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Tuberculosis (TB) is the leading cause of death from a single infectious agent. The
estimated total global TB deaths in 2019 were 1.4 million. The decline in TB incidence
rate is very slow, while the burden of noncommunicable diseases (NCDs) is exponentially
increasing in low- and middle-income countries, where the prevention and treatment of TB
disease remains a great burden, and there is enough empirical evidence (scientific
evidence) to justify a greater research emphasis on the syndemic interaction between
TB and NCDs. The current study was proposed to build a disease-gene network based on
overlapping TB with NCDs (overlapping means genes involved in TB and other/s NCDs),
such as Parkinson’s disease, cardiovascular disease, diabetes mellitus, rheumatoid
arthritis, and lung cancer. We compared the TB-associated genes with genes of its
overlapping NCDs to determine the gene-disease relationship. Next, we constructed the
gene interaction network of disease-genes by integrating curated and experimentally
validated interactions in humans and find the 13 highly clustered modules in the network,
which contains a total of 86 hub genes that are commonly associated with TB and its
overlapping NCDs, which are largely involved in the Inflammatory response, cellular
response to cytokine stimulus, response to cytokine, cytokine-mediated signaling
pathway, defense response, response to stress and immune system process.
Moreover, the identified hub genes and their respective drugs were exploited to build a
bipartite network that assists in deciphering the drug-target interaction, highlighting the
influential roles of these drugs on apparently unrelated targets and pathways. Targeting
these hub proteins by using drugs combination or drug repurposing approaches will
improve the clinical conditions in comorbidity, enhance the potency of a few drugs, and
give a synergistic effect with better outcomes. Thus, understanding the Mycobacterium
tuberculosis (Mtb) infection and associated NCDs is a high priority to contain its short and
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long-term effects on human health. Our network-based analysis opens a new horizon for
more personalized treatment, drug-repurposing opportunities, investigates new targets,
multidrug treatment, and can uncover several side effects of unrelated drugs for TB and its
overlapping NCDs.

Keywords: Network Biology, Network Medicines, Disease-disease relationship, Disease-target interaction, MTB
and NCDs

INTRODUCTION

Tuberculosis (TB), a communicable disease caused by bacillus
Mycobacterium tuberculosis, is the leading cause of death from a
single infectious agent. Globally, an estimated 10.0 million people
developed tuberculosis in 2020 (WHO Global Tuberculosis
Report-2021). Among these cases, 56% of individuals were
men aged ≥15 years, 32% were women, and 12% were children
aged <15 years. Most affected people were from the region of
South-East Asia (44%), Africa (25%), and the Western Pacific
(18%). A total of 1.5 million people died from TB in 2020
(including 214,000 people with HIV). Worldwide, TB is the
13th leading cause of death and the second leading infectious
killer after COVID-19 (above HIV/AIDS).

TB is still considered a deadly disease, particularly in high TB
burden countries like India, China, Indonesia, Philippines,
Pakistan, Nigeria, Bangladesh, and South Africa (Bhatia et al.,
2020). WHO reports reflect that the TB incidence rate decline is
very slow, while the burden of noncommunicable diseases
(NCDs) is exponentially increasing worldwide (WHO Global
Tuberculosis Report, 2020; WHO Noncommunicable Diseases
Progress Monitor, 2020).

In the long term, tuberculosis may lead to collapse in immune
surveillance, enhancing one’s susceptibility to non-
communicable diseases (NCDs), which together contribute to
two-thirds of the worldwidemortality (Marais et al., 2013; Peltzer,
2018). Emerging empirical evidence justifies the convergence of
TB with NCDs such as Parkinson’s disease (PD) (Shen et al.,
2016), cardiovascular diseases (CVD) (Huaman et al., 2015),
diabetes mellitus (DM) (Menon et al., 2016), rheumatoid
arthritis (RA) (Carmona et al., 2003), and lung cancer (LC)
(Chai and Shi, 2020).

Many Infectious diseases have been reported to contribute to
the development of PD (Harris et al., 2012; Vlajinac et al., 2013;
Tan et al., 2015). Patients with TB have been reported to have a
1.38-fold higher risk of developing PD as compared to control
subjects (Shen et al., 2016). The related mechanisms are not
known; however, it is thought that pro-inflammatory responses
generated in TB may be a key driving process associated with
PD’s pathogenesis (Kaufmann and Dorhoi, 2013). In 2018,
Anetta, et al. suggested that the mechanism of our immune
cells (macrophages) for wipe out the TB infection might also
be involved in Parkinson’s disease. Generally, mutation in LRRK2
gene make the LRRK2-protein overactive in Parkinson’s disease.
The LRRK2 prevents phagosomes from fusing with lysosomes in
macrophages, making them less efficient at clearingMtb. Deleting
the LRRK2 gene or treating the cells with an LRRK2 blocker
significantly reduced the Mtb infection. So, drugs developed to

treat PD (LRRK2 inhibitors) might work for TB too (Härtlova
et al., 2018).

Tuberculosis and NCDs may not only co-exist but also
increases the risk of each other. Developing tuberculosis
disease may indicate background dysregulation of immune
responses (innate immunity) in susceptible hosts, as these
same abnormal responses may also predispose to CVD
(Marais et al., 2013; Huaman et al., 2015). The burden of both
diseases is enormous across the world and augment the risk of
each other. The potential mechanistic association of TB with
CVD is based on persistent immune activation in TB. Antibodies
to mycobacterial HSP65 cross-reacting with self-antigens in
human vessels leading to autoimmunity may also affect CVD
risk (Huaman et al., 2015). The convergence of both diseases is
posing a greater challenge for treatment plans in overlapping TB
and CVD.

The burden of diabetes has also been a major health concern in
South Asian countries, with an estimated rise of more than 151%
between 2,000 and 2020 (Jayawardena et al., 2012; Shrestha et al.,
2020). There is a bidirectional connection between TB and DM,
and their synergistic role in causing human disease is well
recognized. There is very little information available about the
exact mechanism of how diabetes comorbidity impacts health
outcomes in TB patients. However, there is some evidence for the
negative impact of diabetes comorbidity on the TB treatment
outcome (Dooley et al., 2009; Wang et al., 2009; Chiang et al.,
2015), specifically for delays in treatment failures, mycobacterial
clearance, death, relapse, and re-infection.

Furthermore, It has been also seen that tuberculosis lead to
impair the induction of glucose intolerance and worsening of
glycaemic control in DM patients (Melmed, 2011). TB also has a
bidirectional epidemiological association with RA and has
reported that patients with RA have a 4-fold higher risk of
developing TB than the control population (Carmona et al.,
2003). In this double burden disease, on one side,
immunological responses involving Th1 mediated activation of
cytokines are key to protect against TB (Barnes and Wizel, 2000;
Stenger, 2005; Yasui, 2014), while on the other side, anti-
rheumatic drugs (tDMARDs) that act against the host
immune system are increasing the risk of TB in RA patients
(Lim et al., 2017). Moreover, several studies have reported the
reactivation of TB in RA patients treated with anti–TNF-α agents
(Keane et al., 2001; Ormerod, 2004; Dixon et al., 2010).

The overlapping of TB and lung cancer has attracted many
researchers in the last few decades. Many studies have reported
that TB is associated with cancer and increases the risk and
mortality of lung cancer and vice versa (Leung et al., 2013).
However, data related to TB treatment of LC patients is still
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incomplete and inconsistent. The connection between
tuberculosis and lung cancer is still not completely
understood. Lung parenchyma tissue involved in both diseases,
regular cough in lung cancer, morphological vascular variations,
lymphocytosis mechanisms, and production of immune system
mediators like interleukins are all among the factors leading to the
hypothesis about the major role of tuberculosis in lung cancer
(Liang et al., 2009; Brenner et al., 2011; Bhatt et al., 2012). It has
been shown that the inflammatory process is one of the potential
factors of lung cancer, and the crucial inflammation-inducing
factors are tuberculosis (TB), pneumonia, and chronic bronchitis,
among which TB has a more profound role in the emergence of
lung cancer (Keikha and Esfahani, 2018). Many studies reported
that the induction of necrosis and apoptosis or TB reactivation
might result in increasing TNF-α and IL-17 that will either
decreases the activity of P53 or increase the BCL-2 expression,
decrease Bax-T, and cause the inhibition of caspase-3 expression
due to decreasing the expression of mitochondria cytochrome
oxidase (Mariani et al., 2001; Liuzzo et al., 2013). It is clear that
the epidemiological shift creates a double disease burden in the
affected population and is rising as a critical health problem
globally. The intersection between TB and other NCDs poses
pharmacological issues and a great challenge for the co-
management and treatment, reflecting a need for a radical
shift, emphasizing common treatment targets irrespective of
vertical approaches focused on individual diseases.

Recently, Gysi et al. implemented a network-medicine and
drug-repurposing approach to identify repurposable drugs for
COVID-19 (Morselli Gysi et al., 2021). Sakle et al. have used a
network pharmacology-based approach to prove that Caesalpinia
pulcherima (CP) is a multi-target herb for the betterment of
clinical uses for the treatment of breast cancer (Sakle et al., 2020).
Besides, Azuaje, et al. had provided systemic insights into
cardiovascular effects of non-cardiovascular drugs by
combining different sources of drug and protein interaction
information to assemble the myocardial infarction drug-target
interactome network (Azuaje et al., 2011) In another similar
study, Kim et al. has suggested that network-based drug-disease
proximity offers a novel perspective into a drug’s therapeutic
effect in the Systemic Sclerosis (SSc) disease and that could be
applied to drug combinations or drug repositioning (Kim et al.,
2020).

Network analysis is uniquely suited to approach based on the
theoretical paradigm and methodological tools to research,
describe, explore, and understand structural and relational
aspects of human health and diseases (Luke and Harris, 2007).
Network-based studies are emerging as an important tool to
determine the disease susceptibility genes and their relationship
with different diseases. These studies have also improved our
understanding of drug targets and their effects and suggested new
drug targets, therapeutics, and therapeutic management
approaches in severe diseases (Berger and Iyengar, 2009).
Analysis of networks is significantly contributing to the
genesis of systems pharmacology.

The current study was proposed to build a disease network
based on the overlapping of TB with other NCDs, namely PD,
CVD, DM, RA, and LC. The disease network was analyzed to

identify the TB-associated genes that are commonly associated
with other NCDs and determine the gene-disease relationship.
Next, we constructed the gene interaction network of each disease
independently by integrating curated and experimentally
validated interactions in humans (Barabási and Oltvai, 2004).
All the gene interaction networks were merged into a single large
network using the graph union operation, and the network’s
structural properties were distinguished through the behavior of
the topological parameters followed by modules identification
because modules in a large network are functionally and
statistically significant interacting clusters of nodes that
resemble community organizations. Next, we generate and
analyzed the drug-target interactome network, which
integrates data about clinically relevant drug-drug and drug-
target interactions. The resulting network lays the basis for a
broader picture of the drug-target interaction landscape. The
overall study offers new opportunities for understanding the
biological basis of treatment efficacy and targeted and
multidrug therapy in TB and its overlapping NCDs.

MATERIAL AND METHODS

The schematic workflow of this study is represented in Figure 1.

Collection of Disease-Associated Genes
Disease-associated genes of Tuberculosis (TB), along with its
associated non-communicable diseases, namely Parkinson
disease (PD), cardiovascular disease (CVD), diabetes mellitus
(DM), rheumatoid arthritis (RA), and lung cancer (LC), were
obtained from the DisGeNet (v7.0), a database comprehensively
integrated expert-curated. DisGeNET contains a compilation of
genes associated to diseases, that taken from several publicly
available databases including, UniProt/SwissProt, Cancer
Genome Interpreter (CGI), Comparative Toxicogenomics
Database™ (CTD™), Orphanet, Mouse Genome Database
(MGD), PsyGeNET, Genomics England, ClinGen, and Rat
Genome Database (RGD) (Piñero et al., 2017).

The gene-disease correlation was analyzed and selected only
those genes with many publications supporting the association
(PubMed references ≥5). Genes may be associated with one or
more than one disease or may be linked with the convergence of
one disease with another. Further, to determine the gene-disease
relationship, an online tool from Bioinformatics and Evolutionary
Genomics lab (http://bioinformatics.psb.ugent.be/webtools/
Venn/) was used to compare the tuberculosis-associated genes
with its overlapping NCDs (PD, CVD, DM, RA, and LC).

Construction of Gene Interaction Network
of Disease-Associated Genes
The gene interactions network of each disease was built
independently by integrating curated and experimentally
validated interactions in humans from the IntAct (Aranda et al.,
2010), BioGrid (Oughtred et al., 2019), Mentha (Calderone et al.,
2013), Reactome-FIs(Croft et al., 2011), InnateDB-All (Piñero et al.,
2017), and MINT (Ceol et al., 2010) databases. All these databases
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provide freely accessible open-source databases and analysis tools for
molecular interaction data. All the networks were visualized in
Cytoscape-6.1 (Shannon et al., 2003). After visualization, all the
networks were merged into a single large network using the graph
union operation. The duplicate edges and self-loops were removed.
In the network, each node represents the gene, and edges represent
the connection between the nodes.

Moreover, network analyzers were employed to calculate basic
network properties, The complex network’s structural properties
were distinguished through the behavior of the topological
parameters. It helps to understand the network structure,
which facilitates understanding the hidden mechanisms (Alam
et al., 2019). The following networks properties were analyzed to
seek the important behaviours of the network:

• Degree distribution: In a biological network, the degree(k) of
node(n) is the total number of connections with other
nodes. The probability distribution of this degree is called
degree distribution (P(k)).

P(k) � nk

N
(1)

Where nk � No. of nodes with degree k.N� The total number of
nodes in the network.

• Neighborhood connectivity: It gives the average of the
neighborhood connectivity of all the nodes (N) with the
number of neighbors. So neighborhood connectivity
[CN (K)] is:

FIGURE 1 | The schematic representation of workflow and methodology used in this study.
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CN(k) � ∑
q

qP(q
k
) (2)

Where, P (qk) � The conditional probability.

• Clustering coefficient: The ratio of a number of edges (ei)
between the node’s neighbor or the highest numbers of
edges that could cause possibly occurrence among the
nodes. So, the total network cluster coefficient is the
average cluster coefficient of all nodes (ith) in the network.

C(ki) � 2ei
ki(ki − 1) (3)

• Betweenness centrality: A node’s betweenness centrality
shows the importance of information flow from one
node to another via the shortest path. From node (i) to
node (j), the geodesic paths are shown by ‘dij(v)’, which
passing via node ‘v’ and ‘dij’.

CB(v) � ∑
i,j,i≠j≠k

dij(v)
dij

(4)

• Closeness centrality: In the network, how quickly
information is passing from one node (i) to another (j) is
calculated by Closeness centrality (CC).

CC(i) � n
∑jdij

(5)

• Eigenvector centrality: The eigenvector centrality of a node
“i (CE(i))” is proportionate to the total of i’s neighbor
centralities.

CE(i) � 1
λ

∑
j�nn(i)

vj (6)

Where, nn(i) � Closest neighbours of nodes (“i”).

λ � Eigenvalue of the eigenvector.
vi � ‘Avi = λvi’ where, ‘A’ (adjacency matrix).

Finding the Most Important Modules/
sub-modules
We used MCODE to find the most important modules in the
network. Here “important” means highly interconnected, or
dense regions of the network that represent modules that act
in concert to perform specific biological functions. The MCODE
is a novel graph-theoretic clustering algorithm that detects
densely connected regions (or clusters) of interaction
networks. The MCODE works on vertex weighing by local
neighborhood density (highest k-core) and outward traversal
from a locally dense seed protein to separate the dense
regions. A k-core is a graph of minimal degree k (graph G, for
all v in G, deg(v) ≥ k). The highest k-core of a graph is the central,
most densely connected subgraph (Bader and Hogue, 2003).
Modules in a large network are functionally and statistically

significant interacting clusters of nodes that resemble
community organizations. Once the modules are found by
MCODE, it becomes easy to find the hub genes (key regulator
genes) in the network. These hubs genes are a part of the
integrated network; they may be present in different and
independent modules/sub-modules.

Such hub genes have many-fold roles; Firstly, they directly
interact with the nodes in the module (in which they are present)
to preserve the network’s stability and fast information processing
with quick accessibility of the molecules. Secondly, the hub genes
could be the most influencing nodes, becoming a strong cross-
communication among different modules. It has been observed
that each hub gene or specialized set of hub genes somehow
controls a module that may constitute a functional process.

Functional and Pathway Enrichment
Analysis of Modules
We used the g-Profiler tool (Reimand et al., 2007) to perform
comprehensive gene enrichment analysis or over-representation
analysis (ORA) of our 86 target genes. It maps genes to known
functional information sources and detects statistically
significantly enriched terms. Besides, functional enrichment
analysis of all modules were done by Cluepedia (Bindea et al.,
2013) and ClueGo (Lee et al., 2005) tools to perform
comprehensive Gene Ontology (GO)-enrichment analysis of
each module. It integrates GO terms divided into three classes,
namely biological process, molecular functions, and biological
pathways among high centrality nodes (genes) as well as KEGG/
BioCarta pathways and creates a functionally organized GO/
pathway term network.

Drug-Target Interactions
To determine the drug-target interactions, we integrated the
DGIdb database (Freshour et al., 2021) (www.dgidb.org). The
DGIdb is a web resource that provides information on drug-gene
interactions and druggable genes from related publications and
databases. We used 86 genes (key regulators) and their respective
drugs from the DGIdb database. We built a drug-target bipartite
network composed of drugs and target genes linked by
experimentally validated drug-target binary associations. The
network integration of these parameters makes it possible to
infer whether two drugs share a common target. The list of target
genes and interacting drugs is given in the Supporting
Information (Supplementary Material S3).

RESULT

Disease-Associated Genes of TB and Its
Overlapping NCDs
After comparing the disease-associated TB genes and Its
overlapping NCDs presented in Table 1, we found that the 26
genes of DM, 52 genes of RA, 15 genes of CVD, 15 genes of PD,
and 26 genes of LC overlapped with TB associated genes.
Moreover, many disease genes are common among NCDs
(Figure 2).
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TABLE 1 | List of disease-associated genes.

Tuberculosis Parkinson Disease Cardiovascular
Disease

Diabetes mellitus Rheumatoid arthritis Lung cancer

IFNG, RNF34,
SLC11A1, TNF,
NCAPG2, RHOF, IL10,
MT1JP, ESAT, TLR2,
VDR, MBL2, HSPD1,
IL1B, CCL2, SP110,
NAT2, IL4, CFP, CAT,
IL12B, CD14, HLA-
DRB1, IRGM, IL2, IL6,
CD209, TLR4, CXCL10,
CXCL8, INHA, P2RX7,
BCAR1, MMP1,
CYP2B6, TSC1, TSC2,
IFNGR1, MMP9, TLR1,
CYP2E1, IL1A, IL17A,
NOD2, CCL5, CTNND1,
CSE1L, CSF2, TIRAP,
ESX1, NOS2, IL17D,
TGFB1, TLR9, ELF3,
IL15, FOXP3, BMS1,
IL12RB1, MAPK1,
CORO1A, IRF1, IL22,
CISH, SOCS3, IL23A,
HSPA4, ACACA,
MAPK14, TRBV20OR9-
2, HP, HPD, WNT3,
CHP1, INTS4, CD9,
NLRP3, LAMC2, GC,
GSTM1, GRAP2, VSX1,
AGO2, HLA-C, HLA-B,
RNF19A, IL18, STAT3,
TMED2, GSTT1, HLA-A,
IL27, TPPP, FCGR3B,
FCGR3A, CRK,
POLDIP2, CCR5,
MYD88, AHSA1,
DEFB4A, SOCS1,
NRSN1, AIMP2,
RBM45, WISP3 and
CD27

LRRK2, SNCA, PINK1,
PRKN, GBA, MAPT,
PARK7, GDNF,
SLC6A3, CYP2D6,
UCHL1, APOE, BDNF,
VPS35, TH, MAOB,
ATP13A2, DRD2,
NR4A2, COMT, PTEN,
MUL1, CBLL2,
SNCAIP, CHM, FYN,
SYNM, BST1, HTRA2,
PARK16, GSTM1,
SOD1, NRTN, TNF,
GCH1, EIF4G1,
ABCB1, DDC,
SLC18A2, MAOA,
GNAL, GAK, PITX3,
NTF3, GIGYF2,
HMOX1, BAP1,
LINGO1, NFE2L2,
PON1, SNCB, HLA-
DRA, GRN, ATXN2,
GSK3B, NAT2, FMR1,
FGF20, PARK10, HFE,
C9orf72, CP, HSPA9,
RIT2, APP, CSF2,
CYP2B6, DRD3,
LAMC2, MPZ, PARK3,
MPHOSPH6, TARDBP,
SLC41A1, FBXO7,
NOS1, SOD2, PRKRA,
HSPA8, IL1B, MCCC1,
GAD1, POLG, DNM1L,
PPARGC1A, HTT,
CYP2E1, CCDC62,
LINC02210-CRHR1,
ADORA2A, ALDH1A1,
GABPA, ATXN3,
GSTP1, CHCHD2,
RAB39B, DCTN1,
HSPA4, STK39,
TMEM175, UBE2K,
LY6E, MTHFR, PRNP,
TREM2, GFAP,
PLA2G6, IL6, DNAJC6,
SPR, FAM47E,
FAM47E-STBD1,
LINC02210, ANG,
SCARB2, CTSD, DBH,
ESR1, GPR37, HNMT,
IL10, LMX1A, NOS2,
SMPD1, VDR, RAB29,
DNAJC13, USP24,
HPGDS, UBE2S,
LRRK1, DRD1,
SLC30A10, TBP,
TMEM230, LYST, TAF1,
OPA3, LAMP3, STH,
SIPA1L2, DGKQ, NSF,
WNT3, KANSL1,
ALDH2, CALB1,
CASP3, CASP9, CDK5,
CNR1, CYP1A2, ESR2,

ACE, CRP, APOE, MTHFR,
LPA, REN, NOS3, PON1,
AGT, IL6, SERPINE1,
CETP, TNF, LDLR, HP,
LPL, APOB, ABCA1,
EEF1A2, AGTR1, VEGFA,
PCSK9, APOA1,
TNFRSF11B, ICAM1, ALB,
VWF, LEP, ADIPOQ,
APOC3, IGF1, F7, FTO,
PLG, PLA2G7, CCL2,
PTGS2, PPARA, PPARG,
NPPB, MPO, AGER, ADM,
ESR1, APOA5, HMOX1,
ACE2, VCAM1, CBS,
GDF15, TLR4, RETN, IL18,
MMP9, OR10A4, EDN1,
CYP2C19, ALOX5, MBL2,
VDR, F3, EPHX2, CST3,
ADRB1, SELE, ANGPT2,
TGFB1, IL10, ABCG8,
OLR1, PLA2G2A, NFE2L2,
ALDH2, PON2, GABPA,
APOL1, MMP2, KNG1,
IL1B, SELP, DECR1, FGB,
ADRB2, PGR-AS1,
PLA2G1B, CD14, HFE, F2,
VPS51, RBP4, NPY, GPX1,
BDNF, UTS2, NR3C1,
COX2, HMGCR, NR3C2,
GNB3, SIRT1, CYBA,
TCF7L2, CDKN2A, MIR21,
HLA-DRB1, FGF23, CCR5
and PLA2G6

INS, HNF4A, GCK, HNF1A,
PPARG, ATN1, APOE,
TCF7L2, KCNJ11, CRP,
ACE, GAD2, ABCC8, GCG,
HLA-DQB1, VEGFA, INSR,
HLA-DRB1, ADIPOQ, IL6,
LEP, PON1, PDX1, HNF1B,
HP, AGER, ALB, TNF,
SLC30A8, SERPINE1,
GAD1, FTO, IGF1, WFS1,
HLA-C, IRS1, UCP2, REN,
AGT, CAPN10, SIRT1,
PPARA, NOS3, GLP1R,
SLC30A10, RBM45,
OR10A4, FN1, IAPP,
RENBP, CCL2, SLC2A4,
TXNIP, PPARGC1A, HFE,
LOC102723407, CAT,
IRS2, RETN, AGTR1,
AKR1B1, LPA, NEUROD1,
VDR, LMNA, MMP9,
NFE2L2, EHMT1, ZGLP1,
CD36, CTLA4, EDN1,
EEF1A2, HLA-A, IDE, IL4,
CDKAL1, DECR1, IL18,
LPL, MTHFR, ENPP1,
SLC2A2, SREBF1, LEPR,
TP53, GCKR, CETP, DPP4,
HLA-DQA1, HMOX1, IFNG,
PTPN1, MOK, RBP4,
TRBV20OR9-2, UCP3,
INSM2, ADRB3, APOA1,
APRT, CD34, CTGF,
GABPA, IL1A, IL1B, IL10,
KCNQ1, MMP2, PTPRN,
SLC5A2, TLR4, ADIPOR1,
ADIPOR2, IL2RA, NR0B2,
ABCA1, ALDH2, CDKN2A,
GLUL, IGF2, TNFRSF11B,
PIK3CA, PIK3CB, PIK3CD,
PIK3CG, SOD2, UCP1,
FGF21, G6PC2, PTGS2,
AOC3, FXN, ACP1, APOB,
BDNF, CEL, GIP, GPX1,
LDLR, MTNR1B, PAX4,
SHBG, ST3GAL4,
SLC2A1, TGFB1, EIF2AK3,
PTPN22, APOA5, CP,
POMC, SOD1, PTEN, ATM,
LIPC, ADA, ADM, CD59,
DDIT3, DMPK, FABP2,
GCGR, GLO1, HGF,
HMGB1, HMGCR, IFNA1,
IFNA13, IGFBP3, IL1RN,
MC4R, NFKB1, PLG,
PON2, MAPK8, SGK1,
SPP1, TCF7, TXN, PDHX,
KLF11, IGF2BP2,
MIR146A, CYBB, ICA1,
ABCG2, GATA6,
SLC19A2, ADH1B, AHSG,
AOC2, APP, CFTR, CST3,
DPT, EGFR, EPO, ESR1,

TNF, HLA-DRB1, IL6,
PTPN22, IL1B, RBM45,
IL10, PADI4, CRP, IL17A,
CRYGD, CXCL8, IFNG,
IL1A, STAT4, VEGFA,
CTLA4, IL1RN, MTHFR,
IL18, TRAF1, CD28,
TNFAIP3, MMP1, TLR4,
CSF2, IL2, TP53, IRF5, IL4,
TNFSF11, NFKB1, PTGS2,
CD40, HLA-DPB1,
TNFRSF11B, IL2RA, TLR2,
MMP3, FCGR3A, MBL2,
FCGR2A, CCL2,
TRBV20OR9-2, MMP2,
FOXP3, STAT3, SLC22A4,
IL23A, IL15, MMP9,
TNFRSF1B, FCRL3, CD14,
MAPK1, CCR6, IL6R, MIF,
MMP13, VCAM1, VIM,
MIR146A, CIITA, HLA-C,
CCR5, FCGR3B, ICAM1,
ABCB1, MAPK14, TGFB1,
TNFRSF1A, IL32, NLRP3,
MIR155, CXCR4, BCL2,
CCL5, CXCL12, IL22,
ENO1, SLC11A1,
CD40LG, CRH, PRTN3,
ISG20, CD68, FN1, HIF1A,
SAA1, TNFSF13B,
LOC105369230, STAT1,
NR3C1, MMP14, CHI3L1,
CRK, CXCL10, SPP1,
AIMP2, GRAP2, AHSA1,
RNF19A, POLDIP2, AGER,
NFKBIL1, ACAN, CCL21,
ZFP36, CD44, GPI, COX2,
PIK3CD, PIK3CG, VDR,
CDR3, IL21, REL, RUNX1,
CYR61, TNFSF14, FAS,
ESR1, PDCD1, PML,
MAPK8, MIR223, IL6ST,
AFF3, PTPRC, TRAF6,
TNFRSF14, BLK, ACP5,
HLA-DQB1, TAP2, NAT2,
BSG, HLA-A, HMGB1,
SERPINA1, PIK3CA,
PIK3CB, CCL20, SELE,
TNFSF15, HPGDS, IL33,
LOC102723407, AHR,
HLA-DMB, C5orf30,
C6orf10, AR, MS4A1,
FGF2, FOS, CXCR3,
GSTM1, IL4R, IL7, JUN,
NM, RARA, TLR3, TYMS,
VIP, TNFRSF11A, PADI2,
CARD8, IL17C, MBL3P,
IL17D, KRT20, HT, WG,
PTPN2, TYK2, MMEL1,
ALOX5, CAT, CDK6,
ADIPOQ, TAGAP, NCF1,
PRKCQ, SOD2, C5, MICA,
ACP1, PARP1, CDH11,

EGFR, TP53, KRAS,
ALK, GSTM1, CYP1A1,
CDKN2A, ERBB2,
PTGS2, VEGFA, MET,
XRCC1, GSTT1, TERT,
EGF, FHIT, CHRNA3,
BCL2, STAT3, CHRNA5,
HPGDS, ERCC2, OGG1,
ABCB1, TNF, PIK3CA,
AKT1, BRAF, CCND1,
GSTP1, RASSF1, IL6,
STK11, NFE2L2, TSC1,
SLCO6A1, GSTK1,
CLPTM1L, MMP9,
NFKB1, CYP2E1, MPO,
PTEN, EPHX1, HGF,
MMP2, CYP2A6, HIF1A,
MYC, TGFB1, CHRNB4,
GABPA, IGF1R, MDM2,
COX2, PPARG, EML4,
ERCC1, NQO1,
TNFSF10, PIK3CB,
CYP2B6, CYP2D6,
PIK3CD, PIK3CG, RET,
ROS1, XRCC3, IL24,
COPD, APEX1, ATM,
MGMT, MIR21, GSTM2,
MMP1, ABCC1, PTHLH,
ABCG2, CAV1, CXCL8,
PCNA, NKX2-1, NAT2,
CD44, FGFR1, IL1B,
MUC1, TP73, XPC,
PROM1, KEAP1, APC,
ASCL1, CASP3, FN1,
HRAS, IGF1, MCL1,
MTHFR, SOD2, CD274,
ARHGAP24, TP63,
CDH1, CEACAM5,
CHRNA4, EZH2,
EPCAM, RARB, SPP1,
TNFRSF10B, TBC1D9,
MALAT1, HYKK, CDK2,
CDKN1A, CYP1B1,
ERBB3, ESR1,
HNRNPA2B1, MAP2K7,
CCL2, VIM, CHEK2,
FAS, CRYZ, CTNND1,
MTOR, FUS, IFNG,
MAPK1, SOX2, TWIST1,
TYMS, CXCR4, MIR155,
AHR, BIRC5, CSF2,
CYP1A2, DNMT3B,
EGR1, HSP90AA1, ITK,
MAPK8, SEMA3F,
SLC22A3, SMARCA4,
SP1, ZEB1, TUSC2,
WWOX, PARP1,
CTNNB1, DNMT1,
ESR2, GLB1, GPX1,
IGFBP3, IL10, MLH1,
NME1, PXN, VEGFC,
XPA, ABCC3, EPB41L3,
SIRT1, CADM1,

(Continued on following page)
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Construction of Network and
Characterization of Topological Properties

All the disease-associated genes of TB, PD, CVD, DM, RA, and
LC were used to construct their gene interaction networks. We
constructed six networks for each disease and then merged them
into a single network, i.e., disease-gene (DG) network. Next, we
measured the topological properties of the network. The
probability of degree distributions P(k), average clustering
coefficient C(k), and neighborhood connectivity CN(k) showed
the fractal nature of the network, which is a self-organization
property of the network where the network maintains the nature

of nodes at various levels and not follow the centrality-lethality
control system (removing of one or more hubs does not cause
network breakdown) (Nafis et al., 2016). The network behavior
indicated a hierarchical scale-free network, and all the topological
properties of networks followed the power-law distributions
(Pastor-Satorras et al., 2001; Ravasz and Barabási, 2003). The
power-law fitting on the topological properties data points was
performed using the standard statistical fitting method given by
Clauset et al.(Clauset et al., 2009). The negative values of P(k) and
C(k) indicated that the network followed the hierarchical pattern,
while the positive value of CN(k) implied that the network has the
assortativity that recognizes the clusters (rich clubs) regulating

TABLE 1 | (Continued) List of disease-associated genes.

Tuberculosis Parkinson Disease Cardiovascular
Disease

Diabetes mellitus Rheumatoid arthritis Lung cancer

MAPK1, RET, VEGFA,
MANF, SIRT2 and
MIR133B

FOXO1, GGT1, GH1, GHR,
GSTM1, HIF1A, HLA-B,
IGF1R, IGFBP2, IL2,
ISG20, KCNA3, MBL2,
MPO, NGF, NOS2, PAX6,
PCK1, PPIA, PRKAA1,
PRKAA2, PRKAB1, VWF,
APOL1, NAMPT,
SOSTDC1, NEUROG3,
FOXP3, GHRL, ACE2 and
PPARGC1B

CSF1, EPHB2, F2RL1,
HLA-DRB4, IGF1, IL13,
LTA, MEFV, MTX1, OSM,
PLA2G1B, SLC19A1,
THBS1, TIMP1, PTGES,
DKK1, ICOS, NOD2,
AGBL2, PRAM1, IL2RB,
ANKRD55, SPRED2,
FASLG, CTGF, DHFR,
IRAK1, PON1, PRDM1,
MPO, ZAP70, HLA-DQA1,
NOTCH4, PHF19, BTNL2,
ANGPT1, APOE, BTF3P11,
CASP3, CD34, CDKN1A,
CDKN2A, CREB1, EGFR,
FCGR2B, FOXO3, FLT1,
CFH, HLA-DMA, IFNA13,
IGF2, IL16, KDR, LPA,
NR4A2, PLG, SAA@,
TAC1, ADAM17, TRB,
NR1I2, SOCS3, CLOCK,
LRPPRC, CXCL13, SIRT1,
RETN, IL17F, SLCO6A1
and GSTK1

SEMA6A, UCN3,
BRCA2, IREB2, BSG,
CALCA, DMBT1,
EPHB2, FOXM1,
FOXO3, GAPDH, GRP,
HMOX1, ICAM1, IL2,
IL17A, KRT19, MSH3,
SERPINE1, SERPINA1,
PML, PR@, MAPK3,
MAP2K1, RAD51,
CXCL12, HDAC9,
BCL2L11, PPP1R13L,
GADD45G, SLC12A9,
MARCKSL1, WLS,
MIR31, MIR34A, AXL,
BAX, CDK4, CTGF,
CYP24A1, ELANE,
HSPA4, SMAD4, MCC,
MDM4, MMP7, MSH2,
MYCL, NBN, NOTCH1,
PRDX1, RAC1, RRM1,
S100A2, SHOX2, SKP2,
AURKA, TGFBR2, VDR,
SCLC1, TFPI2, ADAM9,
YAP1, TDGF1P6,
SESN2, MIR146A,
MIR182, MIR205,
MIR210, NOTCH3,
FEN1, ACTN4, AGER,
BDNF, BRCA1, CASP9,
CAT, CDH13, CDKN1B,
CHEK1, CHRNA1,
COL11A2, CLDN7,
CRP, AKR1C1, DVL3,
EPHA2, ENO2, ERBB4,
ERCC5, FGF2, FUT4,
HDAC1, NRG1, HSPB1,
TNC, IFNB1, IGF2,
IGFBP2, CD82, SMAD2,
SMAD3, MEN1, MMP12,
MMP13, MST1R, MTAP,
MUC4, PAH, PKM,
PLK1, PRRX1, POU5F1,
PTN, ROBO1, SLC2A1,
SOX4, TGM2, TIMP1,
TXNRD1, AIMP2,
SETD2, PRR11,
AKR1B10 and CTCFL
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the network. The network centrality measurements (CB(k) and
CC(k)) show the information flow in the network and anticipate
the most influential nodes. Next, the CE(k) characterized the well
connectedness of nodes in the network and calculated the efficacy
of the unfurl data of nodes from the network. Besides network
centrality, we also measured the node centrality in the network. A
node with the higher centralities value can help recognize a
biological entity (genes) with the most important role in the
network (Jeong et al., 2001; Hahn and Kern, 2005). We selected
nodes with at least ≥10° because previously reported that degree
centrality (specifically for undirected networks) is an effective
measure since many nodes with high degrees also have high
centrality by other measures. The higher the degree, the more
central the node is (Jeong et al., 2001; Wagner and Fell, 2001; Ma
and Zeng, 2003; Bergmann et al., 2004; Hahn and Kern, 2005;
Golbeck, 2013, 2015; Ashtiani et al., 2018); like this, we have
identified 115 genes with higher degrees in the network. The
complete details of the DG-network and its topological
properties, gene association among the diseases, and hub genes
DG-network are given in Figure 3.

Modules/Clusters in Gene Interaction
Network
A novel graph-theoretic clustering algorithm, MCODE, detects
the densely connected regions (or clusters) of interaction
networks called a module. Modules in a large network are
functionally and statistically significant interacting clusters of
nodes that resemble community organizations in the network. In
our study, eight modules (high scoring) were subjected from the
MCODE, which further descended to sub-modules to reach up to
hub genes (Figure 4). Next, we start gene tracing to access the
regulation of the network; the gene tracing was done purely on the

appearance of the target genes (genes with ≥10° in the networks)
in various sub-modules. Importantly, we selected only those sub-
modules which contain our target genes, and the rest of the sub-
modules were eliminated from the study. As the results, we
identified a total of 33 high-scoring significant modules, but
more specifically, we considered only 13 modules (Figure 5)
that contained only 86 hub genes, which are common in TB and
overlapping NCDs; The details are given in Table 2.

Besides, other 20 significant modules that contain several hub
genes, which are also deeply rooted in the network and have the
ability to reach from the main network to the rich club (hub
genes) through various levels of the organizations via modules
and sub-modules and work at the grassroots level with basic
maintaining technologies and are generally the backbone of
keeping network stability. In the future, these hub genes can
be used to find the disease-gene relationship, find the multiple
side effects of unrelated drugs using drug-target network, drug-
repurposing opportunities, and can investigate new targets and
multidrug treatment among the NCDs (such as Parkinson’s
disease, cardiovascular disease, diabetes mellitus, rheumatoid
arthritis, and lung cancer). All these 33 significant modules are
given in Supplementary Material S1.

GO Enrichment Analysis
We identified a total number of 86 key regulators that were
commonly associated with TB and other NCDs that are critically
involved many biological processes including cellular response to
cytokine stimulus, response to cytokine, cytokine-mediated
signaling pathway, inflammatory response, cellular response to
chemical stimulus, response to organic substance, response to
stress, Défense response, response to external stimulus, regulation
of cell-cell adhesion, cell activation, cell surface receptor signaling
pathway, regulation of immune system process, immune system

FIGURE 2 | Venn diagram showing the number of overlapped genes among the TB and overlapping NCDs. (A) Association between Tuberculosis and NCDs. (B).
Overall disease gene association among the MTB and NCDs.
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process and regulation of cell adhesion. These target genes are
also enriched with a certain molecular function that are cytokine
activity, signaling receptor binding, receptor ligand activity,
cytokine receptor binding, growth factor activity, integrin
binding, enzyme binding, chemoattractant activity, peptide
binding, glycosaminoglycan binding, antioxidant activity,
kinase regulator activity, chemokine receptor binding and
transcription factor binding. The g:Profiler analysis is shown
in Figure 6.

Next, we performed a comprehensive functional analysis of 13
modules using the ClueGO and Cluepedia tool (Cytoscape plugin),
which integrates Gene Ontology (GO) terms and KEGG/BioCarta
pathways. The GO analysis of each modules reflects their
involvement in many important biological processes and in
diverse biological pathways, details are given in Figures 7, 8.

Module-1 is the largest and highly-interconnected module
among 13 modules, containing 36 key regulators (CXCR4,

IL15, IL4, TLR4, IL10, IFNG, SOCS3, MMP9, PTGS2, CD34,
CASP3, FOXP3, CRP, HMGB1, ICAM1, MAPK1, MAPK14,
VCAM1, IL1RN, CSF2, IL17A, FN1, NLRP3, IL2, CXCL8,
CXCL10, IL1B, IL1A, ALB, CCL2, IL18, MMP2, SELE,
CCL5, CTLA4, and TLR2) associated with TB and other five
overlapping NCDs (PD, CVD, DM, RA, and LC).We observed
that module-1 is statistically enriched by diverse biological
processes and pathways, including cytokine-cytokine receptor
interaction, T-cell activation, leukocyte activation, IL17, and
TNF signaling pathways, Toll-like receptor signaling
pathways, cellular responses to cytokine stimulus,
rheumatoid arthritis, AGE-RAGE signaling pathways in
diabetic complication and positive regulation of cytokine
production.
Module-2 contains nine key regulators (PPARG,MMP1, SPP1,
TGFβ1, EGFR, SERPINE1, LEP, TIMP1, and IGF1) associated
with TB and other five overlapping NCDs were enriched by
biological processes and pathways, namely regulation of gene

FIGURE 3 | (A) Disease Gene Network (DGN). (B) DGN topological properties. (C) List of common genes among the Diseases, e.g., tuberculosis (TB), diabetes
mellitus (DM), rheumatoid arthritis (RA), cardiovascular diseases (CVD), Parkinson’s disease (PD), and lung cancer (LC). (D) List of 115 genes that have ≥10° degrees in
the network.
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silencing by miRNA, regulation of gene silencing by RNA,
regulation of post-transcriptional gene silencing, positive
regulation of DNA binding, regulation of receptor signaling
pathway by JAK-STAT, positive regulation of receptor
signaling pathway by STAT, positive regulation of receptor
signaling pathway by JAK-STAT, and regulation of cardiocyte
differentiation.
Module-3 contains ten key regulators (MAPK8, VEGFA,
CD44, ESR1, STAT3, FOXO3, SIRT1, HGF, CDKN1A, and
PLG) associated with TB and other five overlapping NCDs
were enriched by biological processes and pathways, namely
prolactin signaling pathway, non-small cell lung cancer, renal

cell carcinoma, pancreatic cancer, and negative regulation of
cysteine-type endopeptidase activity involved in the apoptotic
process.
Module-4 contains eight key regulators (DECR1, MMP13,
TNF, IGF2, CASP9, CXCL12, FGF2, and CAT) associated
with TB, and other five overlapping NCDs were enriched
by biological processes and pathways, namely NADP binding,
regulation of leukocyte adhesion to the vascular endothelial
cell, amyotrophic lateral sclerosis (ALS), positive regulation of
smooth muscle proliferation, and growth factor activity.
Module-5 contains five key regulators (IL6, APOA1, CST3,
APOE, and APOL1) associated with TB, and other five

FIGURE 4 | Modules and sub-modules of the main network (Disease-genes network).

FIGURE 5 | Important modules (including motifs and rich clubs) in the network. These functional modules are common in tuberculosis and its associated NCDs.
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overlapping NCDs were enriched by diverse biological
processes and pathways, including negative regulation of
collagen metabolic process, protein-containing complex
remodeling, African trypanosomiasis and inflammatory
bowel disease.
Module-6 containing two key regulators (IL2RA and IL22)
associated with TB and the other two overlapping NCDs (DM
and RA) were enriched by biological processes and pathways,
namely inflammatory bowel disease and cytokine receptor
activity.
Module-7 contains three key regulators (HMOX1, MPO,
and SOD2) associated with TB, and other five overlapping
NCDs were enriched by biological processes and pathways,
namely negative regulation of smooth muscle proliferation,
negative regulation of response to oxidative stress, positive

regulation of smooth muscle proliferation and cofactor
catabolic process.
Module-8 containing one key regulator (RFN-19A) associated
with TB and the other four overlapping NCDs (CVD, DM, RA,
and LC) did not show any enrichment in biological processes
and pathways.
Module-9 containing one key regulator (CCR5) associated
with TB and the other two overlapping NCDs (CVD and
RA) was enriched by biological processes and pathways,
namely cytokine receptor activity.
Module-10 containing one key regulator (IL23A) associated
with TB and another overlapping NCD (RA), was enriched by
biological processes and pathways, namely regulation of
phosphorylation of STAT protein and inflammatory bowel
disease.

TABLE 2 | List of 13 Modules and Sub-Modules which contain hub genes of Disease (MTB, DM, CVD, LC, RA, and PD) but we only considered those modules (✔) which
have hub genes that are common in MTB as well as overlapping NCDs.
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Module-11 containing seven key regulators (LPA, CETP,HLA-
DQB1, HP, HLA-DRB1, HLA-DQA1, and HLA-A) associated
with TB and other three overlapping NCDs (DM, CVD, and
RA) were enriched by biological processes and pathways,
namely cholesterol metabolism, type-1 diabetes mellitus,
asthma, allograft rejection, peptide antigen binding, graft-
versus-host disease, inflammatory bowel disease, cell
adhesion molecules, the intestinal immune network for IgA
production, and adaptive immune response based on somatic
recombination of immune receptors built from immunoglobin
superfamily receptors.
Module-12 containing one key regulator (GRAP2) associated
with TB and another one NCD (RA), did not show any
enrichment in biological processes and pathways.
Module-13 containing two key regulators (HLA-C and HLA-
B) associated with TB and two overlapping NCDs (DM and
RA) were enriched by biological processes and pathways,
namely viral myocarditis, autoimmune thyroid disease,

peptide antigen binding, graft-versus-host disease, and
antigen processing and presentation.

Drug-Target Interactions
We constructed a bipartite network (two classes of nodes: drugs
and genes) by mapping all the 86 key regulators from 13 modules
to their respective drugs from the DGIdb database
(Supplementary Table S1). Results revealed that all most all
the key regulators found their hits except few genes, namely
SOCS3 (module 1), TIMP1 (module 2), FOXO3 (module 3),
APOL1 (module 5), RNF19A (module 8), GRAP2 (module 12)
and HLA-C (module 13). The number of interacting drugs with
individual target genes (key regulators) is represented in Figure 9.
A detailed list of target genes and their respective drugs are given
in Supplementary Table S2. Results reflect that gene that interact
with a larger number of drugs may be more related to the
underlying mechanisms driving the pathological phenotype
associated with these drugs. A fundamental network-based

FIGURE 6 | Functional enrichment analysis of 86 target genes, including molecular functions and biological processes, is shown on the bubble graph based on
log10(Padj) values in the Y axis. The clustering of Gene Ontology (molecular functions and biological processes) is shown in chord diagrams for target genes.
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FIGURE 7 | GO enrichment Analysis: Network representation shows the various biological processes and pathways enriched by genes of module-1 to module-3.
Each node represents a pathway and biological process. The node size reflects the enrichment significance of pathway and biological processes. Node color shows the
class that they belong to. Mixed coloring means that the particular node belongs to multiple classes.
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FIGURE 8 |GO enrichment Analysis: Network representation shows the various biological processes and pathways enriched by genes of module-4 to module-13.
Each node represents a pathway and biological process. The node size reflects the enrichment significance of pathway and biological processes. Node color shows the
class that they belong to. Mixed coloring means that the particular node belongs to multiple classes.

Frontiers in Pharmacology | www.frontiersin.org January 2022 | Volume 12 | Article 77076214

Alam et al. Association between tuberculosis and Noncommunicable_Diseases

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


metric that can be used to identify such genes is their degree. The
genes with a higher degree (interacting with drugs) are more
likely to be related to tuberculosis and its associated NCDs.

DISCUSSION

The epidemiological shift in diseases, such as the occurrence of
infectious diseases overlapping with other non-communicable
diseases, is a critical health-related problem globally. One such
convergence, included in the current study, is the occurrence of
TB with its overlapping NCDs such as PD, CVD, DM, RA, and
LC. It has been reported that TB patients have a 1.38-fold higher
risk of developing PD as compared to control subjects. It is well
documented that TB and CVD augment the risk of each other.
DM is an important risk factor for TB and is associated with a 3-
fold higher risk of contracting TB (Boutayeb, 2006; Leung et al.,
2007). TB also has a bidirectional epidemiological association
with RA and has reported that patients with RA have a 4-fold
higher risk of developing TB than the control population
(Carmona et al., 2003). The overlapping of TB with LC has
been reported to increase lung cancer risk and vice versa. This
epidemiological shift involving overlapping different diseases in a

common individual raises pharmacological issues and challenges
related to their clinical co-management in the affected
population. These issues emphasize finding common
regulators (key regulators) of overlapping diseases that can be
targeted commonly for their therapeutic management,
irrespective of vertical approaches focused on individual diseases.

Keeping in mind the concept of a network-based approach, we
emphasized building a disease network, reflecting genes
commonly associated with TB and with one or more selected
overlapping NCDs. Bipartite networking aimed to determine
drug-target interactions revealed that all the 86 key genes
found their hits except few genes namely SOCS3, TIMP1, FOX
O 3, APOL1, RNF19A, GRAP2, and HLA-C. These findings
provide us with insight into the overall molecular picture of
these overlapping diseases and consider the fact that TB and these
NCDs co-exist with each other at the gene level. Moreover, the
findings also provide an insight to think of re-devising present
strategies by looking at the collective effect of drugs on the genes
commonly co-existing with TB and other overlapping NCDs.

We found that these 86 key regulators are enriched by diverse
important biological processes and pathways, possibly connecting
TB with these overlapping NCDs (Figures 6, 7). Scientific
evidence originated from many studies that have justified the

FIGURE 9 | Representation of the number of interacting drugs with key regulators.
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biological significance of the majority of these key genes/
regulators. The CXCR4 surface expression has been found
associated with TB. Macrophages in in vitro TB infection
showed increased CXCR4 surface expression, whereas, in in
vivo, amelioration of disease was associated with the reduction
of CXCR4 expression of macrophages. Changes in CXCR4
expression in macrophages were found to occur due to the
innate immune response against TB (Hoshino et al., 2004).
Higher levels of IL-15 have been reported in pulmonary TB
and diabetes mellitus, reflecting their inflammatory
characteristics. The level of IL-15 was also found significantly
higher in RA (Muro et al., 2001) and CVD patients (Chang et al.,
2006). The IL-4 has been shown correlated with TB susceptibility
as well as with its progression (Lugo-Villarino et al., 2018).
Binisor et al. reported increased levels of IL-4 in diabetic and
non-diabetic obese individuals compared to healthy controls
(Binisor and Moldovan, 2016). IL-4 levels are also associated
with the development of early-stage of rheumatoid arthritis
(Haikal et al., 2019). IL-4 producing Th2 cells has been more
resistant to hypercholesterolemia, leading to atherosclerotic
plaque stability (Frostegård et al., 1992). A higher level of IL-4
has been reported in juvenile parkinsonism individuals as
compared to controls (Mogi et al., 1996).

Moreover, IL-4 polymorphisms have been found linked with
the risk of lung cancer (Tan et al., 2019). TLR4 is considered an
important innate and adaptive immune response molecule
against TB. This molecule has the ability to recognize
Mycobacterium tuberculosis (pattern recognition receptors
(PRRs)) and generate innate immune responses (Chang et al.,
2006). Activation of TLR4 has been found to promote insulin
resistance in DM and participate in its complications such as
diabetic nephropathy, diabetic retinopathy, and diabetic vascular
disease. TLR4 has been found involved in the deposition and
scavenging of amyloid-beta and regulation of neuroinflammation
in Alzheimer’s disease (Heneka et al., 2015). Elevated levels of
TLR4 along with TLR2, TLR3, and TLR7 have been reported in
RA synovium and in the dendritic cells of synovial fluid (Martin
et al., 2003). In the brain, inflammation mediated by TLR4 is
among the key factors responsible for PD-associated
neurodegeneration (Amor et al., 2010).

Moreover, TLR4 activation has been reported to enhance
many cytokines’ production and promote TRAF6
ubiquitination that facilitates LC cell migration and invasion
(Zheng et al., 2020). IL-10 is an important molecule
contributing to anti-mycobacterial host immunity and
promotes Mycobacterium tuberculosis survival (Abdalla et al.,
2016). Increased levels of IL-10 have been observed after
stimulation by Ag85A Mycobacterium. Tuberculosis
(Meenakshi et al., 2016). A higher level of IL-10 has been
reported in the synovial fluid of RA patients, mediating
neutrophil autophagy through the interaction of cytokine-
cytokine receptors (An et al., 2018). One recent follow-up
study revealed increased IL-10 expression associated with a
higher risk of cardiovascular events (Rentzos et al., 2009;
Yilmaz et al., 2014), reported that IL-10 is associated with
PD’s pathogenetic mechanisms. Moreover, induced expression
of IL-10R has been determined in metabolically restricted human

lung adenocarcinoma cell lines, where it affects programmed
death-1 protein leading to inhibition of tumour cell apoptosis.

It is known that IFN-γ is required to control the infection
caused by Mycobacterium Tuberculosis. IFN-γ is secreted
primarily by CD4+ T-cells as an adaptive response to infection
(Knight et al., 2018). The level of these molecules has been found
altered in the TB/diabetes mouse model (Meenakshi et al., 2016).
A higher level of IFN-γ has been reported in coronary artery
disease patients in comparison to healthy controls (Wang H.
et al., 2019). The absence of IFN-γ has been found associated with
the reduction of many PD-like features in IFN-γ deficient mice
(Liscovitch and French, 2014). It has been reported that IFN-γ-
mediated inhibition of lung cancer is regulated by PI3K-AKT
signaling, correlating with PD-L1 expression (Gao et al., 2018). It
has been observed that Mycobacterium tuberculosis infection
induces the expression of SOCS3 in phagocytes, which in turn
stops STAT3 activation by inhibiting some of the STAT3-
activating cytokine receptors (Rottenberg and Carow, 2014), as
well as proliferation and survival of lung adenocarcinoma cells
(Speth et al., 2019). Increased SOCS3 expression has been found
associated with RA (Meng et al., 2020), coronary artery disease
(Zheng et al., 2020), and PD (Ng et al., 2019).

It has been reported that Mycobacterium tuberculosis inhibits
caspase-3 leading to a reduction in macrophages apoptosis (Ali
et al., 2020). Increased level of CD4+CD25+FOXP3+ T regulatory
cells has been reported in Crohn’s disease and intestinal
tuberculosis patients. Findings reflect that level of
CD4+CD25+FOXP3+ T regulatory cells can be used as
accurate biomarkers to differentiate both diseases. A higher
level of C-Reactive protein has been reported in tuberculous
lymphadenitis individuals (Kathamuthu et al., 2020), and its
polymorphism has been found associated with a greater risk of
developing PD (Wang et al., 2016). Altered regulation of nuclear
protein HMGB1 has been found in Parkin expressing cells in PD
and non-small cell lung cancer cells (Ayimugu et al., 2020; Qiu
et al., 2020). IL17A has been found associated with the induction
of autophagy in tuberculosis patients through a mechanism that
activates MAPK1/3/14 (Tateosian et al., 2017). Elevated VCAM1
levels have been reported in patients with lung cancer, RA, and
PD compared to their age-matched healthy controls (Navarro-
Hernández et al., 2009; Tas et al., 2014; Perner et al., 2019).
Activation of NLRP3 inflammasome has been reported associated
with the pathogenesis of RA, cardiovascular diseases, and lung
adenocarcinoma (Wang et al., 2016; Guo et al., 2018; Liu et al.,
2018). TLR2, TLR4, and the NLRP3 inflammasome are also
involved in inflammatory responses (Wada and Makino,
2016). The levels of CXCL8 were found elevated in pulmonary
TB patients (Alessandri et al., 2006). Significant increases inMIG/
CXCL6 and IP-10/CXCL10 have been suggested as a causative
agent of diabetes in mammals (Capua et al., 2013). TNF-alpha,
IL-1beta, CXCL8, and CXCL10 levels have been linked with
ankylosing spondylitis and crystal, psoriatic and rheumatoid
arthritis (Proost et al., 2006). PPARγ is a nuclear transcription
factor activated by diverse endogenous and exogenous ligands,
leading to cellular metabolism, proliferation, differentiation, and
inflammation. Increased PPARγ expression has been reported in
activated alveolar macrophages (AMs), a primary host cell in
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Mycobacterium tuberculosis infection. Impaired activity of
PPARγ has been found in the setting of diabetes with and
without cardiovascular diseases, PD, and LC cells (Mirza et al.,
2015; Kwon et al., 2017; Bendaya et al., 2018; Lecca et al., 2018;
Sippel et al., 2019). Higher levels of TGF-beta1 have been
reported in positive than negative tuberculin reactors in
tuberculosis patients (Jang et al., 2006). TGFβ1/integrin β3
axis has been proposed as an anticipating target for
combination therapy in EGFR-mutant lung cancer (Wang C.
et al., 2019). Stoyney et al. found increased expression of FABP3,
FAS, FN1, IL1R2, LPL, SERPINE1, TGFB1, and VCAM1 and
decreased expression of SELPLG and SERPINEB2 associated with
hypertension and suggested that up-regulation of FAS, FN1,
SERPINE1, TGFB1, and VCAM1 might be a reason for
increased risk of cardiovascular diseases (Stoynev et al., 2014).
Type 2 diabetes is associated with increased APOE, BAX, MMP1,
NFKB1, PDGFB, SPP1, and TGFB2. CD44 acts as a macrophage
binding site for the attachment of Mycobacterium tuberculosis,
leading to macrophage recruitment against tuberculosis.
Macrophage recruitment was found impaired in CD44-
deficient (CD 44 (−/−)) mice. The role of CD74/CD44 MIF, a
two-component receptor, has been determined in RA. The
findings of this study suggested that its inhibition may offer a
specific means to interfere with progressive joint destruction.
Higher expression of SIRT1 and FOXO3 has been reported in
diabetic patients and in rheumatoid arthritis synovial fibroblasts
(Kok et al., 2013; Liu et al., 2015). The inhibition of AKT by
shikonin activated the forkhead box (FOX)O3a/early growth
response protein (EGR)1 signaling cascade and enhanced the
expression of the target gene Bim, leading to apoptosis in lung
cancer cells (Jeung et al., 2016). Increased expression of MMP13
has been reported in patients with spinal tuberculosis (Yang et al.,
2019).

Apoptosis induced by ESAT-6 has been found to occur mainly
through intrinsic pathways with elevated levels of cleaved
caspase-9 and -3 proteins. Lower and higher expression of
CASP9 has been reported in LC and PD patients, respectively
(Ercan et al., 2019). It has been found that variants of IL1B were
associated with latent tuberculosis infection, whereas variants of
IL6 and TNFα variants were associated with pulmonary
tuberculosis (Wu et al., 2018). IL-6 has been found associated
with RA (Choy and Calabrese, 2018). Patients with Parkinson’s
disease contain. Elevated levels of many pro-inflammatory
cytokines such as IL-6, TNF, IL-1β, and IFNγ have been
found elevated in PD (Sliter et al., 2018). ApoE deficiency was
found associated with delayed adaptive immunity against TB
(Martens et al., 2008). Increased expression of PD1 has been
reported in patients with HIV and latent tuberculosis infection,
leading to inhibition of IL-17, IL-22, and IL-23R activity towards
CFP-10 and ESAT-6 Mycobacterium tuberculosis antigens
(Devalraju et al., 2018). IL-22 has also been found associated
with the progression of bone erosions (Kragstrup et al., 2018).
Higher expression of IL22R1 has been reported in patients having
KRAS-mutant lung adenocarcinoma (Khosravi et al., 2018).
Rosas-Taraco et al. reported higher expression of CCR5 in
pulmonary tuberculosis (Rosas-Taraco et al., 2006). The
expression pattern of CCR5 also has been found associated

with the development of diabetic nephropathy (Yahya et al.,
2019). CCR5 is also a key gene in RA involved in recruiting
inflammatory cells into the inflamed synovial tissue (Cai et al.,
2019). IL-23 and IL23A have been reported associated with
disease severity of type-2 DM and progression of RA (Eirís
et al., 2014; Wendling et al., 2015). A recent study has shown
the secretion of IL-23 by lung adenoma cells is associated with the
generation of an inflammatory and immune-suppressed stroma
(Lim et al., 2020). Gene polymorphisms modulating HLA Class I
and II antigens are considered the risk factors of several diseases,
including TB, DM, CVD, PD, and LC. HLA-A, HLA-B, HLA-
DRB1, HLA-DQA1, and HLA-DQB1 were typed in two
Manitoba First Nation indigenous groups to identify and
compare the frequency of gene polymorphisms that may
influence susceptibility or resistance to TB (Larcombe et al.,
2017). The HLA-class II has been found associated with Type
1A DM(Sugihara et al., 2012). The HLA class 1 and 2 alleles were
found associated with RA (Chan et al., 1994). HLA-A and HLAB
antigens have been reported in patients with idiopathic PD
(Marttila et al., 1981). HLA-A or HLA-B/C was found
associated with up to 75% of LC cases (Talebian Yazdi et al.,
2016).

The above-discussed literature showed that the majority of
these key genes/regulators are associated with diverse processes
and pathways, justifying their biological significance. The current
study showed that these key genes/regulators are associated with
TB and overlapping NCDs, namely DM, CVD, RA, PD, and LC.
The finding of the current study, as well as from other studies, are
providing us an insight into the overall molecular picture of these
overlapping diseases and considering the fact that the TB and
these NCDs are somewhere co-exist with each other at the gene
level. This enables us to re-devise present strategies by looking at
the collective effect of drugs on the genes commonly associated
with TB and other overlapping NCDs; drug combinations could
enhance the potency of a few drugs, given a synergistic effect and
could also give better outcomes.

Further, there is little information on how TB treatment avoids
getting an NCD or the value in selecting a drug if a patient gets an
NCD. However, we have identified a total of 1975 drugs that show
drug-target interactions. Among those interactions, many
interactions are well known or previously reported in literature
like many genes that co-exist in TB and NCDs are basically some
cytokines (IL-1, TNF-α, IL-6, IL-12, and CXCL8. Etc.) and
chemokines (CXCR4, CXCL8, CXCL10, CCL2, and CCL5)
that are used as a target by a number of drugs including
Ibuprofen, Aspirin, Etoricoxib, Meloxicam, Celecoxib, Vitamin
A, Cholecalciferol (Supplementary Material S3). But many
drugs show a direct interaction with our target proteins but
no literature evidence available to support the interaction. So,
additional research is needed to better understand the drug-target
interaction and providing new research routes regarding a novel
application of drugs not yet investigated in the specific context of
TB and NCDs.

The study of proteins that interact with known disease-
associated gene products in the human interactome and their
subnetworks has enhanced our knowledge of disease
mechanisms, including but are not limited to NCDs.
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Identification of previously unknown and shared mechanisms
between different diseases has become possible with this
network-based approach and may guide therapeutic strategies in
the future and open a new horizon for more personalized
treatment, drug-repurposing opportunities and uncover several
side effects of unrelated drugs for TB and other complex diseases.

Finally, we acknowledge several potential limitations. First,
although we integrated data from multiple sources to build the
interactome and the drug-target network that relied on host gene/
protein/disease datasets, their quality and literature bias may
influence the performance and the results of network analysis.
Second, our method can only be applied to diseases with well-
characterized genetic information and may not be applicable for
diseases that lack such information, such as rare diseases
(i.e., cerebral palsy or mental conditions). Potential literature
bias of disease-associated genes and the human interactome may
also influence our findings.

CONCLUSION

This study attempted to create a robust workflow taking TB and its
overlapping NCDs into consideration and emphasize the need for an
hour to re-think and re-devise therapies and therapeutic
management. The findings of the current study also provide us an
opportunity to focus on the untouched aspects of any disease, in
particular with their distant related gene-sets (genes co-existence with
other diseases)], and to work in synergy to have a collective
physiological effect on one’s pathological phenotype. This study
identified 86 target genes that co-exist in TB and NCDs.
Targeting these targets using drugs combination or drug
repurposing approaches will improve the clinical conditions in
comorbidity, enhance the potency of a few drugs, and give a
synergistic effect with better outcomes. TB and NCDs co-existence
also creates opportunities for improved diagnosis and management
of both. The existence of NCDs may indicate the need to actively TB
screening for early TB detection. Similarly, diagnosis of TB should
alert experts to actively screen for common non-communicable
comorbidities, which may otherwise go undiagnosed. However,
experimental validation of this study will be required to support
further assessments of potential clinical application.
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