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Osteoclasts are multinucleated cells that exclusively resorb bone matrix proteins and
minerals on the bone surface. They differentiate from monocyte/macrophage lineage cells
in the presence of osteoclastogenic cytokines such as the receptor activator of nuclear
factor-κB ligand (RANKL) and are stained positive for tartrate-resistant acid phosphatase
(TRAP). In vitro osteoclast formation assays are commonly used to assess the capacity of
osteoclast precursor cells for differentiating into osteoclasts wherein the number of TRAP-
positive multinucleated cells is counted as osteoclasts. Osteoclasts are manually identified
on cell culture dishes by human eyes, which is a labor-intensive process. Moreover, the
manual procedure is not objective and results in lack of reproducibility. To accelerate the
process and reduce the workload for counting the number of osteoclasts, we developed
OC_Finder, a fully automated system for identifying osteoclasts in microscopic images.
OC_Finder consists of cell image segmentation with a watershed algorithm and cell
classification using deep learning. OC_Finder detected osteoclasts differentiated from
wild-type and Sh3bp2KI/+ precursor cells at a 99.4% accuracy for segmentation and at a
98.1% accuracy for classification. The number of osteoclasts classified by OC_Finder was
at the same accuracy level with manual counting by a human expert. OC_Finder also
showed consistent performance on additional datasets collected with different
microscopes with different settings by different operators. Together, successful
development of OC_Finder suggests that deep learning is a useful tool to perform
prompt and accurate unbiased classification and detection of specific cell types in
microscopic images.
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INTRODUCTION

Bone homeostasis is maintained with the balance between bone
resorption by osteoclasts and bone formation by osteoblasts,
which are tightly coordinated with each other (Okamoto et al.,
2017). Osteoclasts are highly specialized bone-resorbing cells that
are differentiated from monocyte/macrophage lineage cells, and
they play a critical role in various physiological events, including
bone development, bone repair, and regulation ofmineral balance
(Schindeler et al., 2008; Okamoto et al., 2017). Excess osteoclast
activity will cause bone loss in a variety of pathological conditions
such as osteoporosis, rheumatoid arthritis, periodontitis, multiple
myeloma, and metastatic cancer. On the other hand, impaired
osteoclast activity results in a pathological condition called
osteopetrosis characterized by life-threatening bone fragility
due to increased bone density (Boyle et al., 2003; Bi et al.,
2017). For example, according to the international
osteoporosis foundation, it is estimated that approximately 500
million people worldwide suffer from osteoporosis, causing a
huge socioeconomic burden.

Because of the biological importance, osteoclasts have been
one of the foci in bone biology. In vitro osteoclast differentiation
is induced by the stimulation of their progenitor cells with
macrophage colony-stimulating factor (M-CSF) and the
receptor activator of nuclear factor-κB ligand (RANKL) (Boyle
et al., 2003; Okamoto et al., 2017). Differentiated osteoclasts are
distinguishable from their progenitor cells by their unique
characteristics of multinuclearity and positivity for tartrate-
resistant acid phosphatase (TRAP) (Boyle et al., 2003). Since
the establishment of osteoclast culture methods (Yasuda et al.,
1998), in vitro osteoclast differentiation assays have been
extensively used to quantify and compare the capacity of the
progenitor cells for differentiating into osteoclasts. In the assay,
the number of TRAP-positive multinucleated cells on culture
dishes is manually counted by eyes as osteoclasts by multiple
independent examiners. However, the identification of osteoclasts
by human eyes does not always secure objectivity and
reproducibility. Thus, automated methods for counting
osteoclasts have been long awaited.

Here, we developed OC_Finder, a fully automated osteoclast-
counting system on microscopic images. OC_Finder identifies
and segments cells in microscopic images and classifies each cell
image into TRAP + multinucleated osteoclasts and non-
osteoclasts. Segmentation is performed with Otsu’s
binarization method (Sezgin and Sankur, 2004) combined with
morphological opening and the watershed algorithm (Vincent
and Soille, 1991; Roerdink and Meijster, 2000). The classification
of cell images is performed via deep learning, specifically using a
convolutional neural network (CNN).

Deep learning has been widely adopted in different biological
and medical science areas for classifying cells in the microscope
images (Chen et al., 2016; Zhang et al., 2017; Coudray et al., 2018;
Habibzadeh et al., 2018; Meng et al., 2018). However, existing
methods have some limitations. For most methods, input images
need to be manually processed to contain only one cell, or to have
cells manually marked to be classified (Zhang et al., 2017;
Coudray et al., 2018; Habibzadeh et al., 2018; Meng et al.,

2018). For other methods (Chen et al., 2016), multi-modal
data need to be prepared as input to help classification. In
contrast, in our work, we carefully designed the watershed
algorithm to segment cell images, which enabled a fully
automated framework for cell detection and classification.
Unlike existing segmentation methods (Al-Kofahi et al., 2018;
Falk et al., 2019) that need pixel-wise labeling for training, our
approach only needs the position of the center of the cells because
we perform segmentation in the initial step of the procedure. In
CNN, we adopted a teacher–student model (Tarvainen and
Valpola, 2017) and image data augmentation techniques for
training, which yielded a high accuracy.

There are two recent related works (Cohen-Karlik et al., 2021;
Emmanuel et al., 2021) that reported software to detect
osteoclasts. The foremost important difference to note is that
these two works did not release the datasets they used and their
software to the public. Thus, we were unable to compare with
their methods, and users will not be able to use their methods
either. In contrast, the code and the dataset or our work are fully
released to the public so that biologists can use the software. The
dataset and the code will also assist computational biologists to
develop new methods. In addition, each of the existing works has
notable differences from the current work. The work by Cohen-
Karlik et al. (2021) used a different neural network framework to
detect cells and classify osteoclasts. Their network outputs
bounding boxes of cells, while OC_Finder segments the cell
region boundaries. Also, judging from the results shown in
their article, OC_Finder seems to have higher accuracy with
better agreement with human experts. We can also see that
OC_Finder would be easier to apply to other types of cells
because cell segmentation is performed with an image
processing technique that does not need particular training.
The second article (Emmanuel et al., 2021) provides a tutorial
on how to use a piece of commercial software for identifying
osteoclasts. Since the software is for general purpose of cell
classification, to use the software, users need to prepare a
dataset by manual annotation and train a neural network by
themselves using the prepared dataset, which may not be an easy
task for biologists. In contrast, OC_Finder is provided with
trained networks, which showed high accuracy in the datasets
from multiple different microscopes and settings. Thus, it is
expected that OC_Finder shows sufficient performance for
users without training the network newly from scratch. Also,
an automatic segmentation is not achieved in the proposed
pipeline. The target of the analysis is also different; the
pipeline is for cell identification in vivo on histology, while
OC_Finder is for osteoclast counting in vitro.

OC_Finder achieved 99.4% accuracy in segmentation and
98.1% accuracy in classification. It also achieved 99.5%
accuracy in segmentation and 92.9% accuracy in classification
for the extra nine datasets collected from different microscopies
with different settings by different operators. The number of
osteoclasts classified by OC_Finder was at the same level as
counting by eye. Together, the successful development of
OC_Finder suggests that deep learning is a useful tool for
performing prompt and accurate identification and
classification of cells with characteristic morphological features
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in microscopic images with no bias. This approach may be
applied to classify non-cellular objects. OC_Finder is available
at http://github.com/kiharalab/OC_Finder and https://bit.ly/
OC_Finder (online platform). The dataset used in this work is
also made freely available at https://doi.org/10.5281/zenodo.
5022015, and the nine additional testing datasets are available
at https://doi.org/10.5281/zenodo.5822628.

MATERIALS AND METHODS

In Vitro Osteoclast Differentiation for
Constructing Training and Testing Datasets
Bone marrow cells were isolated from the tibia, femur, and ilium of
7- to 8-week-oldmale and female Sh3bp2+/+ and Sh3bp2KI/+mice on
the C57BL/6 background. The Sh3bp2KI/+mice that have the
heterozygous gain-of-function mutation in SH3 domain-binding
protein 2 (SH3BP2) were previously reported (Ueki et al., 2007;
Mukai et al., 2014; Kittaka et al., 2020). After treating with red blood
cell lysis buffer (eBioscience), bone marrow cells were cultured in
alpha-MEM supplemented with 10% FBS and 1% penicillin/
streptomycin on the petri dish. After 3 h, non-adherent cells were
collected and further cultured in alpha-MEM containing 25 ng/
ml M-CSF (PeproTech, East Windsor, NJ) on the petri dish for
3 days to selectively grow the bone marrow-derived M-CSF-
dependent macrophages (BMMs). BMMs were harvested,

seeded on 48-well plates at a density of 2.5 × 104 cells per
well, and cultured for 3 days in the presence of four
combinations of cytokines: 1) 25 ng/ml M-CSF and 25 ng/
ml RANKL, 2) 25 ng/ml M-CSF and 50 ng/ml RANKL, 3)
25 ng/ml M-CSF and 50 ng/ml RANKL and 100 ng/ml TNF-α,
and 4) 25 ng/ml M-CSF and 50 ng/ml RANKL and 10 ng/ml
IL-1β. All cytokines were obtained from PeproTech.
Osteoclasts exhibit a variety of morphologies depending on
the conditions in vitro. Therefore, to train the neural network with
a variety of osteoclasts in size or morphology, two different BMM
sources (Sh3bp2+/+ and Sh3bp2KI/+ mice) in the presence of four
different cytokine combinations were used. The examples of diverse
morphologies of osteoclasts produced in different culture conditions
are shown in Figure 1A. Adding TNF-α and IL-1β to the culture
induced bigger osteoclasts compared to the osteoclast induction with
RANKL only. Gain of function of SH3BP2 by Sh3bp2KI/+ resulted in
an increase in both the number and size of osteoclasts, as previously
reported (Ueki et al., 2007), and the induced osteoclasts showed
more rounded morphology than the wild-type (Sh3bp2+/+) control.

Osteoclast and Non-Osteoclast Image
Collection
Cells were stained by tartrate-resistant acid phosphatase (TRAP)
staining (Sigma-Aldrich, St. Louis, MO, United States), and
images were captured using the BZ-X810 inverted microscope

FIGURE 1 |Dataset of cell images of osteoclasts. (A) Examples of images of various forms of osteoclasts obtained under different conditions. The concentrations of
each cytokine in the culture media were as follows: RANKL: 50 ng/ml, TNF-α: 100 ng/ml, and IL-1β: 10 ng/ml. (B) An example of the captured microscopic images of
osteoclast culture. (C) A magnified image of the boxed area in panel (B), showing the examples of the induced osteoclasts and non-osteoclasts. The cells which are
positive for TRAP staining and have more than 3 nuclei were identified as osteoclasts (yellow arrowheads), while all other cells which do not satisfy the criteria were
regarded as non-osteoclasts (red arrowheads). Black bar = 100 µm.
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(Keyence, Osaka, Japan) in the bright-field mode with the
following settings: ×10 objective lens (Nikon CFI Plan Fluor
DL ×10), 1/175 s exposure time, and 50% transmitted light power
of 3.7 W LED. Captured images were in the size of 1920 × 1,440
pixels that correspond to 1,451.11 × 1,088.33 µm (1.32 pixel/um)
The example image is shown in Figure 1B. TRAP-positive cells
containing more than 3 nuclei were considered as osteoclasts.

Dataset Collection
We obtained 458 microscopic images (314 images from the
Sh3bp2+/+ cell culture and 144 images from the Sh3bp2KI/+ cell
culture) for the training, validation, and test of the neural
network. The dataset included the same number of
microscopic images, that is, 229 images each, from male and
female mice. Osteoclasts and non-osteoclasts were manually
identified and distinguished by visual evaluation. The absolute
coordinates of each osteoclast and non-osteoclast on the images
were provided manually using the “Multi-point” function of
ImageJ (Schneider et al., 2012) and used to locate the
osteoclasts and non-osteoclasts. Cell images of osteoclasts and
non-osteoclasts were cropped based on the obtained coordinates
to be used for the training, validation, and test of the neural
network.

We generated two datasets from these images. The first dataset
was for testing the segmentation accuracy of OC_Finder (the
segmentation dataset). The second dataset was for training neural
network and examining the classification accuracy of the method
(the classification dataset).

For the segmentation dataset, we selected 10 microscopic
images of different culture conditions. The culture conditions
were as follows: Osteoclast precursors frommales or females with
the genotype of Sh3bp2+/+ or Sh3bp2KI/+ stimulated with 25 or
50 ng/ml of RANKL; and osteoclast precursors from male wild-
type mice stimulated with the combination of 50 ng/ml of
RANKL with IL-1β (10 ng/ml) or TNF-α (100 ng/ml). In each
of the 10 images, we manually counted all the cells. The number
of manually identified cells in an image ranged from 445 to 1823
with a total of 10,221.

For the classification dataset, from each of the 458 images we
manually identified about 60 cells, only a fraction of cells in an
image, so that we could cover a large number of different
microscopic images. In total, we located and labeled 13,822
osteoclasts and 13,833 non-osteoclasts. A cell was considered
an osteoclast if it is positive for TRAP staining (pink to purple
color in Figure 1) and has more than 3 nuclei (Figure 1C, yellow
arrowheads) and were considered non-osteoclasts otherwise
(Figure 1C, red arrowheads). Among the 458 microscopic
images, 373 images (81.4%) were used for training and
validation, while the rest (85 images) were used for testing
OC_Finder. The 373 images were further split into 298 images
(79.9%) for training, which included 9,276 osteoclasts and
9,278 non-osteoclasts, respectively, and 75 images (20.1%) for
validation, which included 2,219 osteoclast and 2,226 non-
osteoclasts, respectively. The 85 testing images included 2,327
osteoclasts and 2,329 non-osteoclasts, respectively. Cell images in
size of 50 × 50 pixels that include an osteoclast or a non-osteoclast
were cropped from the dataset images according to the

coordination of cells determined by the aforementioned
method and used for training, validation, and testing.

Counting the Number of Osteoclasts
After TRAP staining, nine images were captured (×10 objective
lens, 1/175 s exposure time, and 50% transmitted light power)
from each well of the osteoclast culture. Osteoclasts in each of the
nine images were identified and counted either by visual
evaluation or by OC_Finder. To calculate the total number of
osteoclasts per culture well (for Figure 6B), the numbers of
osteoclasts per image of nine images from the well was
averaged and normalized using the size of the area covered by
a single image (1.587 mm2) and the surface area of the well (0.95 ×
102 mm2).

Overall Architecture of OC_Finder
OC_Finder processes a given microscopic image with two major
steps: segmentation and classification (Figure 2A). First, in the
segmentation step, the program identifies cells in the microscopic
image and segments them with the watershed algorithm. Next,
small cells are removed since they are unlikely to be osteoclasts.
Then, the region of each cell is trimmed into the same square
image and three colors in the image, RGB, are normalized
considering the mean and the variance of the image
(Segmentation in Figure 2A). Then, the trained deep learning
model is applied to all the trimmed cell images and assign labels
(e.g., non-osteoclasts are assigned 0 and osteoclasts are assigned 1
in Figure 2A “Classification”). Finally, OC_Finder visualizes the
results with labels assigned to all the segmented cells on the
original microscopic image and calculate the number of
osteoclasts in the given image. The detailed methods for each
step can be found in Segmentation of cell images in the “materials
and methods” section.

Segmentation of Cell Images
Cell images were segmented from an input microscopic image
using a pipeline that uses the watershed algorithm (Figure 2A,
Segmentation) (Vincent and Soille, 1991; Roerdink and Meijster,
2000) as the core of the procedure. We chose this algorithm
because it was successful in medical image segmentation tasks
(Ng et al., 2006). The procedure started with applying the
following preprocessing before applying the watershed. Images
were first converted to a grayscale image, then were binarized by
using Otsu’s method (Sezgin and Sankur, 2004), which roughly
estimates the boundaries between foreground (cell regions) and
background. Subsequently, we further applied morphological
opening and closing operations to smoothen the cell regions.
Otsu’s binarization automatically determines a threshold value to
distinguish foreground and background. This algorithm first
computes the histogram of grayscales of pixels in an input
image. Then, the algorithm applies different intensity
thresholds to split the distribution to two distributions. For
each threshold, it computes a weighted sum of variance of two
distributions and the threshold that yielded the largest sum
variance is selected to split foreground and background. This
process is performed on-the-fly for each image, and thus no
training process is needed. Next, we removed noise in foreground
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regions by applying morphological opening and closing
operations (Vincent, 1994) with a filter of a 3 × 3 pixel size.
The opening operation in general removes irregular regions at the
boundary, and the closing operation removes holes in foreground
regions. Subsequently, we applied a distance transform
(Felzenszwalb and Huttenlocher, 2012) to all foreground
regions, which tries to separate individual cells from large
foreground regions that include multiple cells. In the distance
transform, the label of each pixel, which is binary, 0 or 1, at this
step due to Otsu’s binarization, was updated to the distance to the
closest background pixel. Thus, pixels that are deep inside a cell

tend to have a large value. We used 0.7 of the maximum distance
in the entire image as the threshold to select pixels as possible cell
centers (called markers), which were used as starting points by the
watershed algorithm. This procedure was implemented with the
OpenCV (Bradski and Kaehler, 2008) package. We used the same
setting across all our experiments.

During the development, we have tried Cellpose (Stringer
et al., 2021), a recently developed tool for cell image
segmentation. However, as shown in (Supplementary Figure
S1), it did not perform well on our cell culture images, which
include a diverse size of cells in one microscopy image. It only

FIGURE 2 | Diagram of OC_Finder. (A) The workflow of OC_Finder. First, the input image is processed with Otsu’s binarization, morphology opening and closing,
and watershed algorithm to detect the boundary of cells (Watershed Segmentation). After the cells are segmented, small cells with less than 500 pixels (highlighted in
green) are removed from further downstream analysis because such cells are never osteoclast (Removal of Small Segments). The center of the remaining segmented
regions was computed (Determination of Center of Cells), and then, each cell region is extracted by a square of 50 × 50 pixels that are centered on the acquired cell
centers (Extracting Cell Images), which are the input for the deep learning model that classifies it to either as non-osteoclast or osteoclast. Finally, OC_Finder will classify
the cropped images to osteoclast and non-osteoclast (Classification) and present the microscopic image with predicted labels assigned to the identified cells as output.
(B) The deep learning network architecture for cell classification. The architecture is the same as ResNet-18 (He et al., 2016a). Res Block, the residual block, which
combines convolution layers, batch normalization, and residual connection (Supplementary Table S2). The notation of the layers, for example, 64@25 × 25 indicates
64 feature maps of 25 × 25 size, and Conv 7 × 7 kernel represents the convolutional operation with a kernel size of 7 × 7. Finally, the network outputs the probabilities
that the input cell is non-osteoclast or osteoclast. Bar = 100 µm unless specified in the figure.

Frontiers in Bioinformatics | www.frontiersin.org March 2022 | Volume 2 | Article 8195705

Wang et al. Automated Osteoclast Counting In Vitro

https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


detected the relatively large cells while a large number of small
cells, were left undetected, which included osteoclasts
(Supplementary Figure S1 yellow arrowhead). Therefore, we
decided to develop the original segmentation pipeline.

After segmentation, we removed small segmented regions with
less than 500 pixels because they are either a part of a large cell or
non-osteoclast for 100% of the cases and would not affect the
results of detecting osteoclasts (Figure 2A, Removal of Small
Segments). The center of the remaining segmented regions was
computed (Figure 2A, Determination of Center of Cells), then,
each cell region is extracted by a square of 50 × 50 pixels that are
centered on the acquired cell centers (Figure 2A, Extracting Cell
Images). These square images are inputs for the cell classification
by deep learning.

Network Architecture
Figure 2B shows the neural network architecture of the cell
classification model. The network uses the convolutional neural
network (CNN) (Goodfellow et al., 2016), a widely used network
architecture for image processing. Due to the shared-weight
property of convolutional filters, the CNN can provide
translation equivariant outputs, which is referred as the feature
map. With this spatial friendly feature, CNN has achieved great
success in image processing (He et al., 2016b), video
understanding (Xu et al., 2017), object detection, and
segmentation (Ren et al., 2015). Among the choices of
network architecture of CNN, we used ResNet-18 (He et al.,
2016a), which is one of the successful architectures. We also
tried to use deeper ResNet networks but did not observe clear
improvement (data not shown). An input is a color cell image
in RGB with a size of 50 × 50 pixels. In total, 64 convolutional
filters of 7 × 7 pixels scan the input with a stride of 2 pixels to
capture the local texture pattern of the image. This step results
in 64 feature maps of a 25 × 25 size. Subsequently, a max-
pooling layer, four residual block layers (Supplementary
Figure S2) with 64, 128, 256, and 512 residual blocks,
respectively, are applied. Then, the output from the last
residual block is processed through an average pooling layer
to obtain a feature vector. Finally, the feature vector is flattened
and passed to a fully connected (FC) layer with 512 neurons
and activated by softmax activation function to produce the
probability values that the input cell is non-osteoclast or
osteoclast.

Training the Deep Neural Network
Out of 458 microscopic images, 81.4% (373) were used for
training, and the rest 18.6% (85) of them were used for
testing. The training set was further split into two parts, 80%
(298) used for training and 20% (75) for validation. Thus, the data
split was performed with the microscopic images but the
classification was performed at the individual extracted cell
image level. The number of non-osteoclasts and osteoclasts
included in the training, validation, and testing are 9,276/
9,278, 2,219/2,226, and 2,327/2,329, respectively, for non-
osteoclast/osteoclasts. These cells were manually labeled, and
the numbers do not include small cell regions with less than
500 pixels.

RGB values of a pixel in an image in the training set were
normalized by computing the Z-score:

xi � xi − μi
σ i

, (1)

where xi is the i th channel (R, G, or B) of a pixel x, and μi and σ i
are the mean and the variance of channel i in the training set σ i,
respectively. In the validation and testing stages, we used the same
mean and variance values that were taken from the training set. In
training, each input cell image was subjected to an augmentation.
The type and the magnitude of augmentation were randomly
selected.

We used a teacher–student architecture; we used a mean
teacher model (Tarvainen and Valpola, 2017) for training the
model because it is, in general, effective in avoiding overfitting.
The mean teacher model (Tarvainen and Valpola, 2017) updates
weights of a teacher model with a moving average of the weights
from a sequence of student models as follows:

θt � αθt−1 + (1 − α)θ′t, (2)
where θt(θ’t) is the parameters of the teacher (student) model at
update step t and α is a smoothing coefficient. We tried different
α, as shown in Supplementary Table S1, and set it to 0.999 as it
gave the highest accuracy in the validation. We used the teacher
model in the evaluation.

Two parameters, regularization parameters of L2
regularization and the learning rate, were optimized with the
Adam Optimizer (Kingma and Ba, 2014) for minimizing a cross
entropy loss. The regularization parameter values tested were (1e-
7, 1e-6, 1e-5, 1e-4, 1e-3, 1e-2, and 1e-1) and the learning rate
values tested were (2e-5, 2e-4, 2e-3, 2e-2, and 2e-1, 2). Based on
the performance on the validation set, a regularization parameter
of 1e-5 and a learning rate of 0.002 performed the best. Under a
hyperparameter combination, we generated 100 trained models
trained on the training set, which were kept at each epoch.
Among them, we selected the model with the aforementioned
best hyperparameter combination, which performed the best on
the validation set and applied it to the test set. The batch size was
set to 256 images and the models were trained for 500 epochs. The
training was implemented with PyTorch (Paszke et al., 2019).

Data Augmentation for Network Training
While training the network, we augmented input cell images by
randomly applying one of the 12 image transformations (Cubuk
et al., 2019; Cubuk et al., 2020). A magnitude of a transformation
was also randomly chosen from a predefined range. We followed
AutoAugment (Cubuk et al., 2019) to decide the types and the
magnitude range of transformations to apply. The 12 types of
transformations and the magnitude range are listed in
Supplementary Table S2. Examples of the 12 augmentation
types are shown in Supplementary Figure S3. The
augmentation process allows a significantly higher amount of
trainable data to be derived from the fixed amount of images
present in the training dataset. We confirmed that having the
augmentation improved the classification performance
(Supplementary Table S3).
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Additional Nine Test Datasets
Additional nine datasets were collected from osteoclast cultures
that are different from those used for the original dataset.
Osteoclast precursors obtained from the male wild-type
C57BL/6 mice were stimulated with 50 ng/ml of RANKL for
3 days to induce osteoclast differentiation. Cells were then fixed
and stained using the methods described previously. Images were
captured by a different person from the one who prepared the
original dataset. Three different microscope/camera systems were
used with three different settings on each system as listed in
Supplementary Table S4. Examples of images from these
datasets are shown in Supplementary Figure S4.

Statistical Analysis
One-way ANOVAwith the Tukey–Kramer post hoc test was used
for comparison between the groups. For correlation analysis,
Pearson’s correlation analysis was used for the samples with
Gaussian distribution. For the samples that did not show
Gaussian distribution, Spearman’s analysis was used.

GraphPad Prism (ver. 7; GraphPad Software, La Jolla, CA)
was used for all statistical analyses.

RESULTS

Segmentation Results
First, we discuss the accuracy of the segmentation step. This step
corresponds to “Segmentation” in Figure 2A. Examples of
segmentation are shown in Figure 2A and Figure 3. The
panels labeled “Input Image” and “Segmentation” in
Figure 2A show an example of an input image and a
segmentation result. In the “Watershed Segmentation” panel
of Figure 2A, the boundaries of segmentations are shown in
red, which correspond well to cells in the image. The detailed
segmentation results on the 10 microscopic images in the
segmentation dataset are provided in Supplementary Table
S5. On average, OC_Finder showed a high detection rate of
99.4% of manually detected cells. There were 80 cells that were

FIGURE 3 | Examples of segmentation and removal of small segments. Three examples are shown. Left: original images. Middle: after segmentation. Right: after
the removal of small segments. Objects that were filtered out are pointed out by yellow arrowheads. (A) Examples of the removed small debris. (B) An example that small
regions that correspond to non-osteoclasts were removed by filtering. (C) An example where a large cell was segmented into multiple regions. A cell was segmented to
12 areas. Out of them, 11 small regions were removed, leaving only one area remaining. This area was later sufficient to correctly classify this cell as an osteoclast.
Bar = 50 µm.
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missed by OC_Finder in the 10 images. Among them, there was
only 1 osteoclast included. On the other hand, OC_Finder
detected 3 regions that were not included in the manually
detected cells. These three regions were not cells but debris,
and they are all removed in the subsequent step of the removal
of the small regions of less than 500 pixels. The removed debris
are shown in Figure 3A (yellow arrowheads).

The step of removing small regions is illustrated in the
“Removal of Small Segments” panel in Figure 2A. In the
panel, removed segmentations are shown in green, while the
remaining large regions are shown in red. Figures 3B,C are
additional examples that illustrate the removal of small
regions by applying the 500-pixel cutoff. Most of the
segmented regions that were removed were non-
osteoclasts. Figure 3B shows a part of the microscopic
image that includes removed cells (indicated with yellow
arrowheads). Figure 3C is an example of a different case,
where the removal of small regions helped avoid an overlapped
counting of large osteoclasts. In this example, a large osteoclast
was segmented into 12 pieces, but 11 of them were removed by
filtering, leaving only the largest region, which ultimately
allowed it to be correctly classified as an osteoclast.

Cell Classification Results
Next, we discuss cell classification accuracy. The classification
performance was evaluated on the test set of the classification
dataset, which includes 2,327 osteoclasts and 2,329 non-
osteoclasts, respectively, in 85 microscopic images. The results
are summarized in Table 1.

A high classification accuracy, 98.1% (2,274 + 2,294/4,656),
was achieved in the classification dataset (Table 1); 97.7%
(2,274/2,327) (recall) of the osteoclasts and 98.5% (2,294/
2,329) (recall) of the non-osteoclasts were correctly
classified. These results were obtained by the teacher model
in the teacher–student network we used. In Supplementary
Table S1, we compared the current model (α = 0.999) with
other models that used different parameter values (for a
smoothing coefficient, α. See Methods). Particularly, the

table shows that the current teacher–student model with α
= 0.999 performed better than the student model.

Using the classification dataset, we have also evaluated the
entire pipeline of OC_Finder, where the segmentation and the
classification steps were applied sequentially (Table 1). On this
dataset, 96.4% of the cells were segmented correctly, which
included 93.6% of the osteoclasts and 99.1% of the non-
osteoclasts. 4,351 (2,104 + 2,247) cells, were correctly classified
after segmentation. The classification accuracy was 97.0% relative
to the 4,487 correctly segmented cells. If all the 4,656 cells in the
classification dataset were considered, including the miss-
segmented cells, the accuracy would slightly drop to 93.4%.

Figure 4 shows examples from the validation process for cell
classification by OC_Finder. Figure 4A shows manually assigned
labels to a microscopic image in the classification dataset. Cells
marked with red and blue are osteoclasts and non-osteoclasts,
respectively. In the classification dataset, only a part of the cells is
manually labeled as mentioned earlier. In Figure 4B,
classification results by OC_Finder for this microscopic image
is shown. As discussed earlier, small regions were not processed as
they are not osteoclasts. The remaining panels contain examples
of cells classified by OC_Finder. Figure 4C shows the examples of
osteoclasts (four images on the left) and non-osteoclasts (right)
that were correctly classified by OC_Finder. One can see that
identified osteoclasts were stained by TRAP staining and have
more than 3 nuclei, while the non-osteoclasts do not have the
properties. Figure 4D shows the opposite, where OC_Finder
misclassified cells. On the left, four osteoclasts that were wrongly
classified as non-osteoclasts are shown. Nuclei in these cells seem
to have unclear boundaries, which might be a reason for the
misclassification. The images on the right are non-osteoclasts,
which were misclassified as osteoclasts. These four images
contain overlapped or adjoining cells that resemble multiple
nuclei, which may have confused OC_Finder. Figure 4E is an
interesting case where OC_Finder performed better than the
human examiner. This cell has three nuclei but the human
examiner thought there were only two and thus classified as
non-osteoclast since two nuclei are very close to each other

TABLE 1 | Cell classification accuracy. a) The percentage was computed with two references (denominators). The first percentage was relative to the number of cells that
were segmented by the segmentation procedure among all the cells in the classification data set. Thus, 2,179 and 2,308 were used for osteoclast and non-osteoclasts,
respectively. The second percentage was computed relative to all the cells in the classification dataset. The percentage values computed in this way were smaller than the
former as shown because 3.6% (4,656–4,487) of cells were not correctly segmented and identified by the segmentation procedure.

Pred. as osteoclast Pred. as non-osteoclast Total

All classification test set

Labels\prediction
Osteoclast 2,274 (97.7%) 53 2,327 (100%)
Non-osteoclast 35 2,294 (98.5%) 2,329 (100%)

Total 2,309 (98.5%) 2,347 (97.7%) 4,656

After segmentation was applied to the classification test set
Segmented\prediction
Osteoclast 2,104 (96.6/90.4%) a) 75 2,179 (100/93.6%) a)

Non-osteoclast 61 2,247 (97.4/96.5%) 2,308 (100/99.1%)

Total 2,165 2,322 4,487 (100/96.4%)
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and the boundary is not clear. Despite this difficulty,
OC_Finder was able to classify it as osteoclast. The last
panel (Figure 4F) shows examples where OC_Finder
correctly identified osteoclasts from manually unlabeled
cells in a microscopic image.

Through this validation process, we confirmed that
OC_Finder has a high classification accuracy. We also
reaffirmed that humans are prone to error and may
occasionally misclassify cell images, in which case OC_Finder
can serve as a counteractive measure to human mistakes.

Test on Nine Additional Datasets
We further tested OC_Finder on nine additional datasets. These
datasets are collected by a different person with three different
microscopes and 3 settings each (Supplementary Table S4,
Supplementary Figure S4). Note that we applied OC_Finder
to these datasets without new training or parameter tuning. The
detailed results for the individual datasets are provided in
Supplementary Tables S6, S7.

Segmentation went very well on these datasets with a 98.8%
detection rate and no additional segmented regions
(Supplementary Table S6). As also illustrated by small error
bars in the first 2 bars in Figure 5B, segmentation worked
uniformly well for all the nine datasets. Paying attention to
cell classification results in Figure 5, we can see that the
osteoclasts were classified with a high average recall of 96.4%
(Figure 5A, “Recall of Oc”). On these nine datasets, the average
precision of classifying the osteoclasts had an average of 88.4%,
lower than recall, due to a few datasets that had a relatively low
precision of below 90%. When we considered the full OC_Finder
pipeline including the segmentation step, the average recall of the
detecting osteoclast was still high, 96.3% (Figure 5B, “Overall
Recall of Oc”).

Overall, the results on these additional datasets were
comparable with the original testing performance reported in
Table 1. Particularly, segmentation and recall of osteoclast
classification were high and stable. During this work with
additional data, there was one case where validation of
OC_Finder’s results was not possible because the image was
blurred and the manual classification of cells was not possible,
although OC_Finder classified such cells (Supplementary Figure
S5). Thus, it is noted that the cell images need to have sufficient
resolution if a user intends to verify OC_Finder’s results
manually.

Performance of the System in a Practical
Situation
Finally, we validated the OC_Finder’s performance in a real-case
scenario. Specifically, we examined if OC_Finder could detect an

FIGURE 4 | Examples of the validation process for cell classification by
OC_Finder. (A) Manually labeled osteoclast and non-osteoclasts in a
microscopic image. Red indicates osteoclast, and blue indicates non-
osteoclast. (B)Osteoclasts and non-osteoclasts detected by OC_Finder
for the same image. A red box indicates osteoclast, and a blue box indicates
non-osteoclast. Cells that are segmented are surrounded by a thin red line.
Cells are labeled only when they have a size of 500 pixels or larger. (C)
Examples of osteoclasts (left) and non-osteoclasts (right) images correctly
identified by OC_Finder. (D) The examples of osteoclasts (left) and non-
osteoclasts (right) images that were misclassified by OC_Finder. (E)
Osteoclast image that was misclassified by manual annotation but correctly
classified by OC_Finder. The right panel is the magnified image of the boxed

(Continued )

FIGURE 4 | area in the left panel. (F) Examples of osteoclasts that were not
picked by the human examiner during the classification dataset construction
and identified as osteoclasts by OC_Finder. Bar = 100 µm for (A) and (B),
20 µm for (C–F).
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increased osteoclast formation caused by the gain-of-function
mutation of Sh3bp2 (Sh3bp2KI/+). The gain of function of
SH3BP2 is known to increase osteoclast formation (Ueki
et al., 2007; Mukai et al., 2014; Kittaka et al., 2020). In this
experiment, we included cell sources of different sex (male
and female), which is an important factor in fields of biology
including bone biology (Rich-Edwards et al., 2018), as well as
two concentrations of RANKL (25 and 50 ng/ml) to test
whether OC_Finder shows good performance under
different experimental designs. Manual counting showed a
higher number of osteoclasts in Sh3bp2KI/+ culture
(Figure 6A, the lower panel) than the wild-type control
without gain of function of SH3BP2 (Sh3bp2+/+)
(Figure 6A, the upper panel) in the four conditions tested
(Figure 6B upper panel, in which the result of Sh3bp2+/+ and
Sh3bp2KI/+ is presented in white and gray bars, respectively).
These results are consistent with the previous reports (Ueki
et al., 2007). The automated counting by OC_Finder also
detected the difference between Sh3bp2+/+ and Sh3bp2KI/+ in
all the conditions tested (Figure 6B lower panel) with the
same significant p-value to the manual counting results.

In Figure 6C, we also compared the number of osteoclasts
measured by a human examiner and OC_Finder for each
culture condition with 36 microscopic images each. In all
the culture conditions, OC_Finder showed a high

correlation, between 0.70 and 0.91, with manual counting
(Figure 6C left). The correlation was as high as r = 0.9465
when all samples were pooled and analyzed (Figure 6C right).
Thus, we confirmed that the automated counting system could
generate comparable data to manual counting, and the system
demonstrated a good sensitivity to detect biological differences
in the experiment.

DISCUSSION

OC_Finder is the first fully automated osteoclast-counting
system that utilizes a deep learning neural network.
OC_Finder performs image segmentation and classification
tasks in its pipeline. Overall, OC_Finder showed high
accuracy in both tasks. When used for a practical scenario
of counting osteoclasts (i.e., identifying and classifying cells)
in microscopic images, OC_Finder showed comparable
performance with human eyes (Figure 6). Therefore, the
system can provide valuable assistance in labor-intensive cell
counting and greatly reduce the workload for researchers,
while maintaining acceptable recall and accuracy.

When the entire pipeline of OC_Finder was applied to
microscopic images, the overall accuracy was affected by the
segmentation step, which had a slightly lower accuracy than

FIGURE 5 |Cell classification accuracy for the nine additional datasets. Values are averaged over the nine datasets. Error bars show standard deviations. Results of
the individual dataset are provided in Supplementary Table S7. (A) Precision of detecting osteoclasts (Oc), which was computed as the fraction of the number of
correctly predicted osteoclasts among all the predicted osteoclasts in a dataset; Precision of non-osteoclasts (non-Oc), computed as the fraction of the number of
correctly predicted non-osteoclasts among all the predicted non-osteoclasts in a dataset; recall of Oc, the number of correctly predicted osteoclasts among all the
osteoclasts in a dataset; Recall of Non-Oc, the fraction of the number of correctly predicted non-osteoclasts among all the non-osteoclasts in a dataset. The data are
taken from part A of tables in Supplementary Table S7. (B) Performance of the full pipeline of OC_Finder including the initial cell segmentation step. This graph was
generated from part B of tables in Supplementary Table S7. Seg. Recall of Oc, the fraction of correctly segmented osteoclasts among all the osteoclasts in a dataset;
Seg. Recall of Non-Oc, the fraction of correctly segmented non-osteoclasts among all the non-osteoclasts in a dataset; Overall Recall of Oc, the fraction of correctly
predicted osteoclasts after segmentation among all the osteoclasts in a dataset; Overall Recall of Non-Oc, the fraction of correctly predicted non-osteoclasts after
segmentation among all the non-osteoclasts in a dataset.
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classification. Thus, improvement in segmentation will further
increase the system’s accuracy, which is left as a future work. The
quality of image segmentation may be controlled by changing
parameters, such as the threshold, the filter size, and optimal
values, which would be different for different input microscopic
images. Users are encouraged to control the parameters for
optimizing performance on their own dataset. The code for
OC_Finder can be expanded for other similar cell
classification tasks by retraining networks on a specific dataset.
Expanding the method to handle other cell images is

straightforward. OC_Finder will be able to extend to other
similar works and be a widely used tool for cell image
localization and detection.
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FIGURE 6 | Automatic osteoclast counting compared with manual counting. (A)Microscopic images of TRAP-stained osteoclast culture. Upper panel: Sh3bp2+/+;
lower panel: Sh3bp2KI/+. Bar = 200 μm. (B) Validation of the performance of automatic osteoclast-counting in the practical situation. Upper panel: the number of
osteoclasts measured manually as reference data. Lower panel: number of osteoclasts measured by OC_Finder. Values on the graphs are p values calculated by the
Tukey–Kramer test. The Y-axis is the number of osteoclasts per culture well, and the X-axis is the concentration (25 and 50 ng/ml) of RANKL. (C) Correlation
analysis between automatic and manual osteoclast counting. The number of osteoclasts on each image was analyzed manually and automatically. In total, 36 images
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