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Abstract

Eye irritation and corrosion are fundamental considerations in developing chemicals to be used in 

or near the eye, from cleaning products to ophthalmic solutions. Unfortunately, animal testing is 

currently the standard method to identify compounds that cause eye irritation or corrosion. Yet, 

there is growing pressure on the part of regulatory agencies both in the USA and abroad to develop 

New Approach Methodologies (NAMs) that help reduce the need for animal testing and address 

unmet need to modernize safety evaluation of chemical hazards. In furthering the development 

and applications of computational NAMs in chemical safety assessment, in this study we have 

collected the largest expertly curated dataset of compounds tested for eye irritation and corrosion, 

and employed this data to build and validate binary and multi-classification Quantitative Structure-

Activity Relationships (QSAR) models that can reliably assess eye irritation/corrosion potential 

of novel untested compounds. QSAR models were generated with Random Forest (RF) and 

Multi-Descriptor Read Across (MuDRA) machine learning (ML) methods, and validated using 

a 5-fold external cross-validation protocol. These models demonstrated high balanced accuracy 

(CCR of 0.68–0.88), sensitivity (SE of 0.61–0.84), positive predictive value (PPV of 0.65–0.90), 
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specificity (SP of 0.56–0.91), and negative predictive value (NPV of 0.68–0.85). Overall, MuDRA 

models outperformed RF models and were applied to predict compounds’ irritation/corrosion 

potential from the Inactive Ingredient Database, which contains components present in FDA-

approved drug products, and from the Cosmetic Ingredient Database, the European Commission 

source of information on cosmetic substances. All models built and validated in this study are 

publicly available at the STopTox web portal (https://stoptox.mml.unc.edu/). These models can be 

employed as reliable tools for identifying potential eye irritant/corrosive compounds

Introduction

Chemicals employed in cosmetics, drugs, pesticides, household products, among others, 

need to be classified appropriately according to their potential ocular toxicity to ensure 

safety [1]. Eye irritation or corrosion are characterized by cell membrane lysis, coagulation, 

saponification, and chemical reactivity [2]. All of these characteristics are mediated by 

contacts between a chemical and the eye surface (cornea and conjunctiva) [3].

The Draize test, published more than 70 years ago [4], relies on in vivo exposure to 

rabbits’ eyes to classify chemicals according to their irritation/corrosion potential based 

on the damage caused within a well-defined timeframe [5]. However, this test relies upon 

qualitative scoring metrics of the severity and reversibility of highly subjective lesions, 

demonstrates poor reproducibility, and has questionable relevance to human exposure 

scenarios and human ocular biology [6]. Despite the scientific concern regarding the 

extrapolation of the observed results in rabbits to human eyes [7], the test is still used and 

recommended by the Organization for Economic Cooperation and Development (OECD).

The United Nations Globally Harmonized System (UN GHS) [8] proposes four categories 

to classify the chemicals: (i) Category 1 are compounds that cause irreversible eye effects 

within 21 days; (ii) Category 2A are compounds whose effects are reversible within 21 days; 

(iii) Category 2B are compounds whose effects are reversible within seven days; and (iv) 

No-Cat (NC) are compounds unable to cause eye corrosion or irritation.

Since the animal test ban in Europe for cosmetics ingredients in 2013, the development of 

alternative methods to substitute and reduce the number of animals in toxicological tests 

has become imperative [9]. The development of effective and efficient NAMs to animal 

testing [10] has been fueled in the last two decades by both public and political pressure 

[11] to employ the “Three Rs principles” to reduce, refine, and replace animal tests [12], and 

recent guidelines imposed by regulatory agencies create new demand for developing rapid, 

efficient alternative methods to animal testing [10]. Within this context, the 2018 ICCVAM 

strategic roadmap [13 ]called for the development of fit-for-purpose NAMs and the US EPA 

publicized its commitment to “eliminate all mammal study requests and funding by 2035” 

[14].

NAMs have been developed and made available for in vitro identification of ocular 

corrosives/severe irritants using alternative biological material including rabbit corneal cells 

(OECD Test Guideline 491) [15], isolated bovine corneas (OECD Test Guideline 437) [16], 

and a monolayer of Madin-Darby Canine Kidney (MDCK) cells (OECD Test Guideline 460) 
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[17,18]. Other three-dimensional human tissue models such as the Reconstructed Human 

Cornea-like Epithelium (RhCE) test (OECD Test Guideline 492) and the Vitrigel-Eye 

Irritancy test (OECD Test Guideline 494) are approved for use in a bottom-up approach 

identifying substances not classified for ocular irritation. These tests provide varying 

coverage of the biology relevant to eye irritation and corrosion when compared to human 

ocular anatomy and physiology [19].

Computational models provide a fast and low-cost solution to obtain reliable predictions 

for the endpoint of concern when generated on high-quality curated data and properly 

validated [10]. A major computational approach, named Quantitative Structure-Activity 

Relationship (QSAR) modeling, employs various statistical and artificial intelligence (AI) 

approaches, such as machine learning (ML) and deep learning (DL) to generate models that 

can accurately predict the outcome of testing new compounds in a specific assay, based on 

their molecular features. In recent years, the growth in publicly available data enabled the 

development of highly robust and predictive models [20,21]. However, modeling toxicity is 

a complex task as the underlying mechanisms are not always clear [3,21]. For this reason, 

QSAR models are highly dependent on the quality and volume of the data [12] in the 

training set, proper chemical and biological curation of primary data is critical [22,23], and 

failure to follow these practices question the trustworthiness of models [6].

Recently, there have been many attempts to model eye irritation endpoints with varying 

degrees of success (see Table 1). Though many of the models showed good overall accuracy, 

most models were not compliant with the OECD’s guidelines for QSAR model development 

and validation [24], with models lacking the recommended use of an external set or 

Y-randomization [25-41], or not reporting the model applicability domain [28-41]. Many 

studies lack a rigorous curation and standardization of the chemicals used in the modeling, 

such as the study conducted by Verma et al. [25], resulting ultimately in unreliable 

predictions [42]. Additional problems include using unbalanced datasets, causing models 

to have an intrinsic bias toward the largest class [20,22]; and lack of model interpretation 

[20].1 These limitations make it impossible to fairly compare those tools with other peer 

reviewed and public QSAR models.

Our team has extensively worked on the development of QSAR models for toxicity 

endpoints and developed web applications to disseminate the use of these models, such 

as Pred-hERG [43] and Pred-Skin [44]. Considering the lack of reliable models for eye 

irritation and corrosion, herein, we have collected, curated, and integrated the largest 

publicly available eye irritation and corrosion datasets, used it to build predictive and 

rigorously validated ML and instance-learner models, integrated these models into a 

software package called STopTox (Systemic and Topical chemical Toxicity), and made 

it publicly available (https://stoptox.mml.unc.edu/). We offer these models as reliable 

1It is important to notice that there are some commercially available models such as ADC/Percepta 
(https://www.acdlabs.com/products/percepta/index.php) and Case Ultra (http://www.multicase.com/case-ultra) and freely 
available software tools such as Toxtree (http://toxtree.sourceforge.net/) and QSAR toolbox that do not fully 
disclose their parameters, as well as datasets and statistics (https://www.oecd.org/chemicalsafety/risk-assessment/oecd-qsar-
toolbox.htm#Guidance_Documents_and_Training_Materials_for_Using_the_Toolbox).
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computational tools developed under the NAMs paradigm for evaluating chemical hazard 

potential for eye irritation/corrosion.

Materials and methods

Dataset overview

The publicly available data from the European Chemical Agency (ECHA) (https://

echa.europa.eu/) used in this work was graciously provided by Thomas Luetchtefeld [51]. 

Additional eye irritation-related data were also extracted from multiple literature sources 

[25,29,35,40,45,52-55], curated (see next section), and integrated. The ECHA dataset was 

initially composed of 18,428 records for 9,801 chemicals and we compiled 2,769 additional 

records from the literature. In the ECHA dataset, 5,238 records with imputed eye irritation/

corrosion data from QSAR models, weight-of-evidence or read-across were excluded, 

leaving 7,332 records. Chemicals with inconsistent hazard classification data (n = 236) 

were removed. Inorganics (n = 330) and mixtures (n = 860), totalizing 1,190 entries, were 

also removed from the dataset. The data collected from the literature had high overlap with 

the ECHA data presenting 2,438 duplicates. No discordant duplicates in terms of hazard 

characterization were found between the ECHA data and the literature. These duplicates 

were carefully analyzed and only one entry per compound was kept. Furthermore, only 

studies following the OECD Test Guideline 405 [56] (in vivo data) were kept, with 3,547 

records remaining after the data curation process (Fig. 1).

The final (unbalanced) dataset was composed of 3,547 compounds, of which 2,401 were 

classified as non-irritant/non-corrosive, 937 were classified as irritant (categories 2A and 

2B) of which 209 were classified as corrosive (category 1). The GHS classification for 

irritant/corrosive compounds was only available for 1,248 compounds of the dataset, where 

209 compounds were classified as category 1 members, 166 were classified as category 2A, 

and 84 as category 2B, whereas 789 were classified as NC. These compounds classified 

under GHS system were used to generate multiclass models.

Binary QSAR models using the unbalanced data typically lead to biased models. To 

overcome this, the negative class in the unbalanced dataset was under-sampled to balance 

the data set. We used the smaller group of irritant compounds as probes to search for the 

most structurally similar non-irritants selecting half of the irritant group (469 compounds). 

The remaining 468 compounds were randomly chosen from the rest of the initial non-

irritant class to maximize the chemical space coverage. This similarity-based selection 

procedure was carried out in KNIME using Tanimoto coefficient in two stages: (i) generate 

a similarity matrix of chemical space between all the pairs of compounds; and then (ii) 

choose 469 non-irritants with the largest Tanimoto similarity to the nearest irritant and 

468 via random selection. Such procedures allowed us to create the most challenging 

training set with structurally similar irritants and non-irritants to achieve the most rigorous 

model capable of separating these two classes from each other and including a fraction of 

more diverse non-irritants to provide broader chemical space coverage. The final dataset 

consisted of 1,874 compounds (937 irritants and 937 non-irritants). The same approach was 

performed to balance the data for the generation of QSAR models to predict eye corrosion, 

i.e., the NC class of compounds was under-sampled using both structural similarity and 
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random sampling, leading to a balanced data of 418 compounds (209 corrosive and 209 

non-corrosive).

Data curation

The compiled data was carefully curated and inspected according to protocols proposed 

by Fourches et al. [42,57]. Briefly, counter ions were stripped, mixtures and inorganics 

were removed, and specific chemotypes such as nitro groups and aromatic rings were 

standardized. Duplicates were identified, carefully analyzed, and only one entry was kept 

if biological responses were similar. The curation steps were implemented in the KNIME 

analytics platform (https://www.knime.com/) using in-house workflows. ISIDA Duplicates 

[58] was used to identify structural duplicates and ChemAxon Standardizer (v.16.5.16.0, 

ChemAxon, Budapest, Hungary, http://www.chemaxon.com) was used to standardize the 

chemical structures.

Cluster analysis

A 50 × 50 neuron self-organizing map (SOM) was generated using the open-source software 

Data Warrior (http://www.openmolecules.org/) [59] and employing SkelSpheres descriptors 

(http://www.openmolecules.org/help/similarity.html) [60]. Data Warrior software was used 

to cluster compounds that were colored according to their Global Harmonization System 

(GHS) [8] class, in order to provide an overview of the chemical space.

Molecular descriptors

We employed RDKit whole-molecule descriptors, Morgan, MACCS, and Dragon to develop 

QSAR and MuDRA models. SkelSpheres descriptors were calculated and used to cluster 

compounds in the SOM cluster analysis.

SkelSpheres

Skeleton Spheres descriptors [60] were calculated through the Osiris Data Warrior software 

(http://www.openmolecules.org/). SkelSphere is a 1,024 bin byte-vector descriptor that, 

despite being time- and memory-consuming, is more suitable than the other descriptors 

to perceive fine similarities. It also considers stereoisomers and has fewer hash collisions 

due to its higher resolution. The SkelSphere descriptor was calculated prior to the SOM 

generation to better understand and cluster the compounds of the modeling dataset and to 

visualize GHS classification labels.

RDKit molecular descriptors and fingerprints

In KNIME, a collection of 117 different RDKit molecular descriptors were calculated 

for the dataset followed by the removal of invariant descriptors and descriptors with a 

correlation higher than 0.9. MACCS structural keys [61] are implemented in the RDKit 

module available in the KNIME platform, as well as Morgan fingerprints [62]. RDKit 

provides 166 publicly available structural keys to represent molecules, and, for the Morgan 

fingerprint, it is possible to define the number of bits to encode the fingerprints as well as 

the radius, as the Morgan fingerprint is a circular fingerprint similar to ECFP and FCFP 
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fingerprints family. For this study, Morgan fingerprints were generated using radius of 2 and 

2048-bits length.

Dragon descriptors

Version 5.5 of Dragon software (Talete SRL, Milan, Italy) was used to generate all the 0D, 

1D, and 2D descriptors provided by the software, totaling 2489 descriptors [63]. After the 

descriptors were calculated, invariant descriptors and descriptors with a correlation higher 

than 0.9 were also removed prior to the model generation step.

QSAR modeling

QSAR models for eye irritation and eye corrosion were generated employing a variety of 

chemical descriptors and algorithms. Binary and multiclass models were generated through 

the following steps: (i) data curation, preparation, and analysis; (ii) model generation and 

validation; (iii) model selection. To validate the method, we applied a 5-fold external cross-

validation, where the curated dataset is divided into five equal-sized parts with an 80%/20% 

split between the modeling and test sets; this process is iteratively repeated until all parts 

of the dataset are used once as a test set. It is important to note that only the modeling 

set is used to generate the model; hence, during the 5-fold cross-validation procedure, 

compounds from the test set are not used in the generation of the models whatsoever and are 

solely reserved for the test set. Best models were carefully selected according to acceptable 

threshold values for all statistical metrics (for our purposes, this was set at 0.6). In addition, 

10 rounds of Y-randomization were conducted to assess if the results were obtained by 

chance via annotating the statistical characteristics of the shuffled-labels models. Binary 

models were built for both corrosive and irritant classes of chemicals. Compounds classified 

as NC were used as non-corrosives and non-irritants as well.

Algorithms

Both RF [64] and MuDRA [65] algorithms were applied. RF is a well-known ensemble 

decision tree learning algorithm, while MuDRA is an instance-based learning process. 

MuDRA does not build an underlying model to make its predictions but performs 

an instantaneous classification of known irritant/corrosive and non-irritant/non-corrosive 

compounds based on their similarity range and nearest neighborhood. An in-depth 

explanation of how the MuDRA method can be applied can be found elsewhere [65]. Both 

methods are implemented in the KNIME analytics platform; RF is a built-in node provided 

by different developers, while MuDRA is implemented through the integration between 

KNIME platform and Python scripting language via built-in nodes for this purpose.

Statistical evaluation of models

The predictive power of both binary and multiclassification models was performed based on 

the output of the models during their respective validation processes. As described above, 

the 5-fold external cross-validation procedure was chosen to validate the models in this 

study. Hence, the statistical analysis is based on the collected results of predictions made 

in each fold of the cross-validation approach. For the multiclassification models, the same 
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metrics were calculated, but considering the confusion matrix and comparing each class 

against all. The statistical metrics and the respective formulas are described below.

Se = TP
TP + FN

Sp = TN
TN + FP

CCR = Se + Sp
2

PPV = TP
TP + FP

NPV = TN
TN + FN

F1 = 2TP
2TP + FP + FN

MCC = (TP × TN) − (FP × FN)
(TP + FP )(TP + FN)(TN + FP )(TN + FN)

Coverage = Reliable predictions
Total predictions

Here, TP and TN are true positives and negatives, respectively; FP and FN are false positives 

and negatives, respectively. Se stands for the sensitivity of the models, which is the correct 

identification of positive samples, while Sp is the measure of the specificity of the models, 

evaluating the ability of the model to identify negative samples correctly. CCR stands for 

the correct classification rate, and are calculated as the arithmetic mean of Se and Sp. PPV 

means positive predicted value, while NPV means negative predicted value; these metrics 

evaluate the probability of certainty of a positive or negative prediction, respectively. F1 

score, the harmonic mean of PPV and Se (aka precision and recall), evaluates the ability 

of the model to identify each instance correctly within the data. MCC encompasses the 

Mathews Correlation Coefficient and has been largely used as a goodness-of-fit in machine 

learning modeling tasks. MCC ranges from −1 to 1, being 0 equal to a random prediction.
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The Coverage was calculated based on what we defined as reliable predictions, which means 

a prediction of a sample laying inside the applicability domain (AD) of the model, calculated 

through the formula below.

DT = ȳ + Zσ

where DT is a distance threshold, ȳ is the average Euclidean distance of the k nearest 

neighbors of each compound of the training set, σ represents the standard deviation of the 

Euclidean distances and Z is an arbitrary parameter to control the level of significance. We 

set the default value of 0.5 for Z.

Multiclass modeling

To build multiclass models, three classes were considered based on GHS classification: 

corrosive, irritant (comprised by classes 2A and 2B), and NC. The binary statistical metrics 

described above were computed for each of the three classes and averaged to report overall 

performance for the multiclass models.

Virtual screening of CosIng and inactive ingredients database

The best models were applied to virtually screen the Cosmetics & Ingredients Substances 

Database (CosIng) [66], a European database of information about cosmetics and their 

ingredients. After curation, 4,780 compounds from CosIng were screened using our 

best performing models to identify compounds with the potential to cause eye irritation/

corrosion.

The FDA inactive ingredients database (IID) set of compounds is freely available at https://

www.fda.gov/drugs/drug-approvals-and-databases/inactive-ingredients-database-download. 

We also retrieved the data and curated it following the protocol described above. We applied 

the best models reported in this study to predict the ocular toxicity potential of the final IID 

set, composed of 4,673 inactive ingredients for pharmaceutical products.

Dissemination

All workflows used in this work are available in the supplementary material for those who 

want to build models to other endpoints as well as for instructions about how to implement 

MuDRA along with Python and KNIME set-ups.

Results and discussion

Cluster analysis

The SOM approach is an unsupervised classification technique that maps compounds to 

visualize their structural similarity. The structural map (Fig. 2) is colored by the three 

classes as defined by the GHS hazard classification system used to develop multiclass 

models. The highlighted compounds show that small structural differences can be observed 

in pairs of compounds belonging to distinct classes. Analyzing the background (shown 

in green in Fig. 2), the surrounding compounds are similar to each other (Tc = 0.85); 

major structural changes in the scaffold can also be observed (shown in yellow in Fig. 
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2), and structures with high dissimilarity are highlighted (shown in blue in Fig. 2). As 

seen in Fig. 2, the overall similarity between non-irritant and irritant compounds can be 

found across the whole map, sharing regions of the map in a non-compartmentalized way. 

This indicates that there are many activity cliffs in this dataset (as highlighted in Fig. 2). 

This type of dataset represents a challenge and although both RF and MuDRA are used 

to generate predictive models, they predict activity cliffs differently. As a prime example, 

2,3-dihydro-1,2-benzothiazol-3-one (158 in Fig. 2) and 2,3-dihydro-1H-isoindole-1,3-dione 

(1044 in Fig. 2) are respectively within corrosive and NC categories, but share the same 

structural region in the SOM. Another example is 3-amino-4-chlorobenzene-1-sulfonic acid 

(200 in Fig. 2) and 3,4-dimethylbenzene-1-sulfonic acid (1031 in Fig. 2) pair, both in the 

same region of the SOM but respectively categorized as corrosive and NC. The same can 

be observed for the aliphatic compounds 1-chloro-2-[2-(2-chloroethoxy)ethoxy]ethane (148 

in Fig. 2) and 1-chloro-2-[(2-chloroethoxy)methoxy]ethane (800 in Fig. 2), grouped together 

within the same region of the structural map and respectively classified as corrosive and NC. 

However, regions of chemical space are clearly enriched for particular categories, lending 

support to the application of QSAR modeling approaches while highlighting the necessity 

of nonlinear AI methods to identify the complex feature combinations that will discriminate 

categories.

QSAR modeling

Binary models—In this study, we built five binary models for eye irritation and five 

binary models for eye corrosion. For each endpoint, we built RF models using four 

molecular descriptors described in the methods section as well as one MuDRA model. 

The AD of each model was calculated, with an exception for the MuDRA method as it is an 

instance-based modeling approach.

As one can see, models generated using the RF method for both endpoints presented 

similar metrics. However, they were outperformed by Models 5 and 10, generated using the 

MuDRA method, which was in agreement with the advanced performance of MuDRA in 

comparison with other QSAR methods as reported by Alves and colleagues previously [65]. 

The binary models for eye corrosion showed higher predictivity. This could be because the 

eye corrosion dataset is smaller as compared to the eye irritation dataset.

Obtaining high PPV values is crucial when dealing with toxicological endpoints as they 

indicate the ability of models to accurately predict toxic compounds. For eye irritation, we 

can see that PPV values ranged from 0.70 to 0.90 (with the lowest value from Model 2 

and the highest value from Model 5). For eye corrosion, PPV values ranged from 0.65 to 

0.88 (with the lowest value from Model 6 and the highest value from Model 9). Overall, 

PPV values were above acceptable thresholds and reached high values (0.9), meaning that a 

prediction made by the two best models generated in this study for both eye irritation and 

corrosion would be correct with more than 85% certainty.

Likewise, high NPV values are equally important as they provide the certainty of the 

prediction made by the model regarding the nonirritant/non-corrosive classes. Classifying a 

molecule correctly as nonirritant/non-corrosive is very important as an incorrect prediction 

could lead to eyes being damaged. NPV values for the models built in our study ranged 
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from 0.77 to 0.85 for eye irritation and from 0.68 to 0.83 for eye corrosion. This shows that 

negative predictions made using our best models have at least 83% certainty.

In analyzing sensitivity and specificity, other studies have reported that specificity values 

are usually higher than sensitivity values [45,67]. Here the sensitivity values’ range was 

0.77–0.89 for eye irritation and 0.61–0.84 for eye corrosion, while specificity values’ range 

was 0.56–0.86 for eye irritation and 0.71–0.91 for eye corrosion. In our study, all models for 

eye irritation showed sensitivity values higher than specificity. For the eye corrosion models, 

the same pattern was observed only for Model 7 and Model 8, otherwise specificity value 

was higher than the sensitivity value.

An additional cluster analysis was conducted to further investigate the better performance 

of MuDRA when compared to the models generated using RF for eye irritation and eye 

corrosion endpoints. In this analysis, it was noticed that all compounds belonging to the 

biggest cluster of compounds of eye irritation dataset (six irritants and 11 non-irritants) 

were correctly predicted by MuDRA. Meanwhile, from those 17 compounds within eye 

irritation dataset, the models built with RF algorithm combined with one type of molecular 

descriptor (Dragon, MACCS, Morgan, or RDKit) mis-predicted on average 7 of them (see 

Supplementary File 9).

Fig. 3 compares 1,646 correct predictions made by MuDRA, 1,446 correct predictions made 

by RF_Dragon (Model 3), 1,436 correct predictions made by RF_MACCS (Model 4), 1,420 

correct predictions made by RF_Morgan (Model 2), and 1,440 correct predictions made by 

RF_RDKit (Model 1). It shows that MuDRA was able to correctly predict 198 compounds 

that the other models were not. It is important to note that 1,081 correct predictions were 

shared by all models. This reinforces the importance of data curation process as well as the 

use of best practices for QSAR modeling. On the other hand, when the overlap between all 

mis-predicted compounds was checked, it was noticed that 38 compounds (25 irritants and 

13 non-irritants – see File S9) mis-predicted by all models were predicted correctly only by 

MuDRA (Fig. 4).

Moreover, we observed that MuDRA was more accurate than RF models when making 

predictions for certain chemical classes, such as long chain hydrocarbons and fatty acid 

derivatives (Fig. 4), such as ethyl tetradecanoate, 1,6-dioctyl-hexanedioate, 2-methylpropyl 

octadecenoate, and 2-[2-(nonanoyloxy)ethoxy]ethyl nonanoate. However, as this cluster was 

composed by only 17 compounds, this is not enough to assure MuDRA superiority over RF 

models. Overall, MuDRA uses a broader descriptor space, which is able to capture more 

rigorously the structural differences between compounds, to identify the nearest neighbor, 

read-across it, and then return a more accurate prediction.

Multiclass models—Using the data and the GHS labeling system, multiclassification 

models were generated. We used three classes based on the GHS classification: corrosive, 

irritant (comprised by classes 2A and 2B), and NC. Table 3 shows the overall statistical 

metrics for all multiclass models built in this study, averaged across the binary metrics for 

each class performance.
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Model 15, generated using the MuDRA method, outperformed the other RF models in all 

statistical metrics except sensitivity. Thus, the majority of generated models using RF were 

above the acceptable threshold. It is important to note that all metrics shown in Table 2 were 

calculated using each class’s mean. The statistical characteristics showed that all models 

performed poorly when classifying compounds on GHS classes 2A and 2B This class has 

also been shown to have the lowest reproducibility when analyzing replicate animal tests, 

demonstrating the potential unreliability of classifications that are based solely on one result. 

However, the MuDRA method was able to handle the complexity of the data better by 

exploring the neighborhood of each compound and classifying them based on the nearest 

neighbor compound.

We have shown that MuDRA models were the best performing models in this work. As 

an external evaluation of model performance, we have predicted a set of 118 compounds 

extracted from Yamaguchi and colleagues’ study [68]. After dataset curation and preparation 

to remove compounds that were also present in our dataset, 107 compounds could be 

predicted. All 73 corrosive compounds and the 38 irritant compounds in the dataset were 

correctly classified, as well as the remaining 6 NC compounds. To further validate our 

approach, we made predictions of three compounds found in the literature and not included 

in our modeling set, that had been reported as capable of triggering moderate to serious 

issues in human eyes [69]. The compounds are glutaraldehyde [70], Paraquat [71,72], and 

glyphosate [73]. All three were correctly predicted as being irritants. This reinforces the 

predictive power of the MuDRA approach and its applicability to important toxicological 

endpoints such as eye irritation/corrosion.

Virtual screening—As a further application of our models, we have retrieved and 

carefully curated 4780 compounds from the Cosing database and predicted their effects 

on eye corrosion / irritation using the MuDRA models; complete details of the results 

are available in the supplementary material. In summary, our prediction identified 2003 

compounds with the potential to cause eye irritation. We also predicted the effects on eye 

irritation and corrosion of the Inactive Ingredients Database (IID) containing 4673 inactive 

ingredients using MuDRA based model. The subset of compounds used in the ophthalmic 

route of administration had 181 entries consisting of 76 unique ingredients. Among them, 

24 were predicted as potential eye irritants and 12 as corrosive, where most of these are 

reported as a component of formulations such as ointments, solutions, suspensions, and eye 

drop products. The list of compounds predicted by our models as eye irritants and corrosion 

is available in the Supplementary Materials of the paper.

Conclusions

Eye irritation and corrosion are important toxicological endpoints for assessing chemical 

safety in humans and animals and respective tests are mandated by many regulatory agencies 

for the approval of a variety of products. The standard animal test for the evaluation 

of this endpoint is still the in vivo rabbit Draize test, a method developed decades ago 

and considered cruel, unreliable, and with questionable biological relevance to human 

exposure scenarios. Therefore, we aimed to develop predictive computational models using 

thoroughly curated data that could serve as NAMs for predicting eye irritation/corrosion 
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potential of chemicals. Data curation is an extremely important factor in the development of 

robust and predictive ML models and a considerable amount of time was devoted to curating 

the ECHA dataset to ensure high quality training/test data and to optimize the predictive 

power of the models generated. All the curated data and developed models are available 

in KNIME workflows within the Supplementary Materials. These models presented high 

statistical characteristics. We have applied our models to predict a large publicly available 

cosmetics dataset (CosIng) as well as an Inactive Ingredient Dataset of chemicals commonly 

found in cosmetics and drugs. From CosIng database, 2003 compounds were predicted 

to cause damage to the eyes as corrosive/irritants; on the other hand, among 76 unique 

compounds from the Inactive Ingredients Dataset related to the ophthalmic route, 12 

were predicted as corrosive, and 24 were predicted as irritants. The predictions for these 

chemicals are publicly available in the Supplementary Materials that accompanies this 

publication. Moreover, the models generated here are publicly available at the STopTox web 

portal (https://stoptox.mml.unc.edu/). These models can be employed as reliable alternatives 

to animal testing for identifying potential eye irritant/corrosive compounds.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Data compilation and curation workflow.
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Fig. 2. 
Graphical representation of a self-organized map for the chemical space covered by 

modeling set chemicals. Red circles represent corrosives, yellow circles represent irritants, 

and green circles represent NC class. Blue-green regions show compounds that share 

structural similarities compared to their neighbors, and yellow-orange-red regions represent 

an abrupt change in the chemical structure of the compounds compared to their neighbors. 

The dataset is notably complex; there are similar compounds belonging to different classes, 

which makes the construction of multiclassification models a challenge.
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Fig. 3. 
Venn diagram showing the overlap between correct predictions done by all models for the 

eye irritation dataset.
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Fig. 4. 
Example of compounds correctly predicted only by MuDRA.
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