remains controversial whether aging induces a loss
of T-reg functionality or just an effect of the variation in the number of T-reg cells [69].
Studies in aged mice have observed an increased proportion of functional CD4 T-regs
in PB and lymphoid tissues, decreasing the effector T cell responses against Leishmania
infection [70]. In humans, there is also an increase in the number of CD4 T-regs in PB
with immunosuppressive properties [71]. In addition, the increased number of T-reg cells
with aging can be explained by the polarization of CD4 conventional T cells to cells with
T-reg cell properties, an event observed in aged mice [72]. Moreover, CD8 T-reg cells
are a relevant immunosuppressive cell population [73], increasing with aging in absolute
numbers in PB, the spleen and lymph nodes presenting functionality [74,75].

Various studies have associated the functionality of T-regs with the progression of
different tumors due to their immunosuppressive activity [76,77]. Thus, in melanoma and
colon carcinoma models, intratumoral T-reg cells inhibit the anti-tumor activity of TILs [78].
In these models, T-reg cells can adapt to the lactic acid-enriched TME through CD36 up-
regulation that enhances their mitochondrial fitness [78]. In MM, where most patients
represent an elderly cancer population, elevated frequencies of functional T-reg cells are
present in newly diagnosed and relapsed patients compared to healthy volunteers [79].

On the other side, autoimmunity and chronic low-grade inflammation, both hallmarks
of inflammaging [80], are also recognized as drivers of cancer [35,39]. In this scenario,
murine models of autoimmunity have shown the beneficial impact of T-reg cells ameliorat-
ing inflammation. For instance, in models of multiple sclerosis, T-reg cells produce CCL1
that upregulates its receptor, CCR8, and induces the expression of CD39, granzyme B and
IL10, which suppress the disease [81]. In autoimmune colitis, aged T-reg cells present equal
suppressive in vitro activity than young T-regs to mitigate the disease. In these models,
aged T-reg cells were able to restrain IFN-γ T cell responses. Even though, they controlled
Th17 cells only in cases of acute inflammation and not in cases of chronic inflammation,
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leading to autoimmunity and promoting colitis [82]. T-reg cells also present contradictory
roles in inflammation. Thus, IBD is another autoimmune disease that increases the risk of
developing colorectal cancer [47]. In this scenario, different murine models have demon-
strated the protective role of T-reg cells in IBD development through the suppression of T
effector cells. In detail, IL35 secretion by T-reg cells suppresses the proliferation of effector
T cells. However, on the other side, IL35 overexpression associates with the induction of
gastrointestinal cancer [83,84].

Another relevant model that contradicts the relationship of chronic inflammation
mediated by T lymphocytes and cancer and where T-reg cells are involved is the graft
versus host disease (GVHD). Chronic GVHD (cGVHD) is a relevant complication after
allogeneic stem cell transplantation (allo-SCT) mediated by donor’s T lymphocytes that
enhances mortality due to a chronic inflammatory response and at the same time reduces
the risk of cancer relapse [85]. T-reg cells associate with reduced development of GVHD [86].
Of interest, pediatric allo-SCT recipients have a lower incidence of cGvHD than adults [87],
which might reflect in this context the beneficial impact of lower immunosenescence levels
in pediatric patients compared to adult patients. Indeed, it has been observed that cGVHD-
derived T-cells present high expression of genes that positively regulate cellular senescence
(CDKN2A, SERPINB9, LYPLA1 and CKTM1A/B) [88].

To summarize, two opposite scenarios,"enhanced immunosuppression and chronic
inflammation", associate with cancer, and T-reg cells play either a detrimental or beneficial
role in both systems. These findings bring the question of the exact contribution of T-reg
cells in the regulation of inflammation and cancer development, specifically in the elderly.

2.2. Th17 Compartment and Its Delicate Balance with T-reg Cells

Th17 cells are critical players in maintaining mucosal immune homeostasis and pro-
tection against pathogens. They are also very well-known for their role in inflammation
and autoimmunity. An intricate balance between T-regs and Th17 cells is maintained to
avoid developing these pathologies [66,67]. A common precursor for T-reg cells and Th17
cells will differentiate into one cell subtype depending on the cytokine environment [67].
In detail, TGFβ is required for differentiation from naïve CD4 T cells to both Th17 and
iTreg. Thus, TGFβ upregulates the retinoic acid-related orphan receptors-γt (RORγt) and
Foxp3, which give rise to a common precursor of T-regs and Th17 cells. In the presence
of TGF-β, both IL6 and IL21 induce differentiation to Th17 cells. Otherwise, T cells will
differentiate to T-reg cells. Moreover, Foxp3 inhibits Th17 development through binding
to RORγt. Without IL6, TGFβ reinforces this inhibition and favors the formation of T-reg
cells. In addition, Th17 and T-reg cells can also polarize to each other [67].

The role of T-reg cells in maintaining the number of Th17 cells has been observed
in different contexts. For instance, intestinal T-reg cells constrain microbiota-dependent
IL-17-production by Th17 cells. This activity is dependent on the transcription factor c-Maf
that controls IL10 production by T-reg cells [89]. In a murine model of neuroinflammation,
imaging of T-reg and Th17 cells in the spinal cord demonstrated that T-regs suppress Th17
cells by inhibiting Ca2+ signaling and limiting the access of Th17 cells to APCs, avoiding
neuroinflammation [90]. On the contrary, in hepatic carcinoma, increased Th17 levels are
detected in the PB, correlating positively with metastasis progression and T-reg cells in the
TME [91].

Altogether, T-reg and Th17 cells present opposite roles with an intricate regulation
between them. Monitoring their changes in elderly cancer patients and patients receiving
adoptive cellular immunotherapy will provide relevant information in this field.

2.3. Changes in the Th17 Compartment during Aging and Implications for Autoimmunity
and Cancer

Aging causes an increased Th17/T-reg ratio that contributes to inflammaging [92].
Indeed, older subjects present higher Th17 cytokine production than younger subjects. One
of the causes described is defective autophagy in CD4 T cells occurring with aging, leading
to reduced mitophagy with an accumulation of malfunctioning mitochondria. These events
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result in the upregulation of Th17 cytokines contributing to inflammaging [64,93]. The
detrimental impact of this higher Th17/T-reg ratio in cancer is observed at specific stages
of tumors. Thus, oral squamous cell carcinoma patients increase the Th17/T-reg ratio at
early stages and decrease it at late stages [94]. In colorectal tumor specimens, patients with
increased expression of Th17 genes presented a poor prognosis [95]. Others have found
that the increased IL1β and IL2 reduction in aged mice contributed to an elevated Th17
differentiation [96].

In MM, a variety of studies confirm the detrimental role of Th17 cells. Thus, Th17
cells promote MM growth and inhibit immune functions [97]; and in MM patients with
lytic bone disease, numbers of Th17 cells were the highest [98]. Of interest, IL6, which
is over-expressed in MM, creates a proinflammatory TME, a crucial factor mediating the
conversion of T-regs into Th17 cells [99]. Th17 cells also cause osteoclast-dependent bone
damage in vitro and in vivo, where miR-21 activates differentiation of naïve T cells in Th17
cells, promoting these detrimental effects in MM [100]. IL17, produced by Th17, cells
induces osteoblasts pyroptosis in vitro, through activation of the NLRP3 inflammasome
complex with Caspase-1 execution and release of IL1β [101]. In newly diagnosed MM
patients, Th17 cell levels fluctuate considerably. Of interest, Th17 increased further when
the disease reached partial remission, decreased to normal levels when complete remission
was achieved and increased again when the disease recurred [102].

Moreover, in MM, dendritic cells (DCs) infiltrate the BM as efficient inducers of Th17
cells and promote higher levels of Th17 in BM than PB. Of interest, in monoclonal gam-
mopathy of undetermined significance (MGUS) patients, an initial stage of the MM disease,
this increase in Th17 cells was not observed. Another study analyzing the microbiota in
MM observed that Prevotella heparinolytica promotes the differentiation of Th17 cells that
colonize the gut and migrate to the BM, to favor the progression of MM. Similarly, in
smoldering MM patients, higher BM IL17 levels predicted faster disease progression [103].

Moreover, the imbalance of the Th17/T-reg ratio in MM is reinforced by studies, where
MM and MGUS patients show a reduction in the number of T-reg cells compared to healthy
donors, being these T-reg cells dysfunctional [104]. Another study observed fewer T-regs in
the BM of MM patients compared to healthy individuals, where Th17 cells are responsible
for osteoclast activation mediating lytic bone disease [105].

To summarize, Th17 cells are highly involved in this connection between chronic
inflammation and cancer development. Moreover, they are related to different types of
cancer and to the pathogenic events of MM patients, who represent elderly cancer patients.
Novel studies are required to decipher their role in the progression of these diseases.

3. Variation of NK Cells during Aging and Cancer and Their Impact on the
Development of Inflammation

3.1. Immunoregulatory Activity of CD56bright NK Cells

NK cells classify into two big groups, the mature and cytotoxic CD56dim NK cells,
constituting 90% of PB NK cells, and the immature and immunoregulatory CD56bright NK
cells form 10% of PB NK cells [51]. NK cells present an important anti-tumor, immunoreg-
ulatory and antimicrobial activity that has made them an attractive target in cancer and
autoimmune diseases [51,56,106,107]. However, there are conflicting results about the
protective or pathogenic role of NK cells in autoimmunity; and in cancer, their anti-tumor
activity is far from the action reached by CAR-T cells [51].

In the context of inflammation and viral infection in healthy individuals, CD56bright

NK cells suppress autologous CD4 T cell proliferation through direct cytotoxicity, dampen-
ing the inflammatory process. Thus, they inhibit autologous CD4 T cell proliferation in
autoimmunity [108]; and in viral infections to avoid an excessive inflammatory response
that might be lethal to the host [109]. However, in pathological conditions, such as mul-
tiple sclerosis, they display a lower ability to do it, which is related to increased HLA-E
expression on T cells, the ligand of the inhibitory NKG2A receptor on NK cells [108]. This
beneficial role of CD56bright NK cells avoiding inflammation is confirmed when multiple
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sclerosis patients that respond to treatment and present remission of the disease during
pregnancy show an expansion of CD56bright NK cells. Of interest, there is increased relapse
after the pregnancy with loss of CD56bright NK cells [110]. In this regard, during pregnancy,
a subtype of CD56bright NK cells increases, known as decidual NK cells [111], which might
explain this association observed [110].

This inhibition of autologous CD4 T cell proliferation by NK cells can be mediated
through the immunosuppressive molecule adenosine, which is defective in juvenile idio-
pathic arthritis patients. Lower NK cell activity could be related to a different expression
of adenosine receptors in these patients and reduced CD38/CD73 expression [112]. In-
hibition of CD8 T cells by NK cells has also been observed in murine models of type I
diabetes through the expression of CD117 and PD-L1 on NK cells that limit the disease’s
development [113].

3.2. Variation of NK Cells in Aging and Cancer

With healthy aging, a decrease in the CD56bright NK cell subset and an increase in
the CD56dim subset is observed, which might be related to a lower ability to control
inflammatory responses with aging [114]. Moreover, healthy individuals older than 85
presented NK cells with higher expression of SIRT1 and HSP70, proteins related to response
to stress, suggesting that the most aged healthy seniors develop an increased NK cell
response to adaptive stress [115].

In elderly cancer patients, for instance, MM, there are more NK cells than in healthy
donors, and as in healthy elderly, there is an increase in the CD56dim NK cell population
with low expression of CD94, which defines the progression of CD56bright towards CD56dim

NK cells. Moreover, this subset of NK cells eventually accumulates at the different stages
of the disease progression (MGUS, smoldering MM and MM) [116].

The role of CD56bright and CD56dim NK cells in the progression of cancer patients
follows distinct patterns depending on the disease. Thus, in acute myeloid leukemia
(AML), which also represents a disease with increased incidence in the elderly [117], a
beneficial impact for CD56bright NK cells is not observed. On the contrary, AML patients
could be grouped into three distinct groups according to the maturation stage of NK cells,
where hypomature NK cells showed the worst prognosis. This hypomaturation state was
associated with a reduced frequency of memory-like NK cells [118]. The activating NK
receptors NKp30, NKp46 and DNAM-1, mediating NK anti-tumor activity, are decreased
in the elderly and AML patients [114]. Of interest, AML blasts are involved in the loss of
NKp30 and NKp46 in AML patients, a process that is reversed when achieving complete
remission [119,120]. Another study in AML patients showed that NK cells in BM presented
stress-induced repression of NK cell effector functions and reduced CD160 levels correlated
with lower survival [121]. Moreover, an accumulation of CD56−CD16+ unconventional
NK cells, which correlates with poor prognosis, is observed in AML. These NK cells had
decreased NKG2A, NKp30, NKp46, NKG2D, DNAM-1 and CD96 [122]. Other contradic-
tory results are observed. For instance, in bladder cancer, NK cells are the predominant
intratumoral lymphocytes, where CD56bright NK cells associate with improved survival
and CD56dim NK cells with higher pathological stage [123]. In advanced melanoma pa-
tients, abundance of CD56brightNK cells is detected in PB that correlates negatively with
survival and distant metastases [124].

These contradictory results about the beneficial and detrimental role of CD56bright

NK cells suggest an intricate balance that needs to be maintained for the different NK
cell subsets during the immune response. Indeed, immunoregulatory CD56bright NK cells,
could be compared to decidual NK cells, which are immune-tolerant and characterized
by CD56brightCD16−CD9+CD49a+ and Eomes+ expression [125,126]. Importantly, they
produce large amounts of proangiogenic factors, including VEGF, PlGF, CXCL8, IL10 and
angiogenin [127], that might contribute to their detrimental associations observed in some
cancer studies. Of interest, NK cells administered in immunotherapy treatments become
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CD56bright after the in vitro expansion [50]. Therefore, analysis of the variation of NK cell
phenotypes during immunotherapy studies will provide relevant information.

4. Impact of NLRP3 and Granzymes in Pyroptosis during the Immune Response and
the Development of Inflammation

As mentioned in the introduction, cells of the innate immune system have an essential
role in developing inflammaging. Specifically, the innate immune response recognizes
PAMPs and DAMPs to become activated. This recognition is performed through pattern-
recognition receptors such as toll-like receptors (TLRs) and NLRs that are part of the
inflammasome. The inflammasome cleaves proinflammatory cytokines into a mature
form that will alert the immune system of potential dangers initiating a proinflamma-
tory reaction [31,128]. Of interest, immune cells administered in immunotherapy also
activate the NLRP3 inflammasome that triggers pyroptosis, enhancing inflammatory
responses [52,53]. In addition, once immune cells become activated, they will release
inflammatory Gzm [55,56] that will impact not only the anti-tumor activity but also the de-
velopment of inflammation. Here, we summarize the impact of NLRP3 and inflammatory
Gzm in developing inflammatory diseases and the anti-tumor efficacy of immune cells.

4.1. Impact of NLRP3 in Inflammatory Diseases

NLRP3 is the best-studied NLR protein of the inflammasomes, implicated in different
pathologies related to inflammation [129–131]. NLRP3 activates caspase-1 thatcleaves pro-
IL1β and pro-IL18 into their mature forms. Activated caspase-1 also cleaves GSDMD that
will form lytic pores in the cell to promote pyroptosis, facilitating the release of mature IL1β
and IL18. IL1β and IL18 will bind to receptors on other cells to initiate and propagate this
inflammatory response to clear the threat [132]. Unfortunately, the release of IL1β and IL18
will also impact the development of inflammatory diseases. Thus, the aberrant release of
IL1β is involved in the pathogenesis of a range of inflammatory diseases, such as gout, type
II diabetes, atherosclerosis, obesity, heart failure, recurrent pericarditis, rheumatoid arthritis
and smoldering myeloma [40]. For instance, in type II diabetes, the aberrant activity of
the NLRP3-inflammasome complex leads to IL1β secretion and caspase-1 activation that
impair pancreatic β-cell function, adipocyte function and insulin sensitivity, promoting
obesity and insulin resistance [42,43]. In atherosclerosis, cholesterol crystals activate NLRP3
in macrophages inducing acute inflammation [133], and inhibition of NLRP3 ameliorates
atherosclerosis progression [134,135]. Of interest, these diseases are responsive to IL1β
neutralization [40].

NLRP3 contributes to the inflammatory activity of Th17 cells and their negative impact
on inflammatory diseases. Specifically, rheumatoid arthritis patients present an imbalance
T-reg/Th17 ratio due to lower protectin DX levels than healthy donors. By inhibiting
the NLRP3 pathway via miR-20a, Protectin DX restores this imbalance in the T-reg/Th17
ratio [136]. In models of lupus, NLRP3 promotes the differentiation of Th17 cells [137]
and avoids T-reg differentiation through interaction with karyopherin subunit-α2 [138],
leading to an imbalance T-reg/Th17 ratio.

4.2. Impact of NLRP3 in Immunosenescence and Adoptive Cellular Immunotherapy in Cancer

The NLRP3 inflammasome complex can accelerate immunosenescence, a mechanism
mediated through lipids [139]. Thus, in obesity, NLRP3, through lipotoxic signals, such as
free cholesterol and ceramides [140], causes an accelerated age-related thymic involution,
leading to decreased T cell diversity with reduced naïve T cells and increased effector-
memory T cells [141]. Moreover, aging causes an expansion of resident non-senescent
aged adipose B cells that impairs tissue metabolism and promotes visceral adiposity in the
elderly, a process dependent on NLRP3 [142]. Of interest, lipids [143] and pyroptosis [52]
involvement have also been observed in the anti-tumor activity of NK cells against MM
cells. This effect seems specific for only some tumor cells, as these events are not observed
in the classic NK target, K562 cells [52,143]. On the other side, NLRP3 also has a beneficial
impact on the adaptive immune response. Thus, CD8 T cells activate the NLRP3 in antigen-
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presenting cells (APCs) that promote IL1β maturation and contribute to the induction of
antigen-specific anti-tumor immunity amplifying the CD8 effector functions [144].

The impact of NLRP3 in the development of immunosenescence and the immune
response should be considered in adoptive cellular immunotherapy strategies to treat
cancer patients. Indeed, adoptive cellular immunotherapy with CAR-T cells requires an
in vitro activation and expansion, a process that changes their properties [50,145]. CAR-
modified T cells activate pyropotosis when they encounter tumor cells [53]. Activation of
pyroptosis by CAR-T cells when they face tumor cells leads to the release of factors that
activate caspase 1 for GSDMD cleavage in macrophages [53], which results in massive
amounts of cytokines, including IL6 and IL1β. IL6 and IL1β will trigger cytokine release
syndrome and neurotoxicity, some of the main inflammatory complications after CAR-T
cell therapy [146–148]. In addition, pyroptosis activation in tumor cells by CAR-T cells
leads to the release of DAMPs, such as HMGB1, that also trigger macrophages to release
IL1β and IL6 [53]. These findings should be considered when treating cancer patients to
avoid the detrimental effects of this inflammation.

4.3. Impact of Inflammatory Granzymes Released by Immune Cells on Inflammaging and the
Immune Response

Gzm are classically known as the mediators of the granule-dependent pathway killing
of NK cells. However, they are also released by other immune cells. There are five different
types of Gzm (A, B, H, K and M) in humans, and each activates different cell death
pathways. Of interest, these molecules can trigger severe inflammatory reactions that can
lead to autoimmunity and sepsis [56].

GzmK is released by CD56bright NK cells [56] and by T cells. Specifically, GzmK-
expressing CD8 T cells have been defined as a novel cellular hallmark of aging. These
GzmK-expressing CD8 T cells are exhausted, express markers of tissue homing, and
enhance the inflammatory functions of non-immune cells. In mice, GzmK CD8 T cells
develop under an aged environment, where it is suggested that GzmK may increase
inflammaging by exacerbating the SASP in fibroblasts [149]. Macrophages also express
GzmK that by augmenting inflammation and impeding epithelialization influences wound
healing [150].

GzmA also increases with aging, whereby being released by platelets controls the
synthesis of increased IL8 and MCP-1 by monocytes [151]. In pathological conditions,
elevated GzmA is observed in the serum of patients with peritoneal sepsis being involved
in the development of the pathology. Specifically, GzmA, mainly expressed by NK cells,
acts as a proinflammatory mediator in macrophages inducing TLR4-dependent expression
of IL6 and TNFα [152]. GzmA also correlates strongly with inflammation and colorectal
cancer. Thus, extracellular GzmA causes macrophages to release IL6 activating STAT3 in
cells; and inhibiting extracellular GzmA attenuates gut inflammation, preventing colorectal
cancer development [153]. However, on the other side, GzmA released by NK cells, T cells
and CAR-T cells mediates anti-tumor activity in different gasdermin B-positive murine
models through pyroptosis [55].

GzmM is expressed in NK cells, NKT cells, γδ T cells and 20–30% of the CD8 T
cells [154]. GzmM inhibits the development of immunosenescence and inflammaging
which are related to cytomegalovirus (CMV) infection [155,156]. On the other side, GzmM
is released in the context of severe inflammation. Thus, in mice models of sepsis, NK
cell-derived GzmM augments the inflammatory cascade downstream of TLR4, leading
to IL1α, IL1β, TNFα and IFNγ secretion, which results in lethal endotoxicosis [157]. In
models of endotoxemia, stimulation of whole blood with Escherichia coli BL21, Pseudomonas
aeruginosa and Neisseria meningitis induced release of GzmM [158]. One study in patients
with IBD showed that only patients with ulcerative colitis display high levels of GzmM
exclusively in the inflamed distal part of the colon. To find out the role of GzmM, the
authors designed models of experimentally induced-IBD with depletion of GzmM. The
absence of GzmM increased parameters associated with severe intestinal histopathology
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and levels of inflammatory indicators, suggesting the protective role of GzmM at early
stages of inflammation in IBD [159].

To summarize, different types of Gzm are released by immune cells after encountering
pathogens or tumor cells to counteract them. However, at the same time, they will impact
differently in the development of inflammaging and inflammatory diseases. Moreover,
some of them present opposing roles in different contexts. Of interest, some of them are
beginning to be studied in adoptive cellular immunotherapy that will bring with relevant
information regarding their specific roles.

5. Association of Intrinsic and External Triggers of Inflammation with Cancer

As previously described, different studies have found that chronic inflammation is an
essential trigger for cancer development [35,36]. Indeed, these associations are confirmed
in meta-analysis studies. Specifically, very recently, a systematic review and meta-analysis
were performed to find associations of inflammatory blood indicators with cancer incidence.
A total of 103 studies were considered for the final analysis. Only longitudinal observational
prospective or retrospective studies including cohort, nested-case control, case-control and
nested-case cohort were contemplated. Colorectal cancer accumulated the highest number
of studies describing a relationship between inflammation and cancer. This incidence was
followed by breast cancer, lung cancer and prostate cancer. The most significant association
of inflammatory parameters with cancer risk were detected for CRP (39.8%), fibrinogen
(24%), IL6 (25%) and TNFα (24%) [160].

This association of chronic inflammation with cancer development is well exemplified
in idiopathic inflammatory myopathies (IIMs). IMM is a chronic multisystem autoimmune
condition that may cause muscle inflammation (myositis), skin manifestations and inter-
stitial lung disease. Adult-onset IIMs associate with an increased risk of cancer. Indeed,
around one in four patients are diagnosed with different types of cancer within three years
before or after IIM onset [161]. In a cohort of IMM patients where the total mortality was
27%, it was identified that IIM-related causes of death were frequent (64%) and included
cancer. The subtype IMM of dermatomyositis (DMM) was identified as an independent
mortality risk factor. Specifically, cancer risk was increased in DMM and polymyositis but
not in sporadic inclusion body myositis. Moreover, ovarian cancer was more prevalent in
DMM than in the general population [161].

A meta-analysis of 69 different studies was performed to identify parameters asso-
ciated with cancer risk in the IIMs and placed the transcription intermediary factor 1γ
(TIF1γ) protein [162]. TIF1γ is known as a tumor suppressor. Of interest, auto-antibodies
to TIF1γ have a strong association with cancers associated with DMM. A clinical study
in 160 DMM patients found that 26% of patients had cancer, being this proportion higher
in the anti-TIF1γ-positive patients. Moreover, anti-TIF1γ-positive DM patients had more
advanced cancers than anti-TIF1γ-negative DM patients. In addition, anti-TIF1γ-positive
DM patients developed cancers closer to the time of the diagnosis of DMM than anti-TIF1γ-
negative DM patients [163].These results suggest anti-TIF-γ auto-antibodies as a potential
tumor auto-antigen and should alert the doctor to the possibility of underlying cancer.

These studies exemplify the association of chronic inflammation with cancer devel-
opment. However, even though the immune system response has an important role,
as previously explained, additional triggers can accelerate the development of cancer
(Figure 1). Some of these triggers are described in this section.
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Figure 1. Intrinsic and external triggers that impact the immune response. Panel on the left shows insults that activate the
immune response in a healthy life. Panel on the right shows different triggers that occur with aging that cause an inadequate
immune response.

5.1. Diet

Diet has a relevant impact promoting an accelerated inflammation that leads to cancer,
metabolic and neurodegenerative diseases. Dietary components can modulate glucose,
insulin levels and other mediators that activate NF-κB to trigger inflammation through
standard pathway master switches [164]. Thus, in breast cancer, a meta-analysis of seven
observational studies has observed an association of a high “dietary inflammatory index”
with a 25% of increased incidence of breast cancer [165]. Another meta-analysis study in
urological cancers demonstrated that a high dietary inflammatory index was associated
with higher cancer risk in prostate cancer, kidney cancer and bladder cancer. However, no
associations were found for urothelial cell carcinoma [166].

Moreover, in obesity, inflamed adipocytes create a proinflammatory microenviron-
ment with infiltrating immune cells that foster tumor progression through proinflammatory
mediators, such as IL6, IL8 and IL1β. Of interest, biomarkers of adipose tissue inflamma-
tion can help to identify high-risk populations. Moreover, as adipose inflammation is a
reversible process, novel therapeutic targets could be designed to break the obesity-cancer
link [167].

5.2. Air Pollution

In vitro models showed that air pollution induces proinflammatory cytokines in
human lung epithelial cells, particularly IL6 and IL8 [168]. A systematic review and meta-
analysis study evidenced that long-term exposure to air pollutants increases the risk of
cancer mortality. Specifically, for 10 µg/m3 per increase of particulate matter (PM)2.5, PM10
and NO2, overall cancer mortality risk estimates were 1.17, 1.09 and 1.06, respectively.
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Moreover, PM2.5 compromised lung cancer mortality, and non-lung cancer mortality,
including liver cancer, colorectal cancer, bladder cancer and kidney cancer, while PM10 had
dangerous effects on mortality from lung cancer, pancreas cancer and larynx cancer [169].

5.3. Genomic Instability

Genomic instability has also been defined as a trigger of aging [4] and cancer [38]. In
this regard, in myelodysplastic syndromes (MDS), MDS-associated spliceosome mutations
promote a proinflammatory state. This proinflammatory state is characteristic of MDS-
derived myeloid cells through IL6 mRNA expression in an NF-κB-dependent manner [170].
Consistent with that finding, mutations in myeloid neoplasms in the splicing factors SF3B1
and SRSF2 enhance NF-κB activity [171] and lead to the activation of NLRP3 acting as a
driver for MDS [172]. In agreement with this, the common mutant p53 isoform is frequently
identified in human cancers. This mutant prolongs NF-κB activation, causes severe chronic
inflammation and promotes inflammation-associated colon cancer [173].

6. Preclinical Studies That Associate Inflammation with the Development of Different
Typesof Cancer

A variety of preclinical studies have demonstrated the association of chronic inflam-
mation with different types of cancer in murine models. These models should be similar
to humans in their clinical and histological features, share similar inflammatory or car-
cinogenic profiles, and be responsive to the standard treatment used in patients. For
gastrointestinal cancers, different models have been reviewed and proposed [174]. In these
models, gastrointestinal inflammation is induced orally with alcohol or other toxic agents,
by injections of ulcer-inducing agents, parenteral or oral administration of carcinogens,
or by modification of the genetic background of the animals. For instance, knock-out
mice for IL10 develop spontaneous enterocolitis and cecal inflammation emulating human
IBD [174].

Animal models have demonstrated that exposure to tobacco smoke promotes tumor
development in both carcinogen-treated mice and transgenic mice in lung cancer. Smoking-
associated inflammation and activation of NF-κB have been linked to the development of
lung cancer [175]. Other reviews have proposed models where the role of peritumoral and
intratumoral macrophages is considered; and where IL10, glucocorticoids, prostacyclin,
nitric oxide and surfactant apoprotein D levels are proposed biomarkers to monitor tumor
growth rate [176].

Of interest, a model of aged-mice deficient for granulocyte-macrophage colony stimu-
lating factor (GM-CSF) develop a systemic lupus erythematosus-like disorder. This model,
added to a deficiency of IFNγ causes diverse hematologic and solid neoplasms. Moreover,
antimicrobial therapy prevents tumor development, demonstrating the interplay of infec-
tious agents, regulation of immune homeostasis and cancer susceptibility [177]. Another
murine model showed that loss of IFNγ, GM-CSF and IL3 induces chronic pulmonary
inflammation and lung tumors with spontaneous activation of MAPK and STAT3 signal-
ing, in addition to a critical dependence on NF-κB signaling. Moreover, IL6 promotes
lung tumor growth, further implicating oncogenic inflammation in the development of
tumors [178].

Additional murine models also showed that cigarette smoking increased ulcerative
colitis-associated colonic adenoma formation [179]. Moreover, knock-out mice for Rag2
lack functional lymphocytes. In these models, lack of functional lymphocytes added
to Helicobacter hepaticus infection induces chronic colitis and the development of colon
cancer [180]. Hepatocellular carcinoma (HCC) is associated with pathogen infection-
induced chronic inflammation. Murine models showed that the tumor suppressor gene
STK4 regulates TLR3/4/9-mediated inflammatory responses in macrophages, protecting
against chronic inflammation-associated HCC. These results suggested STK4 as a biomarker
to target inflammation-induced HCC [181].
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7. Summary

In conclusion, inflammaging is a relevant event occurring with aging that impacts the
health of the elderly. Various intrinsic and extrinsic factors involved create a proinflamma-
tory environment that influences the immune response’s proper function. Consequently,
an uncontrolled immune response will increase the incidence of autoimmune diseases
and subsequently develop cancer. A small number of clinical trials currently ongoing,
and a variety of preclinical and observational pieces of evidence seem to confirm this
association between the inflamed state of aging and cancer. Aging causes an intrinsic and
natural defect in the thymus and the BM that will degenerate our immune cells. Of interest,
additional triggers, which can be avoided, will accelerate this process. Essential balances
between the different immune cells subsets must be maintained to prevent excessive im-
mune responses with concomitant inflammation or inadequate immune responses against
microbial or malignant transformed cells. Of interest, adoptive cellular immunotherapy is
a continuously growing option of treatment for cancer patients. This therapy administers
immune cells modified and in vitro expanded that significantly alter their properties and
proinflammatory profile. Therefore, monitoring changes in these cell populations during
treatment will provide relevant information for cancer treatment. In addition, studies
regarding the immune response in the different fields of autoimmunity and cancer should
be considered together to have a deeper understanding of the immune response.
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