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Abstract. Progressive supranuclear palsy (PSP) is an atypical parkinsonism with prominent 4R-tau neuropathology, and the
classical clinical phenotype is characterized by vertical supranuclear gaze palsy, unprovoked falls, akinetic-rigid syndrome
and cognitive decline. Though PSP is generally regarded as sporadic, there is increasing evidence suggesting that a series
of common and rare genetic variants impact on sporadic and familial forms of PSP. To date, more than 10 genes have been
reported to show a potential association with PSP. Among these genes, the microtubule-associated protein tau (MAPT) is
the risk locus with the strongest effect size on sporadic PSP in the case-control genome-wide association studies (GWAS).
Additionally, MAPT mutations are the most common cause of familial PSP while the leucine-rich repeat kinase 2 (LRRK2) is
a rare monogenic cause of PSP, and several other gene mutations may mimic the PSP phenotype, like the dynactin subunit 1
(DCTN1). In total, 15 MAPT mutations have been identified in cases with PSP, and the mean age at onset is much earlier than
in cases carrying LRRK2 or DCTN1 mutations. GWAS have further identified several risk loci of PSP, proposing molecular
pathways related to PSP. The present review focused on genetic studies on PSP and summarized genetic factors of PSP, which
may help to elucidate the underlying pathogenesis and provide new perspectives for therapeutic strategies.

Keywords: Progressive supranuclear palsy, genetics, microtubule-associated protein tau, haplotype, mutations, variants,
genome-wide association study

INTRODUCTION

Progressive supranuclear palsy (PSP), a rare
neurodegenerative disorder with a prevalence of
approximately 5–7 per 100000 [1], is tradition-
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ally considered to be one of the most common
atypical parkinsonian syndromes and increasingly
recognized to involve a range of motor, behaviour
and language abnormalities [2]. PSP is clinically
heterogeneous and presents as different phenotypes
[3, 4], among which the most classic phenotype
is Richardson’s syndrome (PSP-RS, also known
as Steele–Richardson–Olszewski syndrome), which
was first described as a clinicopathological entity in
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1964 [5, 6]. New clinical diagnostic criteria of PSP
(MDS-PSP) were published in 2017 [7], improving
the sensitivity of PSP, in particular the variant PSP
clinical presentations [8], and proposing four degrees
of diagnostic certainty, namely, definite PSP, probable
PSP, possible PSP and suggestive of PSP [7].

The pathological features of PSP are a predom-
inance of 4-repeat (4R) tau inclusions in the form
of neurofibrillary tangles, neuropil threads, tufted
astrocytes and oligodendroglial coiled bodies in basal
ganglia, diencephalon and brainstem, mainly affect-
ing the globus pallidus, subthalamic nucleus and
substantia nigra, in addition to neuronal loss and
gliosis [9, 10]. PSP is the most common primary 4R-
tauopathy, and the neuropathological 4R-tau begins
to abnormally accumulate during the presymptomatic
phase [2]. The localization of tau pathology is a major
drive of clinical heterogeneity [4], and the distribution
and severity of tau pathology vary in different clini-
cal phenotypes, suggesting the significance of further
studies into the pathological processes related to PSP
[11, 12].

Although PSP is generally recognized as a sporadic
syndrome, there are familial forms of PSP [13–15]
and few pedigrees with PSP-like phenotypes [16, 17],
and a pattern of autosomal dominant inheritance has
been proposed [14, 15]. A case-control study has
observed more first-degree relatives with parkinson-
ism or dementia in patients with PSP than in controls,
demonstrating familial aggregation in PSP [18]. In
contrast, genome-wide association studies (GWAS)
in large cohorts over the past few years have iden-
tified several loci significantly associated with PSP
[19–22], prompting studies on PSP genetics. Though
a series of questions remain to be solved, genetics
play an important role in PSP. This review focused on
genetic studies and summarized genetic factors asso-
ciated with PSP, especially recent additions, aiming
to better understand PSP at the genetic level.

SINGLE-GENE MUTATIONS
ASSOCIATED WITH PSP

MAPT in PSP

The microtubule-associated protein tau (MAPT)
gene, encoding the tau protein, is located on chromo-
some 17q21.31 and consists of 16 exons [23]. Among
the exons, exons E0 and 14 are non-coding, and exons
4a, 6 and 8 are not transcribed or expressed in human
brain [24]. Alternative splicing of exon 10 produces
two major isoforms of tau protein, namely 4R-tau

and 3R-tau, with four and three microtubule binding
repeats, respectively. In adult human brain, the ratio
of 4R to 3R is roughly equal to 1 [25]. Zero, one or two
N-terminal inserts result from alternative splicing of
exon 2 or exon 2 and 3 together, and each N-terminal
insert contains 29 amino acids. Therefore, there are
six major tau isoforms with different lengths in the
human brain (Fig. 1) [24]. MAPT mutations were
first reported in families of frontotemporal demen-
tia (FTD) and parkinsonism linked to chromosome
17 (FTDP-17) in 1998 [26]. Since then, more than
60 mutations in MAPT have been identified, mostly
characterized by behavioural changes and/or clini-
cal parkinsonism [27]. MAPT is involved in a series
of neurodegenerative disorders [28] and the case-
control GWAS of PSP has identified that MAPT is
the risk locus with the strongest effect size [19].

MAPT haplotypes and PSP
A case-control study first observed that the

homozygous A0 alleles containing 11 TG repeats in
intron 9 of MAPT are overrepresented in PSP, iden-
tifying a dinucleotide repeat polymorphism linked
with PSP and providing direct genetic evidence for
the association between PSP and MAPT [29], which
has been validated by several groups [30–32]. Baker
et al. [33] subsequently found that the polymor-
phic dinucleotide marker is inherited in complete
disequilibrium linkage with other eight common
single nucleotide polymorphisms (SNPs). These
researchers initially described two extended haplo-
types (called H1 and H2) covering the entire MAPT
and observed that haplotype H1 with 238 bp in intron
9 is overrepresented in PSP patients compared to
controls. Various studies on Caucasian populations
have emphasized the significant association between
MAPT haplotype H1 and PSP [34, 35]. A GWAS
directly compared rs8070723 to H1/H2 as a proxy and
observed that the odds ratio (OR) for PSP in H1/H1
carriers in the GWAS is 5.46 (p = 1.5 × 10–116) [19],
and the GWAS suggested that the H2 haplotype had
a protective role [36].

The structure of the H1 haplotype has been
explored, and over 20 common subhaplotypes have
been identified. Among which, MAPT H1c is signif-
icantly overrepresented in patients with PSP and in
patients with corticobasal degeneration (CBD) [36]
and Alzheimer’s disease (AD) [37]. H1c increases
MAPT expression, especially 4R-containing tran-
scripts [38], but underlying mechanisms remain
unclear. Using a large series of autopsy-confirmed
PSP cases, Heckman et al. identified three other
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Fig. 1. Six isoforms of protein tau and 15 mutations of MAPT associated with PSP.

MAPT H1 subhaplotypes associated with PSP,
namely H1g, H1d and H1o, and they also proposed
that several subhaplotypes may play roles in the sever-
ity of tau pathology in PSP [39], further advancing
the understanding of the H1 haplotype.

MAPT mutations and PSP
The frequency of PSP cases carrying MAPT muta-

tions is various with a range from 0.6% to 14.3%
[16, 18, 40, 41]. In total, 15 different mutations
of MAPT have been described in cases present-
ing as PSP (clinical or neuropathological diagnosis),
as shown in Table 1 and Fig. 1. Except for the
R5L mutation in exon1, the V363A mutation in
exon12, and the R406W mutation in exon13, other
causative mutations exist in exon 10 and its splic-
ing regions, resulting in an increased ratio of 4R/3R.
The most common MAPT mutation causing PSP
is located at codon 279, involving 11 cases. The
p.K298 H299insQ in exon 10 has been identi-
fied in three patients with familial PSP through
genetic sequencing of 165 cases with possible
tauopathies, and this mutation is the first insertion
mutation reported in MAPT. Yasuda et al. identified a
N279K mutation in a Japanese patient with pallido-
nigro-luysian degeneration (PNLD) [42], which is
pathologically distinctive from typical PSP and is
considered a variant of PSP [43].

The onset of PSP is insidious, presenting with
different symptoms, which highlights the clinical het-
erogeneity and complexity of PSP as well as the

necessity of follow-up. The mean age at onset (AAO)
in PSP with MAPT mutations is approximately 44.8
years (range of 36–62 years) with a peak in the
early 40s. Two families [44, 45] carrying the �N296
mutation had an earlier age (<40 years) when first
PSP-related symptoms occurred compared to cases
carrying other mutations. Moreover, Pastor et al.
[45] identified a patient carrying the homozygous
�N296 mutation, which is the first case carrying a
pathogenic homozygous mutation in MAPT, resulting
in a more severe phenotype compared to heterozy-
gous mutations, the latter causing a milder condition
with reduced penetrance.

Except for the R5L mutation described in a spo-
radic PSP case, Table 1 shows that the majority
of cases with other MAPT mutations have a fam-
ily history with parkinsonism, dementia, or other
neurodegenerative disorders, further supporting the
familial aggregation in PSP, which is consistent with
the results reported by Kaat et al. [18]. This phe-
nomenon indicates the importance to exclude MAPT
mutations when such a family history exists.

Recently, Chen et al. observed 2 patients with
autopsy-confirmed PSP harboring duplications span-
ning the entire MAPT locus (both copy number = 3)
through genome-wide survey of copy number vari-
ants (CNVs) and proposed that MAPT duplications
may be a genetic cause of PSP, which provides genetic
evidence for the hypothesis that CNVs are associ-
ated with PSP [22] and indicates that there are more
potential associations between MAPT and PSP.
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Table 1
MAPT mutations causing PSP-like syndrome

Mutation Region Reference No. Initial features AAO Clinical Pathological
years diagnosis diagnosis

R5L Ex1 Poorkaj et al. [46] 1 falls, dysarthria, and micrographia; 62 PSP PSP
N279K Ex10 Yasuda et al. [42] 1 parkinsonism; 41 PNLDf PSP-like

Delisle et al. [47] 2 apathy, memory disorder, parkinsonism; 40 FTDP-17f PSP-like
indifference, attention disturbances; 41 FTDP-17f NA

Soliveri et al. [48] 1 personality and behaviour changes; 47 PSPf NA
Ogaki et al. [49, 50] 6 parkinsonism and micrographia; 42 PSPf PSP-like

parkinsonism and oscillopsia; 44 PSPf NA
parkinsonism; 46 PSPf NA
unstable gait and character changes; 40 PSP NA
shuffling gait and bradykinesia; 41 PSPf NA
walking difficulty; 43 PSPf NA

N279N Ex10 Ogaki et al. [49] 1 parkinsonism; 44 PSPf NA
L284R Ex10 Rohrer et al. [51] 1 personality change and falls; 43 PSPf NA
S285R Ex10 Ogaki et al. [49] 1 speaking and breathing difficulty; 46 PSP NA

Fujioka et al. [14] 2 dystonia and supranuclear gaze palsy; 40 PSPf PSP-AD
gait changes and bradykinesia; 41 PSPf PSP

�N296 Ex10 Pastor et al. [45] 1 speaking and memory problems; 38 Atypical PSPf NA
Rossi et al. [44] 1 antecollis, dysarthria and fall; 36 PSP-likef NA

K298 H299insQ Ex10 Nakayama et al. [41] 3 neck stiffness and postural instability; 60 PSPf NA
gait disturbance; NA PSPf NA
gait disturbance and cognitive decline NA NA NA

P301L Ex10 Bird et al. [52] 1 tremor and articulation difficulty; 41 APDf PSP-like
Kaat et al. [18] 1 NA NA PSPf NA

G303V Ex10 Ros et al. [53] 1 parkinsonism, falls, micrographia, dysarthria, and ocular motor dysfunction; 37 PSPf PSP
S305S Ex10 Stanford et al. [54] 1 dystonia, dysarthria, falls, bradykinesia; 48 PSPf PSP
IVS10 + 3G>A IVS10 Spina et al. [55] 2 dizziness and neck stiffness; 52 Atypical PSPf PSP-like

dizziness and neck stiffness; 47 Atypical PSPf tauopathy
IVS10 + 14C>T IVS10 Omoto et al. [56] 1 clumsiness, tremor and apathy; 44 Perry syndromef PSP-like
IVS10 + 16C>T IVS10 Morris et al. [57] 1 fatigue, micrographia, and withdrawal; 40 PSPf tauopathy
V363A Ex12 Rossi et al. [58] 1 diplopia, falls and bradykinesia; 53 PSPf NA
R406W Ex13 Ygland et al. [17] 2 personality change; 53 ADf PSP-like

dyscalculia, social withdrawal, apathy; 50 ADf PSP-like

No., number; AAO, age at onset; NA, not available; PSP, progressive supranuclear palsy; PNLD, pallido-nigro-luysian degeneration; FTDP-17, frontotemporal dementia and parkinsonism linked
to chromosome 17; AD, Alzheimer’s disease; PSP-AD, PSP with concomitant AD. “PSP-like” pathology means that tau accumulations exist in brain but do not meet the pathological diagnostic
criteria of PSP. The letter “f” in clinical diagnosis indicates the case with a family history of parkinsonism, dementia, or other neurodegenerative diseases.
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LRRK2: a very rare monogenic cause of PSP
pathology

Leucine-rich repeat kinase 2 (LRRK2) is con-
sidered as one of the most common genetic
causes of Parkinson’s disease (PD), and genetic
evidence has shown more than 5 LRRK2 muta-
tions linked with both familial and sporadic PD
[59–61]. Although several studies have detected
negative results when screening LRRK2 in PSP
cohorts [62–65], 5 mutations have been identified
in patients presenting a PSP phenotype (Table 2).
A recent study identified that common variation at
the LRRK2 locus is a genetic determinant of PSP
survival (Jabbari et al. unpublished data), adding fur-
ther evidence for the association between LRRK2 and
PSP.

The R1441C mutation has been reported in a large
kindred named family D with pleomorphic pathology
and within 10 affected members who are clinically
characterized by parkinsonism, but only one mem-
ber has pathological changes similar to PSP. Thus,
the researchers speculated that LRRK2 might con-
tribute to tauopathy in addition to synucleinopathy
[66]. The R1441H mutation has been identified in a
patient originally diagnosed as typical PD but transit-
ing to PSP 8 years later. This unusual case indicates
that the R1441H is involved in the PSP-Parkinsonism
(PSP-P) [67], but the involvement of environmental
factors in this process remains unknown. G2019S
has been observed in 4 cases with PSP from dif-
ferent studies [59, 68–70], and functional in vitro
studies have observed that the G2019S mutation
increases kinase activity, potentially explaining how
LRRK2 causes neurodegeneration [71]. Trinh et al.
[72] observed the T2310M mutation in a patient
with PSP when sequencing LRRK2, and they also
identified 27 other rare nonsynonymous variants
in the cohorts. A novel p.A1413T mutation has
been identified in a case-control study contain-
ing 1039 PSP and 145 CBD patients, and this
mutation has been predicted to be “disease dam-
aging” by several in silico predictive algorithms
[59].

Therefore, we conclude that the LRRK2 gene
is a rare pathologic gene associated with PSP
[59] despite inconsistent results in some studies.
More association studies in larger cohorts and var-
ious populations are needed to further elucidate
how these LRRK2 mutations lead to tauopathy
and whether other mutations increase the risk for
PSP.

Single-gene mutations in cases mimicking PSP

DCTN1 mutations in cases as PSP look-alike
syndromes

Dynactin subunit 1 (DCTN1), which encodes
p150glued, is the largest subunit of dynactin com-
plex, and it is involved in microtubule binding and
molecular transport [74]. DCTN1 mutations have
been identified in families with motor neuron dis-
ease [75] and Perry syndrome [76], which is a
rare autosomal dominant neurodegenerative disease.
Unlike tauopathy in PSP, the underlying pathology
in DCTN1 mutation carriers is transactive response
DNA-binding protein of 43 kDa (TDP-43) pro-
teinopathy [77]. To advance the understanding of
clinical phenotype spectrum related to DCTN1 muta-
tions, we summarized 3 DCTN1 mutations reported
in patients with a PSP look-alike syndrome (Table 3).
However, the p.R1261Q mutation in one PSP-PS case
and the p.L896V mutation in one PSP-FTD case both
detected by Yabe et al. [16] are not included in Table 3
due to lack of clinical data.

Table 3 shows that the mean AAO among these
cases is 56.3 years with a large range of disease dura-
tion. All patients presented parkinsonism as a major
clinical feature, and symmetrical frontal atrophy was
obvious in more than half of the cases. DCTN1 muta-
tions play a role in susceptibility to PSP. Due to the
low frequency and limited knowledge, however, the
underlying mechanism between DCTN1 and tauopa-
thy remains unclear and needs further validation.

Other genes and PSP look-alike syndromes
As genetic studies on neurodegenerative disorders

develop, more genes have shown potential links with
PSP. A new series of gene mutations or polymor-
phisms have been identified in patients with a PSP
look-alike phenotype, including but not limited to
the NPC1 gene [81, 82], the C9orf72 gene [40, 83],
the parkin gene (PARK2) [84–86], the transactiva-
tion response element DNA-binding protein gene
(TARDBP) [87, 88], the progranulin gene (GRN) [16,
89], the TANK-binding kinase 1 gene (TBK1) [90],
and the bassoon gene (BSN) [16] (Table 4). Some of
these genes have been considered as causative genes
in certain neurodegenerative diseases [91–94]. Con-
sidering the wide phenotype spectrum of monogenic
mutations and the overlap among clinical features of
neurodegenerative diseases [95], there may be com-
mon mechanisms and pathways in the pathogenesis
of parkinsonian syndromes.
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Table 2
LRRK2 mutations in cases with PSP phenotype

Mutation R1441C R1441H G2019S T2310M A1413T

cDNA c.4321C > T c.4322G > A c. 6055G > A c.6928 C > T c.4237 G > A
Region Exon 31 Exon 31 Exon 41 Exon 47 Exon 30
Year of publication 2004 [66, 73] 2006 [67] 2006 [68] 2011 [69] 2017 [59] 2019 [70] 2015 [72] 2017 [59]
Gender Female Male Male Male Female Female NA Male
Nationality American Greek English Italian white Jewish NA Korean Filipino
Familial history + + + – – + NA –
AAO, y 78 61 78 72 73 80s NA 72
Duration of disease, y 11 11 7 12 7 NA NA 7
Clinical features parkinsonism

and
supranuclear
gaze palsy

parkinsonism,
bulbar
dysfunction
and
dementia

parkinsonism tremor and
micro-
graphia

bulbar
dysfunction,
tremor,
vertical gaze
palsy and
retrocollis

NA NA memory
problems,
falls and
apraxia of
eyelid
opening

Response to L-dopa Good Good Minimal poor NA NA NA Poor
MAPT haplotype H1/H1 NA H1/H1 H1/H1 H1/H1 NA NA H1/H1
Clinical diagnosis PD PSP PD PSP PSP PD PSP PSP
Pathology Parkinsonism

due to
tauopathy

NA PSP and early
AD

PSP and early
AD

PSP and early
AD

AD and PSP NA PSP-like

PSP, progressive supranuclear palsy; AD, Alzheimer’s disease; AAO, age at onset; NA, not available; “+”, present; “–”, absent.
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Table 3
DCTN1 mutations associated with PSP look-alike syndromes

Mutation G71E K56R F52L

cDNA c.212G > A c.167A > G c.156T > G
Region Exon 2 Exon 2 Exon 2
Reference Caroppo et al. [78] Gustavsson et al. [79] Honda et al. [80]
Number 1 2 1
Gender Male Male Male Female
Nationality French Chinese-Canadian Chinese Japanese
Familial history + + NA NA
AAO, y 59 61 57 48
Duration of disease, y 6 NA NA 26
Clinical features parkinsonism,

frontal signs
and oculomotor
disorders

parkinsonism and
oculomotor
disorders

parkinsonism and
memory decline

parkinsonism,
central
hypoventilation

Imaging findings mild mid brain
and frontal
atrophy

NA diffuse cortical
atrophy

frontal atrophy

Clinical diagnosis PSP PSP PSP Perry syndrome
Pathology NA NA NA PSP-like

PSP, progressive supranuclear palsy; AAO, age at onset; NA, not available; “+”, present.

Table 4
Single-genes associated with PSP look-alike syndromes

Genes Mutations Number Authors and year

DCTN1 G71E 1 Caroppo et al. 2014 [78]
K56R 1 Gustavsson et al. 2016 [79]
F52L 1 Honda et al. 2018 [80]
L896V 1 Yabe et al. 2018 [16]
R1261Q 1 Yabe et al. 2018 [16]

NPC1 K576R 1 Godeiro-Junior et al. 2006 [81]
P1007A and F1221fsX20* 1 Godeiro-Junior et al. 2006 [81]
F284LfsX26 1 Cupidi et al. 2017 [82]

C9orf72 >60 repeat units 1 Lesage et al. 2013 [83]
1 Leber et al. 2013 [40]

>50 repeat units 1 Wilke et al. 2016 [96]

PARK2 C212Y 1 Morales et al. 2002 [84]
Sanchez et al. 2002 [85]

TARDBP A382T 2 Cannas et al. 2014 [87]
I239V 1 Yabe et al. 2016 [88]

GRN Thr272fs 2 Tremolizzo et al. 2011 [89]
N118del 1 Yabe et al. 2018 [16]
V500I 1 Yabe et al. 2018 [16]
C221S 1 Yabe et al. 2018 [16]

TBK1 E643del 1 Wilke et al. 2018 [90]

BSN P2855L 1 Yabe et al. 2018 [16]
R3146C 2 Yabe et al. 2018 [16]
G3627V 1 Yabe et al. 2018 [16]
P3866A 3 Yabe et al. 2018 [16]

*The case carried a compound heterozygous mutation (P1007A and F1221fsX20).

In summary, cases carrying MAPT mutations have
an earlier AAO (mean: 44.8 years), and the initial fea-
tures are variable, mainly presenting parkinsonism,
unstable walking and frontal cognitive/behavioural
symptoms. In addition, a positive family history
exists in most cases. The AAOs in patients with
LRRK2 mutations are much older (mean: 72.3 years),
and the main clinical presentation is parkinsonism

with a baseline clinical diagnosis of PD in some
cases. Similarly, the typical symptoms in cases carry-
ing DCTN1 mutations are parkinsonism (mean AAO:
56.3 years) and brain atrophy. The relationships
between genes and phenotypes may help clinicians
to correctly diagnose. Although the associations
between genes and PSP require more validations
and investigations, further genetic screening is nec-



100 Y. Wen et al. / Genetics of Progressive Supranuclear Palsy

essary when MAPT mutations are absent, especially
in familial cases reminiscent of PSP.

COMMON VARIANTS IDENTIFIED
THROUGH GENOME-WIDE
APPROACHES

Melquist et al. carried out a pooled genome-wide
scan of 500288 SNPs in 2007 and identified chro-
mosome 11p12-p11 as another major risk locus for
PSP following the MAPT haplotype H1. They fur-
ther narrowed the locus to rs901746, the top ranked
SNP, which mainly encompasses two genes (DNA
damage-binding protein 2 (DDB2) and lysosomal
acid phosphatase 2 (ACP2)) [97].

GWAS have identified thousands of genes and
SNPs that contribute to complex diseases in humans
[98] since the first GWAS was published in 2005
[99], introducing a new perspective on genetic studies
and showing promising values in clinical applications
[100]. the first large PSP GWAS revealed that MAPT
rs8070723 and rs242557 are strongly associated with
PSP (1.5 × 10–116 and 4.2 × 10–70, respectively),
and it uncovered 3 novel risk loci of PSP (shown in
Table 4) [19], highlighting new directions and strate-
gies for PSP studies. Subsequent GWAS consisting
of European cohorts identified additional variants
(Table 5).

GWAS have not only identified genetic factors
likely increasing the risk for PSP but have also
identified several molecular pathways contributing
to PSP pathogenesis [19, 101]. Eukaryotic transla-
tion initiation factor 2 alpha kinase 3 (EIF2AK3)
encodes the pancreatic endoplasmic reticulum kinase
(PERK) protein, which is involved in the endoplasmic
reticulum unfolded protein response (UPR) [102].
Activated UPR is present in regions affected in PSP,
and UPR activation is related to tau [103]. Fur-
thermore, loss of PERK function due to EIF2AK3
mutations causes neurodegeneration-like changes,
including tau pathology [104]. Because tau nor-
mally does not traffic through the endoplasmic
reticulum, the mechanisms involved in PERK, UPR
and tauopathies are unknown [19]. Surprisingly, the
increased representation of rs1768208 with the minor
T-allele in PSP cases is more closely linked with
the expression of the SLC25A38/Appoptosin gene,
though its location is nearer to the myelin-associated
oligodendrocyte basic protein (MOBP) gene [19,
105]. Zhao and his collaborators showed that appop-
tosin overexpression contributes to tau cleavage via
caspase activation, which results in aggregation of
insoluble tau, disruption of synaptic structures, and
deficits of motor function in tau transgenic mice
[105], confirming the associations among rs1768208,
appoptosin and PSP as well as suggesting a potential
diagnostic biomarker for tauopathies.

Table 5
Risk loci identified through GWAS

Chr band SNP Nearest gene OR (95% CI) p Cohorts Method Ref.

17q21.31 rs8070723 MAPT 5.46 1.5 × 10–116

(4.72 – 6.31)
17q21.31 rs242557 MAPT 0.51 4.2 × 10–70

(0.47 – 0.55)
1q25.3 rs1411478 STX6 0.79 2.3 × 10–10 PSP:2165 Two-stage Hoglinger

(0.74 – 0.85) NC:6807 GWAS et al. [19]
2p11.2 rs7571971 EIF2AK3 0.75 3.2 × 10–13

(0.69 – 0.81)
3p22.1 rs1768208 MOBP 0.72 1.0 × 10–16

(0.67 – 0.78)

1q41 rs6687758 DUSP10 0.80 1.1 × 10–8 PSP:2698 Meta-analysis Sanchez-Contreras
(0.74–0.86) NC:8019 of two GWAS et al. [20]

12p12.1 rs11568563 SLCO1A2 0.67 5.3 × 10–10

(0.59–0.76)

6p21.1 rs35740963 RUNX2 0.77 1.8 × 10–8 PSP:1646 Joint Chen
(NA) NC:10662 GWAS et al. [21]

Chr, chromosome; SNP, single nucleotide polymorphism; OR, odds ratio; CI, confidence interval; NA, not available; PSP, progressive
supranuclear palsy; Ref., reference; NC, normal controls; GWAS, genome-wide association study; STX6, Syntaxin 6; EIF2AK3, Eukaryotic
translation initiation factor 2 alpha kinase 3; MOBP, Myelin-associated oligodendrocyte basic protein; DUSP10, Dual specificity phosphatase
10; SLCO1A2, Solute carrier organic anion transporter family member 1A2; TRIM11, tripartite motif-containing protein 11; RUNX2,
runt-related transcription factor 2.



Y. Wen et al. / Genetics of Progressive Supranuclear Palsy 101

A GENETIC DETERMINANT OF PSP
PHENOTYPE

Jabbari and colleagues carried out a clinical phe-
notype GWAS through comparing PSP-RS cases to
non-RS cases in PSP cohorts, and suggested that
rs564309, an intronic variant of the tripartite motif-
containing protein 11 gene (TRIM11), may be a
genetic modifier of clinical phenotype in PSP [106].
This is the first clinical phenotype GWAS in PSP and
opens up new directions for the roles that genetics
play in PSP phenotypes. On the other hand, as pre-
vious study has proposed that TRIM11 has a critical
role in the clearance of misfolded proteins via ubiqui-
tin proteasome system (UPS) [107], Jabbari’s study
further proves that UPS is involved in tau pathology,
which may provide a target for PSP therapy [106].

CONCLUSION

As a complex disorder involving multiple factors,
PSP is challenging due to the inexplicit pathogenesis,
lack of effective medications and poor prognosis. The
genetic background of PSP has gained growing atten-
tion, and many data have suggested that genetics play
a role in the susceptibility to PSP and that mutations
of certain genes (such as MAPT) directly lead to PSP
pathology. Faced with a series of risk factors and bio-
logical pathways associated with PSP, larger cohorts
are required to validate these associations in addi-
tion to identify more novel loci. Functional studies
are urgently needed to further elucidate underlying
mechanisms, thus introducing new perspectives for
diagnostic biomarkers and therapeutic targets for PSP
and other tauopathies.
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GU (2017) Advances in progressive supranuclear palsy:
New diagnostic criteria, biomarkers, and therapeutic
approaches. Lancet Neurol 16, 552-563.

[3] Ling H (2016) Clinical approach to progressive supranu-
clear palsy. J Mov Disord 9, 3-13.

[4] Armstrong MJ (2018) Progressive supranuclear palsy: An
update. Curr Neurol Neurosci Rep 18, 12.

[5] Steele JC, Richardson JC, Olszewski J (1964) Progressive
supranuclear palsy. A heterogeneous degeneration involv-
ing the brain stem, basal ganglia and cerebellum with
vertical gaze and pseudobulbar palsy, nuchal dystonia and
dementia. Arch Neurol 10, 333-359.

[6] Litvan I, Agid Y, Calne D, Campbell G, Dubois B,
Duvoisin RC, Goetz CG, Golbe LI, Grafman J, Grow-
don JH, Hallett M, Jankovic J, Quinn NP, Tolosa E, Zee
DS (1996) Clinical research criteria for the diagnosis
of progressive supranuclear palsy (Steele-Richardson-
Olszewski syndrome): Report of the NINDS-SPSP
international workshop. Neurology 47, 1-9.
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