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Summary

Of all the nutrients, vitamin A has been the most extensively evaluated for its

impact on immunity. There are three main forms of vitamin A, retinol, retinal and

retinoic acid (RA) with the latter being most biologically active and all‐trans‐RA
(ATRA) its main derivative. Vitamin A is a key regulator of the functions of various

innate and adaptive immune cells and promotes immune‐homeostasis. Importantly,
it augments the interferon‐based innate immune response to RNA viruses

decreasing RNA virus replication. Several clinical trials report decreased mortality

in measles and Ebola with vitamin A supplementation.

During the Covid‐19 pandemic interventions such as convalescent plasma, anti-
virals, monoclonal antibodies and immunomodulator drugs have been tried but

most of them are difficult to implement in resource‐limited settings.
The current review explores the possibility of mega dose vitamin A as an

affordable adjunct therapy for Covid‐19 illness with minimal reversible side ef-
fects. Insight is provided into the effect of vitamin A on ACE‐2 expression in the
respiratory tract and its association with the prognosis of Covid‐19 patients.

Vitamin A supplementation may aid the generation of protective immune response

to Covid‐19 vaccines. An overview of the dosage and safety profile of vitamin A is
presented along with recommended doses for prophylactic/therapeutic use in

randomised controlled trials in Covid‐19 patients.

Abbreviations: 9‐cisRA, 9‐cis retinoic acid; ACE‐2, angiotensin converting enzyme 2; ACE‐I, angiotensin converting enzyme inhibitor; AID, activation‐induced cytidine deaminase; ALDH1A,
aldehyde dehydrogenase 1A; APCs, antigen presenting cells; ARB, angiotensin‐receptor blockers; ARDS, acute respiratory distress syndrome; ATRA, all‐trans‐retinoic acid; Blimp‐1, B
lymphocyte‐induced maturation protein‐1; BMP, Bone morphogenic protein; BRSV, bovine respiratory syncytial virus; Covid‐19, coronavirus disease 2019; COX‐2, cyclooxygenase‐2; CSIF,
human cytokine synthesis inhibitory factor; CXCL10, C‐X‐C motif chemokine ligand 10; CXCL9, C‐X‐C motif chemokine ligand 9; EBF1, early B cell factor 1; FDA, U.S. Food and Drug
Administration; FDCs, follicular dendritic cells; GATA3, G‐A‐T‐A binding protein 3; GCs, germinal centers; GM‐CSF, granulocyte macrophage colony stimulating factor; IFNγ, interferon
gamma; IL‐1, interleukin‐1; IL‐10, interleukin 10; IL‐12, interleukin 12; IL‐13, interleukin 13; IL‐1β, interleukin 1 beta (leukocytic pyrogen); IL‐23, Interleukin 23; IL‐4, Interleukin 4; IL‐6,
interleukin 6; IL‐6R, interleukin 6 receptor; IL‐8, interleukin 8 (or chemokine [C‐X‐C motif] ligand 8, CXCL8); ILC, innate lymphoid cells; IP‐10, interferon gamma inducible protein 10 kD (or
CXCL10); IRF‐4, interferon regulatory factor 4; LPS, lipopolysaccharide; LTBP, latent TGF‐β binding proteins; LTi, lymphoid tissue inducing cells; MCP‐1, monocyte chemoattractant
protein‐1 (CCL2); MERS‐CoV, Middle‐East respiratory syndrome coronavirus; MHC, major histocompatibility complex; MIP‐1α, macrophage inflammatory protein 1α (CCL3); MMP, matrix
metalloproteinases; mTOR signaling pathway, mammalian target of rapamycin signaling pathway; NFkB pathway, nuclear factor kappa‐light‐chain‐enhancer of activated B cells; NK cells,
natural killer cells; NO, nitric oxide; Pax‐5, paired box protein‐5; PGE2, prostaglandin E2; PPAR‐β, peroxisome proliferator‐activating receptor beta; pre‐DCs, precursor dendritic cells; RA,
retinoic acid; RDA, recommended dietary allowance; RIG‐I, retinoic acid inducible gene I; RLRs, RIG‐I like receptors; RORγt, retinoic acid receptor‐related orphan nuclear receptor gamma
(RORγt); RSV, respiratory syncytial virus; RXR, retinoid X receptor; SARS‐CoV, severe acute respiratory syndrome associated coronavirus; SARS‐CoV‐2, severe acute respiratory syndrome
associated coronavirus‐2 (Cov‐2019); STRA6 receptor, signaling receptor and transporter of retinoic acid 6; TGF‐β1, transforming growth factor beta 1; Th17 cells, T helper cells type 17;
Th1 cells, T helper cells type 1; Th2 cells, T helper cells type 2; TLR, toll‐like receptors; TNF‐α, tumor necrosis factor‐α; Tregs, regulatory T cells.
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1 | INTRODUCTION

On 31 December 2019, WHO Country Office in China was informed

regarding a pneumonia of obscure etiology. On 30 January 2020, this

upsurge of the novel SARS‐CoV‐2 infections was declared a Public
Health Emergency of International Concern, and on 11 February

2020 disease was named Covid‐19.1 Novel infectious disease agents
are those newly appearing infectious agents in a human population

for whom low or no pre‐existing immunity exist, hence, they carry a
risk of evolving into a pandemic of severe illness.2

Covid‐19 patients experience varying degrees of respiratory

symptoms, with most having non‐serious illness and recuperate

without any specific treatment.3 However, the elderly with comorbid

cardio‐respiratory, oncological or metabolic conditions like diabetes
are at risk of progressive deteriorations.3 Due to paucity of paediatric

Covid‐19 patients compared to adults due to unknown reasons, its
exact impact on paediatric health is not known.4 However, there are

reports of serious illness and need for intensive care in paediatric

patients.5

Having faced recent outbreaks of Ebola virus disease, SARS‐CoV
and MERS‐CoV, the scientific community initiated rapid research for
potential preventive and curative treatments6 and clinical trials for

the SARS‐CoV‐2 are emerging at a rate never observed before.7

1.1 | Elevated pro‐inflammatory cytokines and
severity of illness in Covid‐19

A well‐coordinated rapid innate immune response with appropriate
cytokines is the key defence against an infectious agent but an exag-

gerated immune dysregulation has potential to produce tissue dam-

age.8–13 This dysregulated and excessive immune response is called

cytokine storm and is a major cause of acute respiratory distress syn-

drome (ARDS) and multiple organ failure in Covid‐19 patients.14–16

The most immediate and important defence mounted by the

body against viral infections is IFN‐I or IFN‐α/β production especially
in the early stages.17–19

After infection, SARS‐CoV‐2 generates proteins that effectively
inhibit the innate immune response, especially RIG‐I‐dependent im-
mune response.20,21 Thus, post SARS‐CoV‐2 infection an insignificant
IFN response is mounted for 48 h and in severe cases is followed by a

hyper‐inflammatory state with release of various pro‐inflammatory
cytokines like Interleukin (IL) 6, Monocyte Chemoattractant Protein‐
1 (MCP1), C‐X‐C motif chemokine (CXCL) 1, CXCL5 and CXLC10.22

Clinical data also suggested that severity of Covid‐19 is due to an
imbalanced activation of the adaptive immune response promoting

virus replication.14 Animal studies suggested that dysregulated im-

mune response was more prominent in older non‐human primates
and BALB/c mice irrespective of viral titers.23,24 A positive correla-

tion exists between worsening of Covid‐19 symptoms and

augmented serum levels of proinflammatory cytokines IL‐2R, IL‐6,
granulocyte colony‐stimulating factor, IP‐10, MCP‐1, macrophage
inflammatory protein‐1A, and TNF‐α, with serum levels of IL‐2R and

IL‐6 being directly proportional to the severity of illness.14,25

Therefore, treatment of Covid‐19 should deal with inflammation and
immune‐modulatory drugs should be added to the line of treatment
for improved prognosis. Dexamethasone decreases inflammation and

has now been licensed in Covid‐19 patients based on the results of
randomised controlled trials.26 A randomised clinical trial of inhaled

interferon‐beta also reported clinical benefit in Covid‐19 patients.27

2 | IMMUNE REGULATION MEDIATED BY
VITAMIN A

Anti‐inflammatory effects of vitamin A were known since 1928.28 Di-
etary vitamin A is absorbed from the gut, transformed into retinyl es-

ters which gets hydrolysed into retinol and gets stored in the hepatic

stellate cells of liver.29Retinol afterbinding to retinol bindingprotein in

the liver enters the circulation and its cellular uptake is mediated by

receptors such as STRA6 receptor (Signalling receptor and transporter

of retinoic acid 6).30 Retinol gets oxidised into retinal by alcohol

dehydrogenase and further to retinoic acid (RA) by retinal dehydro-

genase.29 There are three main forms of RA, the most abundant

all‐trans‐RA (ATRA), 9‐cis‐RA and 13‐cis‐RA.31 RA mediates its

immunomodulatory effects by interacting with nuclear receptors such

as retinoic acid receptor (RAR), retinoid receptor X (RXR), peroxisome

proliferator‐activating receptor beta (PPAR‐β) and regulates the

transcription of several genes including cytokines, chemokines, integ-

rins and genes related to lipid metabolism and glucose homeostasis.32

RA supplementation has significant impact on functions of various

immune cells and mucosal epithelial cells (Figure 1).

2.1 | Dendritic cells

RA promoted the differentiation of murine precursor dendritic cells

(pre‐DCs) to pre‐mucosal DCs to intestinal tolerogenic

CD103 + CD11b + DCs with an inherent ability to synthesise RA and
promote generation of Il‐10 secreting, FoxP3+ regulatory T cells.33

RA induced expression of gut trafficking receptors α4β7 and CCR9
on these DCs, enable them to promote gut‐homing migration of T
and B cells.34 Prostaglandin E2 (PGE2) may inhibit RA synthesis and

suppress generation of tolerogenic DCs.35 Whereas, GM‐CSF, IL‐4,
IL‐13 and ligands of TLR‐2 and TLR‐5 induced the RA synthesis.36–38

During infections, RA induced the production of pro‐inflammatory
cytokines by DCs, leading to enhanced number of effector T cells and

formation of tertiary lymphoid structures.34 RA enhanced the

expression of MHC class II and CD86 and promoted the maturation,

survival of monocyte‐derived DCs.39 While DCs regulate T‐cell
responses, Follicular DCs (FDCs) located in the germinal centres

(GCs) of secondary lymphoid organs regulate B‐cell responses. Ret-
inoic acid receptors (RARs) are expressed by FDCs and RA induces

expression of chemokines, survival factors and molecules involved in

the activation of TGF‐β1 (i.e., latent TGF‐β‐binding proteins (LTBP1,
LTBP2 and LTBP3), matrix metalloproteinases (MMP2 and MMP9),
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bone morphogenic protein (BMP2) and integrin αv.39; Vitamin A
deficiency results in decreased production of these molecules by

FDCs leading to reduced numbers of B cells and defective production

of IgA + B cells within GCs.39 Thus, RA influences host's adaptive

immune response by regulating gene expression in DCs.

2.2 | Monocytes and macrophages

ATRA suppressed TNF, NO, PGE2, COX‐2, IL‐12 production in

peritoneal macrophages challenged by endotoxin and IFN‐γ and hu-
man monocytic cell lines.40–43 RA synergised with TGF‐β, PGE2 and
IL‐4 to polarise macrophages to M2 type and regulate inflammation

in mice.44 Importantly, vitamin A deficient mice are unable to convert

monocyte‐derived inflammatory macrophages to M2 type during

infection.45 ATRA through activation of the mTOR signalling pathway

enhances neutrophil extracellular traps and cytotoxicity.46

2.3 | Innate lymphoid cells

RA has an integral role in the immune regulation by tissue resident

innate lymphoid cells (ILCs). RA is essential for generation of foetal

and adult lymphoid tissue inducing cells (LTi), a subtype of ILC3 via

retinoic acid receptor‐related orphan nuclear receptor gamma

(RORγt).47,48 Similar to tolerogenic DCs, RA induces the expression

F I G U R E 1 Vitamin A directly influences differentiation of immune cell precursors and modulates the functions of various immune cells to

strengthen the host‐defence and restoration of immune‐homeostasis
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of gut‐homing receptors on ILCs 1and 3.49 Along with IL‐2, RA
contributes to secretion of IL‐5 and IL‐13 by ILC2 and IFN‐γ by ILCs
1 and 3 in allergic diseases.50 RA induced IL‐22 secretion by ILC3
promoted intestinal tolerance in mice.47,48

RA has both inhibitory and activating effects on natural killer cells

(NK cells), a circulating subtype of ILC1. IFN‐α induced cytotoxicity of
NK cells, IFN‐γ and Granzyme B release fromNK cells are inhibited by
ATRA.50,51 A killer inhibitory receptor of NK cells, CD158b is induced

by 13‐cis RA.52 On the other hand, there is a positive correlation be-
tween number of NK cells and the retinol levels.53

2.4 | B‐cells

Deficiency of vitamin A and zinc lead to decreased IgA and mucosal

immunity.54 RA increased early B‐cell factor 1 (EBF1) and paired box
protein‐5 (Pax‐5) and increased the number of B cells in the spleen.55

Formation of antibody secreting plasma cells and immunoglobulin

production (IgG, IgM, IgA) is promoted by RA by upregulation of

activation‐induced cytidine deaminase (AID), B lymphocyte‐induced
maturation protein‐1 (Blimp‐1), CD138, interferon regulatory factor
4 (IRF‐4).56–58 These evidences support an integral role of RA in the
humoral immune response at the mucosal barriers.

2.5 | T lymphocytes

Polarisation to T‐helper cell 2 response is promoted by RA, RXR ago-
nists and 9‐cisRA by inducing IL‐12 secretion from APCs and IL‐4
expression in naive T cells.29,59,60 Repression of RORγt by RA favours
differentiation to Th1 over the Th17 cells.61 ATRA induces TGF‐β‐
dependent anti‐inflammatory immune responses by increasing T‐reg-
ulatory cells (Tregs) and inhibits induction of pro‐inflammatory cells
(Th‐17) and this anti‐inflammatory phenomenon happens by ATRA
induced Foxp3 activation through nuclear RAR.62 ATRA is not only

essential for Treg formation and regulating immunity but also funda-

mental to provide stability to Tregs in pro‐inflammatory environments,
where IL‐6 and IL‐21 induce transformation of already present Tregs
into inflammatory Th‐17 augmenting inflammation.62 This phenome-
non of T‐cell differentiation is dependent on ATRA concentration; if
the concentration is above a certain threshold Tregs are formed but at

the lower concentrations, ATRA favours Th‐17 cell differentiation.29,63

RA induced inhibition of IL‐23 and IL‐6 signalling blocks differentiation
of naïve T cells to Th17 cells.64 To summarise, RA balances the dif-

ferentiation of T‐helper cell subsets to maintain immune homeostasis.

2.6 | Impact of RA on pulmonary mucosal immune
response

Though the role of oral vitamin A supplementation in asthma is

controversial owing to Th2 upregulation, RXR agonist alleviated

allergic airway inflammation.65,66 Importantly, there is increased

asthma incidence in children with deficiency of vitamin A and lower

retinoid concentrations correlated with severe asthma.67,68 In murine

model of ovalbumin‐induced pulmonary inflammation, RA adminis-
tration led to induction of Tregs in the lung besides decreased eosin-

ophilic infiltration.69 ATRA downregulated Th2 and Th17 cells by

inhibiting GATA3 and RORγt in the lung.70 Akin to tolerised DCs in the
gut, lung resident macrophages coexpress TGFβ and retinal de-

hydrogenases and induce Tregs in airways.71 Vitamin A regulated IL‐6,
MCP‐1 and IL‐10 expression in respiratory epithelial and macrophage
cells infected with lipopolysaccharide (LPS) or Sendai virus is sugges-

tive of increased elimination of pulmonary pathogens.72 The three

plausiblemechanisms are augmentation of anti‐inflammatory cytokine
production by antigen presentation cells, increased production of vi-

rus‐specific IgA, and reduction in the pathogen replication by inducing
senescence in epithelial cells. Borderline vitamin A levels cause

impairment of epithelial integrity.73 Reduced numbers of cilia in cili-

ated cells of the pulmonary tract and the olfactory cells were also

associated with deficiency of vitamin A.74 Therefore, optimal levels of

vitamin A are critical to sustain epithelial barrier integrity in order to

face off the pathogen challenges.

3 | IMPACT OF VITAMIN A SUPPLEMENTATION
ON INFECTION ASSOCIATED MORTALITY: EARLY
DAYS

Vitamin A is a nutrient well studied in relation to immune functionwith

its link to immunity deduced as early as in 1931.75 Earlier reports

showed that the infection outcome of malnourished dogs was

improved with butter intake and that the deficiency of vitamin A

increased the susceptibility of rats to infections.28,76 In the early 1930s,

Ellison concluded a positive impact of supplementation of vitamin A

with decreased mortality in children suffering from measles.77 The

next decade saw30more clinical trials to study the impact of vitaminA

supplementation on other infection‐related mortalities and morbid-
ities.77,78 In 1960s a turning point came with the review by Scrimshaw

et al., rekindling attention to interaction between infection and nutri-

tional needs, and postulated that ‘no nutritional deficiency in the ani-

mal kingdom ismore consistently synergisticwith infection than that of

vitamin A’.79 E.V. McCollum, a renowned biochemist, stated that

‘Vitamin A builds fences that keep germs out’.80 Trials of vitamin A

supplementation suggest a positive impact of this intervention on

mortalities and morbidities in patients suffering from measles and

related pneumonias, HIV infection, malaria and diarrhoea.81 These

studies also informed that vitaminAmediated immune‐modulationwill
vary based on the infectious agent and immune responses of the host

involved.82

3.1 | Clinical impact of vitamin A in the infections
mediated by RNA viruses: Implications for Covid‐19

The double‐stranded RNA formed within cells by viral pathogens is
primarily sensed by pattern recognition receptors including retinoic

acid inducible gene I (RIG‐I) and RIG‐I‐like receptors (RLRs).83 These
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receptors induce NFkB pathway leading to alpha/beta interferon

production. Thus, vitamin A directly induces the most immediate

innate antiviral immune response within infected cells. Vitamin A

derivatives inhibit growth of many RNA viruses including murine

norovirus,84 mumps,85 Ebola86,87 and measles.88 In vitro studies of

HIV replication in different model systems found conflicting results

with addition of retinoids.89,90 Addition of ATRA improved the clin-

ical response in patients suffering from hepatitis C virus infection.91

The clinical impact of supplementation with mega doses of

vitamin A in measles and Ebola are discussed in depth.

3.1.1 | Measles

In the past, measles has been a disease with not only a high sec-

ondary attack rate but also with high case fatality rate.92 With

improvement of vaccination coverage cases of measles have pro-

gressively decreased but are not infrequent even at places with high

vaccine coverage.93

Measles is associated with depressed serum retinol levels and

retinol supplementation results in augmentation of these levels.94–97

The plausible reasons for the low levels of retinol in patients could be

lack of mobilization of hepatic stores and/or enhanced consumption.

Interestingly, the seriousness of measles is directly related to the

level of hyporetinemia.98 Markowitz et al., emphasized that children

under 2 years with hyporetinemia are at a higher risk of mortality.96

A meta‐analysis of eight trials (n = 2574 participants) analysed

the impact of vitamin A supplementation on morbidity and mortality

in patients suffering from measles99 (Tables 1 and 2).77,94,100‐105

These trials not only varied in their durations but also had a differ-

ence in the age groups of participants, dosages, formulations used

(oil‐ or water‐based) and were done in communities with dissimilar
measles‐related fatality rates.

The cumulative analysis of the data derived from all the high

quality studies suggested no significant effect of retinol supplemen-

tation on risk of dying due to measles‐related complications (RR 0.83;
95% CI 0.51 to 1.34). Importantly, when the data belonging exclu-

sively to patients requiring hospitalization due to measles was ana-

lysed, those who received 2 megadoses of vitamin A showed a

statistically significant (64%) decrease in their risk of mortality (RR

0.40; 95% CI 0.19 to 0.87). This impact was most evident in children

less than 2 years of age where an 83% reduction in risk of mortality

(RR 0.21; 95% CI 0.07 to 0.66) was observed. Need of hospitalization

being a measure of severity, it was concluded that the impact of

retinol supplementation was most significant in sick children.99

Impact of solitary dose of retinol was assessed in populations

with lower measles‐related fatality rate (<6%) but influence of the
two dose regimen was assessed on populations having higher mea-

sles‐related deaths (>10%). Areas with higher measles‐related mor-
tality have greater potential to show a positive impact of retinol

supplementation, therefore, it cannot be concluded whether

two‐dose retinol supplementation has greater impact on measles
mortality compared to single dose. In mild cases of measles, solitary

dose supplementation of oil based retinol preparation resulted in

70% augmentation in serum retinol levels.103

Since aqueous formulations or retinol are more rapidly absorbed

they result in higher serum retinol levels. However, oil‐based prep-
arations are economical, easily accessible and more stable. When the

data of studies that were based on supplementation of two doses of

retinol was stratified for preparations used, it was found that

aqueous preparations resulted in 81% decrease in the risk of

mortality (RR 0.23; 95% CI 0.06 to 0.89).99 During assessment of

effect of retinol supplementation on anti‐measles antibody titres,
it was concluded that there was a dose‐dependent increase in

titres.81,106,107

In an immunocompetent person where measles is a novel virus,

like an unimmunised adult, it can cause severe pneumonia and ARDS.

There are case reports of adult patients having severe measles and

timely mega dose vitamin A supplementation has been used as an

adjunct therapy with favourable results in many cases.108–111 During

a measles epidemic in China, 55 out of 58 children with measles

pneumonia, lacked a history of measles vaccination. About 20% of

measles pneumonia evolved into ARDS and three patients expired.

Thus, it was concluded that lack of immunity was associated with

severe infection.112

As per WHO recommendation, paediatric populations residing in

areas of high prevalence of vitamin A deficiency and suffering from

measles, should receive oral retinol supplementation (100,000 IU in

infancy and 200,000 IU after infancy) for two consecutive days.99

3.1.2 | Ebola

Aluisio et al., studied the impact of mega doses of retinol to adults

suffering from Ebola virus disease during the West African

epidemic.113 Supplementationwith 200,000 IU of retinol on day 1 and/

or 2 within the first 48 h of admission resulted in 16.9% decrease in

mortality. Authors inferred that early mega dose retinol supplemen-

tation has potential to reduce mortality due to Ebola virus disease.113

4 | IMPACT OF VITAMIN A ON ACE‐2, RECEPTOR
FOR SARS‐CoV‐2

Physiologically, ACE‐2 degenerates vasoconstrictive angiotensin II to
vasodilator angiotensin (1–7).114 SARS‐CoV‐2 attaches to ACE‐2
enzyme to enter host cells with an affinity around 10‐ to 20‐fold
higher than SARS‐CoV, and is a plausible reason for higher trans-
mission rates in COVID‐19.115,116 It was hypothesised that increased
cellular ACE‐2 levels may increase chances of severe SARS‐CoV‐2
infection in the host.117 Since, ATRA supplementation upregulated

ACE‐2 enzyme, American Nutrition Association issued a caution

against the use of vitamin A and its derivatives in amounts that

exceed the recommended dietary allowance (RDA).118–120

On the other hand, downregulated ACE‐2/angiotensin (1–7) may
playan integralrole in inflammatorymechanismsleadingtotissueinjury
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and explain various Covid‐19 manifestations like hypokalemia, vaso-
constriction121 and development of acute respiratory distress syn-

drome (ARDS).122 Importantly, 175 admitted, critically ill patients with

SARS‐CoV‐2 infection, showed increased potassium loss concomitant
with ACE‐2.123 Murine models of SARS‐CoV showed a decreased

concentration of ACE‐2 in cells through internalization and degrada-
tion, and that was positively correlated with the lung damage.124,125 It

was inferred thatbyupregulating thevasodilatorangiotensin1‐7,ACE‐
2may protect against VILI (virus induced lung injury).124

In the beginning of pandemic, it was observed that many Covid‐19
patients with cardiac comorbidities on ACE‐1/ARB (angiotensin‐re-
ceptor blockers) drugs, had adverse outcomes.126 Since, use of ACE

inhibitors or ARB is also associated with upregulation of ACE‐2
expression, concerns were raised for their continuation during

SARS‐CoV‐2 infection.127–129 However, an earlier systematic review
and meta‐analysis had inferred an association of use of ACE inhibitors
withasignificantreduction inriskofpneumoniaandpneumonia‐related
mortality.130 Hospitalised hypertensive patients suffering from SARS‐
CoV‐2 infection, taking ACE‐I or ARB showed lesser mortality (3.7%)

compared to others (9.8%) who were on different drugs.131 The older

people on ACE inhibitors were at almost 40% lower risk for Covid‐19
hospitalization. However, the younger patients or the groupwith ARBs

did not show any such alteration in risk for hospitalisation.132 BRACE

CORONA trial on patients on chronic ACE I/ARB therapy showed no

significant difference in hospital stay and day 30 mortality outcomes

with discontinuation versus continuation of therapy.117 Therefore,

many regulatory bodies and professional societies advised for contin-

uation of treatment with ACE‐1 and ARB medications in patients
suffering fromCovid‐19.133–135With these evidences in the support of
benefits extended by upregulated ACE‐2, it is likely that vitamin A
induced upregulation of ACE‐2may benefit Covid‐19 patients.

5 | VITAMIN A: IMPLICATIONS FOR COVID‐19

Animal studies evaluating serum retinol levels suggest that despite

higher levels in the liver, serum levels decline with age.136 Studies in

older individuals and diabetics suggest vitamin A deficiency.137–139

T A B L E 2 Summary of clinical trials suggesting impact of Vitamin A supplementation on morbidity of measles patients

Author Condition Case Placebo group p‐Value

Hussey 1990100 Recovery from pneumonia 6.3 days 12.4 days <0.001

Recovery from diarrhoea 5.6 days 8.5 days <0.001

Croup 13 patients 27 patients 0.03

Herpes stomatitis 2 patients 9 patients 0.08

Intensive care 4 patients 11 patients 0.13

Hospital stay in days 10.6 days 14.8 days 0.01

Adverse outcome (death,

pneumonia ≥ 10 days,

diarrhoea ≥ 10 days, post

measles croup, transfer to ICU)

25 patients 52 patients <0.001

Coutsoudis 199193 Recovery in <8 days 28/29 (98%) 11/31 (65%) 0.002

Pneumonia episodes 5 6 ‐

Recovery from pneumonia in days 3.8 ± 0.40 5.7 ± 0.79 <0.05

Integrated morbidity score 0.60 ± 0.22 4.12 ± 1.13 ‐

Ogaro 1993101 Progression to croup grade III 4/119 0/116 ‐

Rosales 1996102 Measles‐associated pneumonia 63/90 patients 68/110 patients 0.42

Failure to improve from pneumonia at 1 week 37 36 0.96

Failure to improve from pneumonia at 2 weeks 32 30 0.41

Failure to improve from pneumonia at 3 weeks 4 10 0.31

Failure to improve from pneumonia at 4 weeks 0 12 0.005

Kawasaki 1999104 Pneumonia 23/37 patients 9/52 patients >0.05

Laryngitis 12/37 patients 9/52 patients >0.05

Duration of cough 7.2 ± 1.6 days 9.2 ± 1.8 days <0.05

Fever 6.8 ± 1.4 days 8.3 ± 1.1 days >0.05

Hospitalization 5.5 ± 1.7 days 5.9 ± 1.5 days >0.05
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In aged mice and in humans over the age of 65, activation of the

aged innate immune system leads to dysregulated inflammation.

There is aggravated basal inflammation associated with lack of

effective innate and adaptive immune responses to the newly

encountered pathogens or vaccine antigens.10

All three viral illnesses measles, Ebola and Covid‐19 are sus-
pected to have jumped species from other animals to humans,140–142

have multisystem involvement and severe courses in naïve geriatric

population compared to young adults.143,144 (Figure 2).

Despite adequate retinol stores, hyporetinemia may occur during

an infection, probably due to slower speed of mobilization of stores

than required to keep the levels in normal range.168,148 Use of mega

dose, therefore, has been proven to be useful in hospitalized patients

with measles and Ebola.

When large amounts of vitamin A are ingested, this overwhelms

the absorptive capacity of intestines leading to formation of large

amounts of retinoic acid.148,149 This may be the reason for its dose‐
dependent protective immunomodulatory and antiviral effects, which

in turn may influence disease severity. Combination of retinoic acid

with simvastatin (an oral antilipemic agent) supplementation in ani-

mal models of ARDS exerted anti‐inflammatory and pro‐repair
effects on respiratory tracts.149,150 This anti‐inflammatory and pro‐
repairing effect might be of help in ARDS related to Covid‐19.

5.1 | Dosage and safety profile of vitamin A. How
much is not too much?

Table 3 shows the RDA150,151 of vitamin A for different age groups

and its reported therapeutic doses used for measles, Ebola, supple-

mentation in ocular manifestations of vitamin A deficiency and acne.

Red flags have been raised regarding vitamin A supplementations

in view of the possibility of acute and chronic intoxication.152 It is

recommended that children are more vulnerable and doses around

20 times RDA in the paediatric population and 100 times RDA in

adult population, over a period of hours or a few days carries risk of

acute intoxication.153 However, much larger doses than RDA have

been used for various infections,94,100,101,113 deficiency154 and in-

flammatory conditions156 (Table 3).

WHO recommends prophylactic routine supplementation of

children with vitamin A 100,000 IU (<1year) and 200,000 IU (>1 year
to 5 years) to decrease ocular complications of vitamin A deficiency

and mortality and morbidity due to childhood infectious illnesses in

this vulnerable age group,157 which is many times the RDA.

Therapeutic vitamin A supplementation depends on the age

group and disease condition and vitamin A is tolerated well across

various doses with occasional reversible side effects. When vitamin A

is given for measles in children there is transient anorexia, nausea,

vomiting with some headache and in infancy bulging fontanelles

which resolve without sequelae.154,155 Acute retinoid toxic effects

include dry lips, cheilitis, and dry oral, ophthalmic, and nasal

mucosa.157,158

Doses much higher than the RDA were used by Kligman et al.156

for acne, a chronic inflammatory skin condition. Kligman et al., star-

ted their study by supplementing 100,000 IU daily for 3 months and

in view of absence of satisfactory results augmented it to 200,000 IU

daily for 3‐4 months and since most had persistence of inflammatory
acne doses were increased to 300,000 IU daily, most remitted and if

required in some cases dose was increased to 400,000–500,000 IU.

They reported that to be effective serum retinol levels need to

be higher than normal range and recorded dryness of skin and

mucous membranes in most cases while frequent headaches in some

cases.

Owing to the difference observed in the therapeutic effects of

vitamin A supplementation between one dose and two doses, the

two‐dose regimen was recommended for measles. Compared to a
large cumulative decrease in mortality in children with measles99

(64%), the difference in the mortality in adult patients suffering from

Ebola113 who received megadose vitamin A was smaller that is

16.9%. The impact on mortality in paediatrics was also more promi-

nent in the younger age group.99 This may be due to the difference in

dosage requirement of adults and children to achieve a certain

threshold concentration of retinoic acid to realise the immunomod-

ulatory effect of vitamin A.

Therefore, the potential benefits of the proposed intervention

can be explored by assessing serum retinol levels of Covid‐19
patients for hyporetinemia. The possibility of a randomised control

trial to supplement sick patients suffering from Covid‐19 with

mega doses of vitamin A, should then be explored as a cost

effective, readily available, easy to administer medication with

minimal reversible side effects, to assess its impact on mortality,

morbidity, hospital stay, ICU stay.99 An open label randomised

clinical trial is underway to study the effect of oral and aerosolized

13‐cis‐retinoic acid (isotretinoin) treatment as adjunct therapy in
sick adult Covid‐19 patients.159 The study will not only assess the
impact of this intervention on lung injury score but also on various

other hematological, virological, immunological, molecular parame-

ters and clinical outcomes.

6 | THE WAY FORWARD

In early 1930s, when many researchers investigated the potential

benefits of convalescent serum therapy, the Ellison's attempt to

supplement children suffering from measles with large doses of

vitamin A significantly decreased the measles‐related mortality and
morbidity.160 During Covid‐19 pandemic again convalescent plasma
therapy has been explored as a potential therapy along with various

antivirals, monoclonal antibodies, immunomodulators and drugs.7

However, most of these therapies have issues associated with their

efficacy, safety and importantly are unaffordable/need sophisticated

health care establishments for implementation. Appropriate mega

doses of vitamin A may hold benefits for Covid‐19 patients especially
in resource‐limited settings and should be directly considered for
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randomized controlled trials to assess their efficacy. Its use may be

explored in following ways:

6.1 | As a potential therapeutic intervention

Moderate to severe cases: Since adults are known to tolerate higher

doses, larger doses 300,000–500,000 IU may be used for supple-

mentation during acute and critical phase of illness in attempt to

achieve the desired immunomodulatory effect.

Mild cases: Supplementing the usual mega dose of 200,000 IU of

vitamin A for 2 days is expected to mediate augmentation in specific

IgG1 levels. This may not only decrease their chances of complica-

tions, but may also increase the efficacy of their plasma for conva-

lescent plasma therapy. Loss of IgG response over the period of

convalescence is also a cause of concern161 and vitamin A supple-

mentation may be useful during this period.

6.2 | As a potential prophylactic intervention

Health care providers should be offered either monthly mega dose

or advised daily supplementation of RDA. This is in view of the

reports of children with normal serum retinol levels undergoing

milder courses with measles compared to children with vitamin A

deficiency.

Adult asymptomatic contacts should be offered 1–2 mega doses

to augment their innate immune response to viral antigens.

6.3 | As an adjuvant along with Covid‐19 vaccine

Vitamin A enhanced IgA production by the stimulated B cells,

with support from respiratory epithelial cells as well as

mucosal dendritic cells synthesising RA.162 Measles vaccination at

9 months of age is routinely accompanied by mega dose of

vitamin A supplementation (100,000 IU). This has been shown to

increase the protective immune response induced by the

vaccine.163

Dietary vitamin A supplemented calves (3300 U/kg of dry

matter of diet) showed higher serum retinol concentration, more

robust IgG1 response to intramuscular inoculations of bovine

coronavirus vaccine.164 Interestingly, these immunised and vitamin

A supplemented calves showed an enhanced ratio of IgG1 to IgG2.

Immune response to mucosal BRSV vaccine was impaired in vitamin

A deficient calves and was not protected against bovine RSV chal-

lenge.165 IgA response to influenza vaccine in vitamin A deficient

mice was strengthened by oral supplementation with RA.166 Role of

RA as an adjuvant was emphasised in both adult and neonatal

mice.167,168 Owing to this adjuvant‐like ability, vitamin A, may be
worthy for consideration of co‐administration along with vaccine
trials in future.

F I G U R E 2 The commonalities in the mechanisms of pathogenesis in Measles, Ebola and SARS‐CoV‐2 viral infections and the possible
advantages vitamin A can offer at each step of immune response.8,145–147
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