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ABSTRACT: Absolute binding free-energy (ABFE) calculations are
playing an increasing role in drug design, especially as they can be
performed on a range of disparate compounds and direct comparisons
between them can be made. It is, however, especially important to ensure
that they are as accurate as possible, as unlike relative binding free-energy
(RBFE) calculations, one does not benefit as much from a cancellation of
errors during the calculations. In most modern implementations of ABFE
calculations, a particle mesh Ewald scheme is typically used to treat the
electrostatic contribution to the free energy. A central requirement of such
schemes is that the box preserves neutrality throughout the calculation.
There are many ways to deal with this problem that have been discussed
over the years ranging from a neutralizing plasma with a post hoc
correction term through to a simple co-alchemical ion within the same
box. The post hoc correction approach is the most widespread. However, the vast majority of these studies have been applied to a
soluble protein in a homogeneous solvent (water or salt solution). In this work, we explore which of the more common approaches
would be the most suitable for a simulation box with a lipid bilayer within it. We further develop the idea of the so-called Rocklin
correction for lipid-bilayer systems and show how such a correction could work. However, we also show that it will be difficult to
make this generalizable in a practical way and thus we conclude that the use of a “co-alchemical ion” is the most useful approach for
simulations involving lipid membrane systems.

■ INTRODUCTION
The accurate calculation of the free energy (FE) of many
processes such as ligand binding,1 change of protonation state,2

or the influence of mutations3 is a major focus of modern
computational biochemistry.4 The current state-of-art approach
is to construct a periodic computational box where the protein is
solvated in explicit water molecules described using a molecular
mechanics (MM) force field and to perform alchemical
transformation or path sampling to obtain the desired
properties. The long-range electrostatics are usually calculated
with lattice-sum methods like particle mesh Ewald (PME).5

However, PME demands the simulation box to be neutral. Thus,
for the annihilation/decoupling of charged ligands during
binding free-energy calculations, protonation free-energy
calculations, or protein mutation calculations where the net
charge of the simulation box is perturbed, this has to be dealt
with in some way and should not be ignored.6

Various solutions to this problem have been suggested. The
most extensively employed strategy is where a neutralizing
plasma is evenly distributed throughout the simulation box to
ensure the overall neutrality is maintained. Though such a
plasma does indeed maintain the neutrality of the simulation
box, it generates a size-dependent artifact. This size-dependent
artifact exists in free-energy estimates of ligand binding free-
energy calculations involving changes of charge,7 charge-

perturbing protein mutations,8 and protonation free-energy
calculations.9

To tackle this finite-size effect, many approaches can be taken,
ranging from ignoring charge-changing mutations,10 calculating
an explicit correction11 through to incorporating a co-alchemical
ion to counteract directly the charge effect.12

PME is used widely to compute long-range electrostatics, and
the finite-size effect has been well characterized in such
calculation systems (see Rocklin et al.11 and references therein).
Thus, one solution would be to avoid using PME. A possible
alternative in this regard is the reaction field (RF) method13 or
modified RF methods, where the cutoff is based on charge
groups instead of atoms14 or the anisotropic RFmethod.15 All of
these methods have thus far been shown to provide comparable
performance to PME without the finite-size effect. Though RF
methods might work well for homogeneous systems, such as a
protein in a pure water solvent, care must be taken for
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Figure 1. Rocklin correction for a single ion in water. (A) The Rocklin correction defines a semianalytic correction that converts a periodic boundary
condition system to a nonperiodic condition system with infinite volume. (B) Under periodic boundary conditions, the solute will interact
electrostatically with its periodic neighbor. (C) The presence of the periodic neighbor will affect how the solvent is orientated. (D) After a discrete
solvent correction (DSC), a semianalytic correction is used to transform the periodic Poisson−Boltzmann system to a nonperiodic Poisson−
Boltzmann system. (E) Periodicity-induced net charge interaction (NET) correction. (F) Periodicity-induced net charge undersolvation (USV)
correction. (G) Residual integrated potential (RIP) correction. (H) The uncorrected charge annihilation free energy of the ions Na+, Cl‑, and Ca2+

displays size dependency. (I) The same size dependency is eliminated when the Rocklin correction is applied.
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inhomogeneous conditions such as a lipid−water system where
the lipid hydrophobic core has a very different dielectric
constant compared with bulk water. In such instances, PMEmay
well be a better choice.16

Another alternative approach is to use force-switching
electrostatics, which has been shown to perform better than
PME in terms of dealing with a charged simulation box.17 For
some special cases, such as computing the binding energy of
ligand, pure quantum mechanics (QM)18 or QM/MM19

Hamiltonians are also considered as ways to avoid the size-
dependent artifact. On the other hand, electrostatic interactions
computed with Poisson−Boltzmann (PB) or generalized-Born
(GB), where nonperiodic bound conditions are assumed, can
also give results free from finite-size effects.20

For ligand binding free-energy calculations, one can obtain
the free energy of moving the ligand from the protein to the
solvent via double-decoupling/annihilation methods, where the
free energy of decoupling/annihilating the ligand from the
protein and water is computed separately and the difference is
the binding free energy. Thus, when the ligand is charged, the
decoupling/annihilation of the ligand will remove charge from
the simulation system and give rise to a finite-size effect. One
solution for this specific problem would be physically moving
the ligand out of the protein into the water phase. Since the
ligand is always in the same box during this transition, the charge
of the box stayed neutral. The free energy of binding can then be
recovered by path-sampling techniques21 such as the attach−
pull−release scheme.22

When path-sampling techniques are used to compute the
ligand binding free energy, the starting point of the simulation is
the ligand bound to the protein and the end point is the ligand in
the bulk solvent, quite remote from the protein. To compute the
free energy, the whole physical path needs to be sampled. Thus,
the calculations are very expensive, especially if the path is long.
One solution is to preserve the start and end points and bridge
them with alchemical transformations. For ligand binding free-
energy calculations, the ligand is decoupled/annihilated in the
protein and is coupled/created in the solvent phase at the same
time to keep the box neutral.23

This approach has been generalized to other types of
calculations and is sometimes also referred to as the double-
system/single-box approach,24,25 where the whole cycle of the
alchemical transformations is done in the same box so that the
charge is always conserved. The approach has been used to
understand the effect of protein mutation on the stability of the
protein, where the original residue in the protein is mutated to
the target residue and the target residue in a tripeptide (tomimic
the unfolded protein) is mutated back to the original residue.3 A
similar approach has been used to investigate the effect of
protein mutation on the stability of a protein dimer, where the
original residue in the dimer is mutated to the target residue and
the target residue in the monomer protein is mutated back to the
original residue.26 Although this approach is effective, it requires
a much larger simulation box, which is not computationally
efficient.
Perhaps, the simplest approach designed to account for the

change of net charge during an alchemical transformation is to
employ an additional “co-alchemical ion”, which changes its
charge at the same time as the main perturbation such as to keep
the box neutral overall. The simplicity of the implementation of
the co-alchemical ion makes it the ideal solution to automatic
workflows, which are being increasingly developed and
employed.27,28

Overall, the strategy that has been most commonly adopted
has been the neutralizing plasma approach that employs a
postsimulation correction scheme. The simplest scheme is a
correction derived for a naked point charge in a continuum
medium.29 However, given that for modern simulations,
solvents are usually represented as discrete molecules and the
protein systems are too complex to be represented as a
continuum, Rocklin expanded the scheme and used adaptive
Poisson−Boltzmann solver (APBS) calculations to account for
the difference between the protein and a continuum medium.11

This extended scheme, commonly referred to as the “Rocklin
correction”, has been used in many studies,24,30 and its accuracy
has been verified by other groups.31 For soluble proteins, the co-
alchemical ion approach and the Rocklin correction give similar
results.32 The finite-size effect has also been seen in simulations
using polarizable force fields (AMOEBA),33 and the Rocklin
correction has been shown to be able to correct for that.34

Similarly, electrostatic interactions computed using multipole
methods exhibit finite-size effects and these can also be
corrected with the Rocklin correction.35 Given the complexity
of the correction, a simplified version is sometimes used in
automatic workflows.36

However, nearly all calculations to date have been performed
with soluble proteins and it remains unclear as to how well these
corrections can be applied to membrane protein systems. It has
already been shown that the neutralizing plasma can affect the
interpretation of membrane systems.37 Though the Rocklin
correction has been shown to improve the result of membrane
systems,38 the original derivation does not consider nonwater
solvent and it is unclear as to how to incorporate components
like lipid membranes. In other simulations where the bulk
solvent is not water, path sampling has been used to avoid finite-
size effects.39

In this study, we explore which of the various methods
outlined above would offer the best performance for membrane
simulation boxes. As part of this process, we derived a new
postsimulation correction scheme, similar to the original
Rocklin scheme. However, our results suggest that the co-
alchemical ion approach may be the preferred route forward.

■ RESULTS

Rocklin Correction in the Case of a Single Ion inWater.
To solve the finite-size artifact during charge-changing free-
energy calculations, Rocklin derived a semianalytic correction
scheme. The correction converts a periodic boundary condition
(PBC) system with box length L (PBC(L)) into a nonperiodic
system of infinite size (e.g., a macroscopic droplet) (Figure 1A)
so as to remove the size dependency of the system. The
correction can be decomposed into two components. The first is
the interactions between the system of interest and its periodic
neighbors. In periodic systems, when there is a net charge
associated with the simulation box, the net charge will be
exerting significant electrostatic interactions to the solute in
neighboring boxes (Figure 1B) that are not present in the
nonperiodic system. The second component is that the solvent
will interact with the net charge differently in the nonperiodic
system compared with that in the periodic system. In a
nonperiodic system, the electrostatic potential (ESP) generated
by a point charge would only vanish at an infinite distance. Thus,
all of the solvent molecules will reorient in response to this
electrostatic potential (Figure 1C). In periodic systems, on the
other hand, the electrostatic potential would be set to zero at the

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c01251
J. Chem. Theory Comput. 2022, 18, 2657−2672

2659

pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.1c01251?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


boundary due to the presence of the periodic neighbor and the
solvent will have different orientations.
To correct the free energy derived from periodic conditions,

ΔGMD,PBC(L), Rocklin proposed two different correction terms
as shown in eq 1: the discrete solvent correction (DSC) to
correct for the solvent effect ΔΔGDSC(L) and an analytical
(ANA) correction ΔΔGANA(L) to correct for net charge solute
interactions. Together, these result in the free energy under non-
PBC conditions ΔGMD,NBC

Δ + ΔΔ + ΔΔ

= Δ

G L G L G L

G

( ) ( ) ( )MD,PBC DSC ANA

MD,NBC (1)

During a simulation, the instantaneous solvent rearrange-
ments can give rise to large energy fluctuations. Thus, to obtain
the ensemble energy of the system, a large number of frames
need to be taken into account. The discrete solvent correction
transforms the system from having explicit water molecules into

a continuum-electrostatics Poisson−Boltzmann (PB) model,

which avoids the necessity of applying the correction to multiple

frames, as summarized in eq 2

Δ + ΔΔ = ΔG L G L G( ) ( )PB,PBC ANA PB,NBC (2)

The analytical correction ΔΔGANA(L) then transforms the

periodic PB model ΔGPB,PBC(L) into a PB model in a

nonperiodic box ΔGPB,NBC (Figure 1D). To achieve this

transformation, two steps are taken (eq 3): the charge

interactions between periodic neighbors are removed by

ΔΔGNET(L) and the polarization effect of the net charge on

the medium outside the simulation box can be added by

ΔΔGUSV(L)

Figure 2. Effect of the Rocklin correction on the annihilation free energy of a single ion in the membrane water system. (A) The uncorrected
annihilation free energy (FE) of chloride, sodium, and calcium ion has strong size dependency. (B) The annihilation free energy of a single ion in a lipid
membrane with the Rocklin correction applied (blue line) converges toward the reference annihilation free energy of a single ion in pure solvent
(orange line). (C) The deviation of the corrected annihilation free energy from the reference free energy (green line), when divided by the charge of the
ion, gives a similar profile (red line). (D) The average integrated potential of the ligand in the absence (blue line) and the presence (orange line) of an
explicit representation of the lipid. (E) The average integrated potential of the protein in the presence (orange line) and absence (blue line) of the lipid.
(F) The deviation from the reference free energy (blue line) shrinks when the lipid is represented explicitly.
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Δ + ΔΔ + ΔΔ

+ ΔΔ + ΔΔ

= Δ

G L G L G L

G L G L

G

( ) ( ) ( )

( ) ( )

PB,PBC NET USV

RIP EMP

PB,NBC (3)

The ΔΔGNET(L) is the periodicity-induced net charge
interaction (NET) correction, the ΔΔGUSV(L) is the perio-
dicity-induced net charge undersolvation, the ΔΔGRIP(L) is the
residual integrated potential correction, and the ΔΔGEMP(L) is
an empirical correction.
The leading term of the charge interactions between the

periodic neighbors is the net charge interaction, which is
corrected with a periodicity-induced net charge interaction
(NET) correction ΔΔGNET(L) (Figure 1E). In ΔΔGNET(L),
the net charge of the system is approximated with a point charge
at the center of the simulation box and ΔΔGNET(L) corrects for
the self-interactions between charged species across the periodic
boundaries in vacuum.
The polarization effect of the net charge on an infinite

medium is corrected for by the periodicity-induced net charge
undersolvation term ΔΔGUSV(L) (Figure 1F), which corrects
for the solvation of the charged species disrupted by the periodic
boundary. Both ΔΔGNET(L) and ΔΔGUSV(L) are calculated
analytically, assuming that the charged species is a naked point
charged (nakedmeans no excluded volume) centered in a box of
water. The difference between the real system and a point charge
is corrected with the residual integrated potential correction
(ΔΔGRIP(L)), which performs a PB calculation to derive the
average electrostatic potential difference between the solute and
the point charge, where the average electrostatic potential of the
point charge is computed analytically (Figure 1G).
To illustrate the effect of the Rocklin correction, we computed

the charge annihilation free energy of a single ion in a box of
water. The uncorrected charge annihilation free energy exhibits
size dependency (Figure 1H), while the corrected free energy
does not (Figure 1I).
Systemswith a Lipid Bilayer.As shown above, the Rocklin

scheme works very nicely for a box of homogeneous solvent.
However, it is currently unclear as to how one should proceed in
a nonhomogeneous environment such as a simulation box with a
lipid bilayer present. Though many papers have highlighted the
specific interactions between the lipid head group and the
protein,40 lipids are usually included in the simulation to provide
the necessary hydrophobic environment to accommodate
transmembrane proteins. One could argue that the hydrophobic
region would have very little effect on the correction terms that
purely deal with electrostatic interactions. Thus, in the first
instance, we investigated whether simply ignoring the lipid
bilayer would give correct results by investigating a test ion in a
lipid−water system to check the accuracy of the correction when
the membrane is not taken into account.
Similar to the charge annihilation free energy of a single ion in

a box of water, the charge annihilation free energy of a single ion
in a lipid−water system exhibits a strong size-dependent effect
(Figure 2A). When the Rocklin correction is applied assuming
the lipid has no excluded volume and no partial charge, the size-
dependent effect is mostly corrected (Figure 2B). However, the
corrected free energy still exhibits a small size dependency and is
some distance away from the reference charge annihilation free
energy (calculated from the charge annihilation free energy of a
single ion in water) (Figure 2B). The deviation from the
reference free energy is proportional to the net charge of the ion
and converges toward 0 with a bigger box size (Figure 2C).

Thus, this route, although simple, does not provide a proper
route to correcting the electrostatics.

Including the Lipid Bilayer in the Residual Integrated
Potential Calculations. Having shown that ignoring the lipid
bilayer would give a sizable deviation from the reference value,
we tried to incorporate the role of the lipid bilayer into the
Rocklin correction. The Rocklin correction corrects the
periodicity-induced artifact by deriving an analytical solution
(ΔΔGNET(L), ΔΔGUSV(L)) to correct for the ideal case where
the system is represented as a naked charge centered in the box
representing the net charge of the system. An additional residual
integrated potential ΔΔGRIP(L) is then used to compute the
difference between the real system and the naked charge.
The rationale behind ΔΔGRIP(L) is that the major difference

between a periodic system computed using a lattice-summethod
and nonperiodic system computed using Coulombic equations
is that in a periodic system, the average electrostatic potential of
the simulation box is constrained to zero, whereas such a
constraint is not present in nonperiodic systems. Thus, to
transform the system to a nonperiodic condition, we need to
obtain the energy of charging the system in nonperiodic systems,
which is the product of the average electrostatic potential,
computed as the integrated electrostatic potential of the
simulation box over the box volume (I/L3) and the net charge
of the system (Q), as shown in eq 4

ΔΔ = [ + + − ]G I I Q Q I Q L( )( ) /RIP P L P L P P
3

(4)

For the specific case of ligand binding free-energy calculations,
the correction is computed as the difference of the charging
energy between the apo protein and the protein−ligand
complex. The charging energy of the protein−ligand complex
is the product of the net charge of the complex (QP + QL) and
the average electrostatic potential of the complex ((IPL)/L

3).
Rocklin applied an approximation that IPL = IP + IL, where IP and
IL are the integrated potential computed using adaptive
Poisson−Boltzmann solver (APBS) calculations with both
ligand and protein as excluded volumes. The IP is computed
with protein having partial charges, while IL is computed with
ligand having partial charges. Thus, the sum of IP and IL would be
IPL and IP can be reused during the apo protein calculation,
which is the product of the average electrostatic potential of the
protein (IP/L3) and the net charge of the protein (QP).
The simplest approach of incorporating the effect of the lipid

would be to consider the lipid as part of the protein. Thus, the
lipid would form part of the excluded volume in the IL and IP
calculations and contribute electrostatically to the IP calculation.
If we consider the example of the charging free energy of a single
ion in a membrane water system, when the lipid is absent, the IP
term will be 0. If the lipid is included in the APBS calculation in
the same manner as the protein, the lipid contributes to the
APBS calculations as individual atoms with a partial charge.
These contributions for IL and IP deviate from the case where
lipid is not taken into account (Figure 2D,E). The deviation in
IL/L3 is very small (∼0.05 kT/e), showing that treating the lipid
bilayer as a hydrophobic slab has little impact on the correction.
On the other hand, the deviation in IP/L

3 is sizable, showing that
the lipid bilayer drastically changes the electrostatic environ-
ment through charge interactions. It is also worth noting that
due to the frame-to-frame fluctuation of the lipid, a standard
deviation of ∼0.2 kT/e is observed for IP/L

3, showing that
multiple frames are required to obtain an accurate estimate of IP/
L3. By using the new IP/L

3 and IL/L
3 in the ΔΔGRIP(L)
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calculations, the deviation from the reference value is reduced
(Figure 2F), but there is still considerable residual deviation.
However, it is worth noting that this may be an overestimate of
bias in the uncorrected result because even ABFE, via the
double-decoupling nature, does have some degree of error
cancellation.
Defining the Nonperiodic Condition for Membrane

Systems. Though the inclusion of an explicit lipid bilayer
lowers the deviation, a size-dependent artifact is still present,
indicating scope for improvement.
In the work of Rocklin et al., they solved the finite-size artifact

problem by applying a correction that transforms the system
from a periodic system with box length L into a nonperiodic
system of infinite size. This transformation is relatively
straightforward for a soluble protein as there is very little
ambiguity in defining the nonperiodic system (Figure 1A).
However, defining this size-independent nonperiodic system
can be nontrivial for a membrane protein (Figure 3A), as it is
unclear as to how one should represent the membrane. Given
the membrane in a periodic system is, by definition, infinite,

there should also be an infinite membrane in the nonperiodic
system as well.
However, this creates a problem of how to reproduce the

position of the net charge with respect to the membrane in the
nonperiodic system. In the periodic system, unless the solute is
centered exactly at the core of themembrane, the solute is always
sandwiched between two membranes, characterized by two
distances from both membranes. An extreme case would be the
computation of charge annihilation free energy of a single ion in
a lipid−water box (Figure 3B). One could argue that two lipid
membranes need to be present to reproduce this sandwich effect
(Figure 3C). On the other hand, in the periodic system, only one
membrane is present in the simulation box, so it might be
difficult to map the single-membrane periodic system to the
double-membrane nonperiodic system and one should stick
with a single membrane in a nonperiodic system (Figure 3D).
The difficulty in defining the nonperiodic condition for lipid

bilayer systems poses a challenge during the ΔΔGRIP(L)
calculations. The ΔΔGRIP(L) corrects for the nonzero average
electrostatic potential of the simulation box in nonperiodic

Figure 3. Problems with defining the nonperiodic boundary condition of a lipid membrane system. (A) Defining the nonperiodic boundary condition
for a membrane protein system as a membrane patch floating in a macroscopic droplet might not be a good representation. (B) In periodic boundary
condition systems, a single membrane could sandwich the ion (orange circle). The nonperiodic boundary condition could be defined as an ion
sandwiched by two infinite membranes (C) or the case where only the membrane closest to the ion is preserved (D). (E) The nonperiodic boundary
condition for a soluble protein in a continuum solvent can be defined as the sum of the simulation box calculated explicitly with APBS calculations and
the space beyond the simulation box calculated analytically, assuming the protein is a naked point charge. (F) The same procedure cannot be
performed formembrane proteins as the effect of the lipid extends beyond the simulation box and cannot be approximated as a naked point charge. (G)
The lipids outside the box will also affect the lipids in the simulation box, which makes the Poisson−Boltzmann calculation of the simulation box
different from the case under periodical boundary conditions.
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conditions. However, no Poisson−Boltzmann solver can
compute the electrostatic potential of a macroscopic non-
periodic system. Thus, a key assumption has to be made that the
electrostatic potential exerted by a protein would be the same as
the electrostatic potential exerted by a naked point charge of the
same net charge beyond a certain distance. Thus, the
electrostatic potential of a protein system in the nonperiodic
condition would be the sum of the electrostatic potential of the
protein in a finite-size box and the electrostatic potential of a
naked point charge outside this finite-size box (Figure 3E). This
assumption holds true for a soluble protein when the protein is
at least 1 nm away from the box edge.
It is, however, difficult to argue that this assumption for a

soluble protein still holds for a membrane protein. If a single
infinite lipid membrane is assumed, lipids will be touching the
box edge and the lipid outside the box would exert an
electrostatic potential back into the simulation box. This creates
a problem both outside and inside the box.
Given that the lipid membrane outside the box is not a

homogeneous continuous medium, the original assumption that
ΔΔGRIP(L) + ΔΔGUSV(L) expands the system to a size-
independent nonperiodic system no longer holds. Furthermore,
lipids touching the boundary will exert an electrostatic potential
outside the box that cannot be captured by an analytical solution
(Figure 3F).

In both periodic and nonperiodic systems, the lipid on the box
edge will experience electrostatic potential effects from lipids
outside the box. However, it is difficult to take into account the
atoms outside of the simulation box (Figure 3G). For the
simplest case of a single membrane in a water box, this boundary
effect can be observed in the hydrophobic regions close to the
box edge (Figure 4G). Thus, the average electrostatic potential
(ESP) computed using a finite simulation box cannot be
approximated as the box of the same size sculpted from an
infinite membrane system.
One way of mimicking the infinite membrane in the

nonperiodic boundary condition is to perform a Poisson−
Boltzmann calculation in a box that is much larger than the
simulation box and sculpt the simulation box from the result.
However, though in theory this would give the average
electrostatic potential of the simulation box in nonperiodic
conditions, it raises many problems. As is seen in Figure 2E,
lipids exhibit large fluctuation between frames (with a standard
deviation of 0.7 kT/e) and, thus, a large number of frames need
to be considered to obtain a converged value. Furthermore, the
large number of lipid atoms that are required tomimic an infinite
membrane make the calculation distinctly unattractive for
postsimulation treatment.

Use of a Continuum Model for the Lipid. Given the
issues above, we next considered using a continuum model
(Figure 4A,B) to replace the explicit lipid as this would make the

Figure 4. Simple continuum model to represent an explicit lipid. (A) The nonperiodic lipid−water system represented with explicit atoms. (B) The
continuum model of the lipid−water system, where the lipid head group is represented by two oppositely charged Gaussian densities and the space is
separated into a high dielectric constant zone (water and lipid head groups) and a low dielectric constant zone (hydrophobic core of the lipid). The
central ESP is the ESP profile at the center of the lipid along the z-axis (orange). (C) The average charge density from APBS calculations with explicit
lipid. (D) The average charge density reduced to the z-axis (blue) and the fitted charge density with two oppositely charged Gaussian densities
(orange). (E) The average dielectric constant reduced to the z-axis (blue) and the two-step binary model of high and low dielectric constant regions
(dashed black). (F) The separation between high and low dielectric constant regions (dashed black) superimposed on the oppositely chargedGaussian
density charge model. (G) The average ESP derived from the APBS calculation with explicit lipid, where a boundary effect can be seen close to the
edge. (H) The ESP computed with the average dielectric constant and average charge density from the APBS calculation with explicit lipid. (I) The
ESP computed with the continuum lipid model.
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calculation of a very large lipid feasible and removes the frame-
to-frame fluctuation problems. For an infinite lipid membrane,
the electrostatic potential would be the same in the plane parallel
to themembrane and is a function of the distance to the center of
the membrane. This electrostatic potential profile of an infinite
lipid membrane could be approximate as the central ESP of a
sufficiently large membrane patch along the axis orthogonal to
the membrane (Figure 4B).
APBSmem41 offers a method of modeling the lipid as two

regions of different dielectric constants, where the head group
has a dielectric constant of 80 (for the lipid head group and the
solvent) and the hydrophobic core has a dielectric constant of 2,
as summarized in eq 5 and Figure 4B

l
m
ooo
n
ooo

|
}
ooo
~
ooo

=
| − | >

| − | ≤
z

z z l

z z l
diel( )

80

2

center hydrophobic

center hydrophobic (5)

where diel(z) is the dielectric constant of the system as a
function of its location on the z-axis, zcenter is the center of the
lipid membrane, and lhydrophobic is the length of the hydrophobic
core defined as the distance from the first carbon after glycerol to
the end of the aryl tail. Given that the APBS calculation is
performed to correct for artifacts arising from molecular
mechanics simulations, the dielectric constant of the solvent
should match the dielectric constant of the water model
(TIP3P) used during the calculation. However, this would mean
that the space is segregated into three zones of different
dielectric constants, solvent (97 for TIP3P water42), lipid head
group (80), and lipid hydrophobic core (2). Given that the
dielectric constants of the TIP3P water and the lipid head group
are quite close, for the simplicity of the calculation, the dielectric

constant of the solvent was set to 80 in the following
calculations.
Representing the lipid as a hydrophobic slab is insufficient, as

is illustrated by large IP/L
3 (∼1 kT/e) where the partial charge of

the lipid plays a significant role during the APBS calculation as
well. Previous work43 has been done to incorporate the charge
effect of the lipid, where the negatively charged phosphate group
and the positively charged head group (e.g., choline for
phosphatidylcholines) were represented as a pair of ± charge
sheets.
A similar continuum lipidmodel has been constructed to see if

a more accurate ΔΔGRIP(L), which is derived from the average
ESP of an infinite lipid membrane, could lower the deviation to
the reference charge annihilation free energy. The dielectric
constant profile is constructed in the same way using a binary
step model (Figure 4E). The charge density of phosphate and
choline groups is modeled as Gaussian-shaped charges, as a
single sheet of charge might make the calculation sensitive to the
box size and grid spacing, as summarized in eqs 6−8

μ σ = μ σ− −g x A A( , , , ) e x1/2( ) /2 2

(6)

μ σ

μ σ

= | − |

− | − |

q z g z z A

g z z A

( ) ( , , , )

( , , , )

center Cho Cho Cho

center PO PO PO4 4 4 (7)

q(z) is the charge density as a function of the position on the z-
axis. The ACho, μCho, σCho and APO4

, μPO4
, σPO4

are the magnitude,
the center, and the spread of the charge density of the choline
group and the phosphate group, respectively. The following
constrain on the magnitude and spread has been used to ensure
that the sum of the charge density would be zero

Figure 5. Continuum model reproduces the average ESP and lowers the deviation to the reference free energy. (A) The average dielectric constant
profile is fitted with a logistic function. (B) The charge density profile of five Gaussians is fitted (dashed orange line) to reproduce the average ESP
computed from APBS calculations with explicit lipid (blue line). The central ESP computed with the continuum model (dashed red) closely matches
the result from explicit lipid (green). (C) The fitted charge density bears a similar shape to the average charge density but each Gaussian has a different
magnitude. (D) The central ESP is converged when the box dimension reaches 150 Å (green), which is the same as a box dimension of 300 Å (dashed
red). (E) The mean ESP computed with the continuum model (orange dashed) is similar to that computed with the explicit lipid (blue). The central
ESP with a box dimension of 150 Å gives a different profile (green). (F) The Rocklin correction performed with explicit lipid (orange) would lower the
deviation from the reference value compared with not taking the lipid into account (blue), and using the central ESP from the continuummodel further
lowers the deviation (green).
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σ σ=A ACho Cho PO PO4 4 (8)

The parameters of ACho, μCho, σCho, APO4
, μPO4

, and σPO4
were

fitted to a small lipid−water model system (64.26 * 67.47 *
71.67 Å) (Figure 4C). Though there was charge density arising
from the small dipole of the aryl chain, they were ignored (Figure
4D). The charge density modeled with two Gaussians and the
dielectric constant modeled with a binary step model (Figure
4F) were then used to calculate the ESP (Figure 4I). The ESP
computed using the continuummodel (Figure 4I) deviated a lot
from the average ESP computed using explicit atoms (Figure
4G).
This deviation is not unexpected as the lack of explicit

screening will affect the computed electrostatic potential. To
compensate for the absence of explicit screening, the use of a
coarse-grained Martini model preserves the total charge of the
residue but reduces the dielectric constant to 15.44 On the other
hand, another strategy, Choe et al.,43 is to preserve the dielectric
constant but scale the charge sheet until the internal potential at
the center of the bilayer reaches +300 mV. To confirm that the
deviation does indeed come from the lack of explicit screening,
the average charge density (Figure 4C) and dielectric constant
(Figure 4E) profile from the explicit APBS calculations were
used to reconstruct the ESP (Figure 4H), and as expected, it was
similar to the result from the continuum model (Figure 4I).
Attempting to reproduce the ESP obtained without explicit

screening, the dielectric constant profile was fitted with a logistic
function to reproduce the smooth transition from the high
dielectric constant to low dielectric constant region, as described
by eq 9

σ =
+

+− | − |+z
k

b( )
1 e k z z b

2
( ) 2

1 center 1 (9)

where k1, k2, b1, and b2 are fitted to reproduce the dielectric
constant profile (Figure 5A), and the fitted parameters are in
Table S1.
Five Gaussians were required to reproduce the ESP profile

averaged across the x−y-plane (Figure 5B), and the fitted
parameters are given in Table S2. The central ESP profile of the
discrete model, though not the direct target of the fitting
procedure, matches with that of the continuum model (Figure
5B).
The fitted charge density is written as
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where the magnitude A, center μ, and spread σ of the choline
Cho, phosphate PO4, ester GL (possibly), and the positive and
negative dipoles of the aryl chain C+/C− were allowed to fit
freely. The center of the positive dipole of the aryl chain μC+ is
fixed to 0. The new charge density has a similar shape to the
original charge density (Figure 5C), where the magnitude is
increased to compensate for the lack of explicit screening.
To obtain the ESP profile of an infinite lipid membrane, the

size of the membrane patch was expanded in the xy-plane until
the central ESP was converged (Figure 5D), where a membrane

patch with dimensions 150 * 150 Å in the xy-plane gives the
same central ESP as a membrane patch of 300 * 300 Å.
In terms of calculating ΔΔGRIP(L), the integrated potential I

is computed as

= [ ] − [ ]I B X L B Q L, ,XHET ref HET ref (11)

where BHET [X,Lref] is the integrated potential of the simulation
box and is defined as

∫ ϕ[ ] =B X L d r r, ( )
L XHET ref

3
HET,

ref (12)

where ϕHET,X (r) is the ESP. BHET [QX,Lref] is the reference
integrated potential computed with a naked point charge in a
box with the dimension of Lref and is defined as

∫ ∫ϕ
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3
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3
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Since the lipid has a total charge of 0, BHET [QX,Lref] evaluates
to 0 in this case.
We transformed the BHET [X,Lref] such that it is the ESP at the

equivalent position in the z-axis from the center of the
membrane ϕHET,X (z). Thus, BHET [X,Lref] is defined as

∫ ϕ[ ] =B X L d r z, ( )
l XHET ref

3
HET,

ref (14)

The ΔΔGRIP(L) computed with the center ESP of a large
continuum lipid membrane gives very different IP/L

3 compared
with the average ESP of the cubic simulation box with the same
Z dimension (Figure 5E), and the result from the center ESP
lowers the deviation from the reference value (Figure 5F). Note
that in terms of computing IP/L

3 from the simulation box, the
continuum lipid model gives a similar value compared with the
result computed with explicit atoms for lipids (Figure 5E). Also
note the contribution from the ΔΔGRIP(L) is at a scale of ∼1
kcal/mol. During the lipid APBS calculations, the dielectric
constant of the water, for simplicity, was set to 80, instead of 97
for TIP3P water. If the dielectric constant was set to 97 instead
of 80, we would expect the ΔΔGRIP(L) to be 1 * 80/97 ≈ 0.82
kcal/mol. Since the difference of ∼0.18 kcal/mol is much
smaller than the force field error, which is usually estimated to be
∼1 kcal/mol, we conclude that setting the dielectric constant of
the water to 80 is a reasonable approximation.

Treatment of Residual Errors. The previous section
described our attempts to solve the problem that a Poisson−
Boltzmann calculation done with a finite-size simulation box
cannot give the same average ESP as the same box in a
nonperiodic condition due to the lack of electrostatic
interactions from the lipid outside the box (Figure 3G).
However, the undersolvation of the ion ΔΔGUSV(L) by the
lipid outside the simulation box is still not properly accounted
for (see Figure 3F). This can be addressed by deriving a further
correction that builds on the Rocklin correction such that it can
be applied to the periodic lipid−water system.
The sum of ΔΔGNET(L) and ΔΔGUSV(L) describes the

periodic self-interaction of a naked point charge in a
homogeneous medium described by a dielectric constant ϵS
and is defined as
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where ξLS‑3D is the cubic LS (Wigner) integration constant ξLS‑3D
≈ −2.837297;45 ϵ0 is the permittivity of vacuum, where

πϵ
1

4 0

evaluates to 138.93545585 kJ nm e−2 mol−1; ϵS is the dielectric
constant of the solvent, which in this case is TIP3P water ϵ = 97;
QP and QL are the total charge of the protein and the ligand,
respectively; and L is the box dimension.
For a test case of computing the charge annihilation free

energy of a chloride ion, the self-interaction in the pure water
box can be computed analytically by approximating the water to
a homogeneous continuum medium

ξ
π
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ϵ ϵ
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water LS 3D

0 water

2

(16)

where q is the total charge of the ion and ϵwater is the dielectric
constant of the water.
For a single ion in the lipid−water system (Figure 6A), the

situation is different as the horizontal interactions parallel to the
membrane are through the water medium (ϵwater), while all of
the off-plane interactions are through a mixture of lipid and
water (ϵmix). Thus, the self-interaction term ΔΔGcoul

lipid‑water(L) is
defined as

ΔΔ = ΔΔ − ΔΔ
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where ΔΔGcoul
mix‑3D(L) is the self-interaction in the 3D space with

a homogeneous medium of ϵmix, ΔΔGcoul
mix‑2D(L) is the self-

interaction in the 2D plane, and ΔΔGcoul
water‑2D(L) is the self-

interaction in the 2D plane with another homogeneous medium
such as ϵwater. The terms are defined as
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where ξLS‑2D is the squared LS (Wigner) integration constant
ξLS‑2D ≈ −3.9002545 and ϵmix is the dielectric constant of the
water−lipid system
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where lhydrophobic is the length of the aryl chain thickness of a
single lipid (lhydrophobic ≈ 18.87 Å, computed based on the
distance between the first atom in the aryl chain to the end of the
lipid on 100 ns of equilibrium simulation of a 1-palmitoyl-2-
oleoyl-phosphatidylcholine (POPC) bilayer in an NPT

Figure 6. Self-interaction term in a lipid−water system and the discrete solvent effect of the lipid. (A) The plane self-interaction of the ion is through
the water phase, whereas the off-plane self-interactions are through the lipid−water mixture. (B) The self-interaction is very small and exhibits very
little size dependency when the ion is in a pure water medium (blue) or in the water phase of the lipid−water system (orange). The self-interaction
term could be significant for the case where the charged particle is in the lipid phase within a lipid−water system (green). (C) In nonperiodic
conditions, the lipid can reorientate in response to the charged ion. In periodic conditions, the lipid will not reorientate when the ion does not harbor
charge. (D, F) When the ion is charged, the lipid can reorientate but the extent of the reorientation depends on the size of the box. (E, G) A larger box
would permit a larger reorientation and a larger change in the box dimension. (H) The area per lipid as a function of box dimension.
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ensemble); a factor of 2 is used to account for the bilayer. ϵlipid is
the dielectric constant of the lipid aryl chain (ϵlipid = 2).41

ϵwater is the dielectric constant describing interactions in the
xy-plane. Since the charge species is an ion in the water phase,
ϵwater is the dielectric constant of water and if the charge species
is at the center of the membrane (e.g., charged ligand in the
membrane protein), ϵwater would be the dielectric constant of the
hydrophobic core of the membrane.
To show the effect of this treatment and its influence on the

finite-size artifact, the self-interaction terms have been
computed using three test cases: monovalent ion in pure
water, monovalent ion in the water phase of a lipid−water
system, and a hypothetical monovalent ion in the hydrophobic
core of the lipid−water system (Figure 6B). Note that for the ion
in the lipid−water system, where the 2D plane (i.e., xy) self-
interaction is through the continuum medium of water (ϵwater),
the ΔΔGcoul

lipid‑water(L) is very small (<0.1 kcal/mol) but can be
quite significant (∼4 kcal/mol) when the net charge is in the
hydrophobic core of the lipid bilayer (e.g., a charged ligand in
the membrane).
Discrete Solvent Correction for Lipid. Though the

continuum lipid model can reproduce the ESP generated by
the explicit lipid in a neutral state, it cannot reproduce the
configurational change of the lipid in response to a charged ion.
For water, the effect of the charged species on the orientation of
the solvent (Figure 1C) is accounted for by ΔΔGDSC(L). In
theory, these effects should still exist for lipids, where the lipid

would reorient in response to the charged species in the
nonperiodic conditions (Figure 6C). Periodic boundary
conditions would be expected to disrupt this lipid reorientation.
This disruption would also be size-dependent. For large

boxes, the lipid is not reoriented when the ligand is unchanged
(Figure 6F) but would reorient when the ligand is charged
(Figure 6G). The reorientation would result in an expansion in
the xy-plane and a larger area per lipid. For smaller boxes, when
the ligand is unchanged, the lipid is still not reoriented (Figure
6D). However, when the ligand is charged, the lipid should
reorient but is disrupted by the periodic boundary (Figure 6E).
This would result in a smaller increase in the xy-plane and a
smaller increase in area per lipid. To check if this effect is
significant and if it is size-dependent, the difference in area per
lipid between the charged and uncharged states has been
computed for different box sizes. As shown in Figure 6H, the
change of the area per lipid when the ion is charged is very small,
suggesting that there is very little reorientation. Furthermore,
the effect of the box size on this difference is very small,
suggesting that ΔΔGDSC(L) from lipid reorientation would be
negligible.

Additional Co-Alchemical Ion as Alternative Solution.
In the previous sections, we have shown that Rocklin correction
could be used to remove the size-dependent artifact during
charge annihilation free-energy calculations and, using a
continuum model for the lipid bilayer, the deviation from the
reference value could be lowered from ∼2 kcal/mol to ∼0.5

Figure 7. Use of a co-alchemical ion to maintain charge neutrality. (A) The test system for the coannihilation of NaCl or charge transfer from the
chloride ion or formic acid to chloride ion, where one molecule is put at the center of the box and the other at the edge of the box. (B) The test case for
the lipid−water system, where onemolecule is put at the center of the box and the other molecule at the same xy-plane, is at the edge. (C) The test case
where protein is embedded in the lipid and the chloride ion is restrained in the center of the protein, where the charge is transferred from the chloride
(green) in the protein (brown) to another chloride at the corner of the box (gray). (D) The coannihilation free energies of NaCl in water (blue) and
the lipid−water system (orange) are different. (E) The free energy of charge transfer from chloride to chloride in both pure water and lipid membrane
systems. (F) The charge transfer from formic acid to chloride ion. (G) The free energy of charge transfer of the chloride ion in a membrane protein to a
chloride ion in solvent in different lipids.
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kcal/mol for a simple lipid−water system. However, it is unclear
as to how such a continuum model for a lipid bilayer would be
applied to a protein−lipid system. Another way of solving the
size-dependent artifact is to use a co-alchemical ion to maintain
the neutrality of the box.
There could be two ways of applying such an alchemical ion.

For example, for the charge annihilation of a ligand with a charge
of −1, a sodium ion of +1 charge could be annihilated
simultaneously or a chloride ion with zero charge could be
recharged to a normal chloride ion. For a water system (Figure
7A), both approaches yield the correct answer, where the
simultaneous annihilation of chloride and sodium ion yields the
sum of the annihilation free energy of a chloride and a sodium
ion (Figure 7D). Some deviation can be seen where the
coannihilation free energy has some very small size dependency.
This deviation could be removed by accounting for the
interaction between the sodium and chloride ions, assuming
that the water is a continuum medium (Figure 7D).
Another option is to charge another ion to keep the total

charge neutral. To account for the charge annihilation of a
chloride ion, another neutral chloride ion will be charged. The
charge transfer from one chloride ion to another chloride ion
yields a zero free-energy difference, regardless of the presence of
lipid (Figure 7E). Since the charge transfer between chloride
ions will always give zero, formic acid is used as a test case, where
the charge-transfer free energy is constant across different box
sizes (Figure 7F).
The situation is, however, different for lipid−water systems

(Figure 7B), where the simultaneous annihilation of chloride
and sodium ions yields a free energy of∼1.5 kcal/mol lower than
the case for a pure water system (Figure 7D).Many factors could
give rise to this deviation. The ions could have interactions with
the lipid bilayer, which are absent in a pure water system. The
lipid bilayer could disrupt the solvation shell around the ion in a
different sense compared with the ion in a pure water system.
Finally, the self-interaction free energy of the ions across the
periodic boundary condition could be different due to the low
dielectric constant of the lipid acryl tail. Among these three
factors, the final factor is the only one that we would consider
here. Given that an analytical solution cannot be derived to
describe the interactions between the sodium and chloride ions
across the periodic boundary, we attempted to remove this
artifact numerically. The lattice-sum energy of the system-
{Rocklin, 2013 #7126} can be described as
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where the system has N charged particles, where each particle
has charge qi at location ri (rij = rj − ri). ψLS is the lattice-sum
influence function, which is the electric potential generated by a
unit point charge at the origin multiplied by 4πϵ0, and ψLS

0 is the
Wigner self-term constant (difference betweenψLS and r

−1 in the
limit of infinitesimal distances). For a cubic box of edge L in a
homogeneous medium with a dielectric constant of ϵS, the ψLS

and ψLS
0 are defined as
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where δ is the three-dimensional Dirac delta function. For the
lipid−water system, where the dielectric constant is different for
plane interactions and off-plane interaction (Figure 6A), ψLS is
defined as
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where ϵwater is the dielectric constant of water and ϵmix is the
dielectric constant of the lipid−water system. z is the distance to
the center of the water phase and describes the interactions
going purely through the water phase in the lipid−water system.
To obtain this lattice-sum energy numerically, three PME

calculations were performed
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where UPME
ϵmix (L, L, L) is the lattice-sum energy of the system in a

continuous medium of ϵmix, UPME
ϵmix (L, L, ∞) is the lattice-sum

energy of the system in a continuous medium of ϵmix with an
infinite z-axis dimension (10,000 nm as employed in the
calculation), andUPME

ϵwater (L, L,∞) is the lattice-sum energy of the
system in a continuous medium of ϵwater with an infinite z-axis
dimension. The lattice-sum energy removes a very small amount
of the deviation but themajority persists. Thus, we conclude that
the deviation could not be corrected easily and further
considerations are required if the simultaneous annihilation
method were to be used in lipid membrane systems.
The charge-transfer method, on the other hand, still gives a

very small amount of deviation in the membrane system
compared with the pure water system. This deviation, however,
is negligible (∼0.1 kcal/mol) and relatively size-independent.

Co-Alchemical Ion in the Case of a Membrane Protein.
Although we have shown above that the charge-transfer method
using a co-alchemical ion can derive the free-energy difference in
a size-independent manner in an idealized system, it remains to
be seen as to how it would behave in the real world, where the
ligand is bound to a protein embedded in a membrane. We
therefore constructed a system with the 14-stranded outer-
membrane porin OmpG46 embedded in a POPC membrane.
The ion to be annihilated is situated at the core of the protein at
the same level as the core of the hydrophobic region of the lipid
(Figure 7C). Given that the chloride ion in the protein is in an
environment that is different from the solvent, the charge
transfer from one chloride ion to another chloride ion will not be
the same as the case when both of them are in solvent (Figure
7E). As shown in Figure 6B, the self-interactions across the
hydrophobic region of the lipid would give a significant self-
interaction energy that would be expected to be size-dependent;
this problem should be greatly reduced when the ligand is in the
protein. Our calculations show that for the model protein
system, this effect of the box dimension on the self-interaction
term is smaller than the error and can be safely ignored (Figure
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7G). Furthermore, the result is invariant with respect to the lipid
saturation level (saturated DPPC, half-saturated POPC) or
thickness (short DLPC/long DPPC) or when the lipid is
charged (POPE POPG mixture) showing that the method is
robust.

■ DISCUSSION
In this work, we have shown that the Rocklin correction can
correct for the finite-size artifact for the soluble system but will
exhibit a large deviation in the lipid−water system. By
incorporating a continuum lipid model via the Poisson−
Boltzmann calculation, we were able to greatly reduce the
error. Although this gives a reasonable improvement, this
approach remains rather limited as the continuum lipid model
could only be derived for a pure lipid bilayer and it is unclear as
to how to generalize this to all lipid−protein systems. Instead, we
propose to avoid this problem altogether and advocate the use of
the co-alchemical ion approach, where the charge of the charged
ligand is transferred to the co-alchemical ion. However, it is also
the case that this approach gives rise to a small systematic error
when the membrane is present. Note that in the case where a
large enough bulk solvent volume can be included, then one
might use the same volume to couple another copy of the ligand,
thus reverting to the double-system single-box approach
{Macchiagodena, 2021 #10371}, but there are practical
implications that can make this approach less trivial than a
simple co-alchemical ion treatment.
Our results here shed some light on the apparent

inconsistencies in the literature, where many people have
strongly advocated the Rocklin correction and the necessity of
correcting for the finite-size artifact. Others have shown that
ignoring the size-dependent artifact can still give results that give
a good correlation with the experimental data.47 Similarly, there
are studies that have shown that the Rocklin correction has very
little effect on the RBFE calculations.48 This is likely best
explained by the fact that the Rocklin correction mainly corrects
for the long-range effects of the electrostatic interactions. The
ΔΔGDSC(L), which is usually the largest component in Rocklin
correction, depends on the proportion of the box that is filled
with water. For RBFE calculations, this proportion is unlikely to
change, whichmeans theΔΔGDSC(L) is very similar for different
ligands tested in RBFE. Though the specific ligand−protein
interaction would give rise to a different ΔΔGRIP(L), different
ligands would give a very similar average electrostatic potential
and ΔΔGRIP(L) is usually very small unless lipids are involved.
One way of avoiding the finite-size artifact would be to ensure

the neutrality of the simulation box. For the computation of
ligand binding free energy, an alternative would be path
sampling, where the free energy of pulling the ligand out of
the binding pocket is taken as the binding free energy. However,
it has been observed that the binding free energy computed with
path sampling did not converge to the same end result as those
done alchemically and corrected with the Rocklin correction.49

However, one study has also shown that they can give similar
results.50 One explanation for this discrepancy would be that the
self-interaction term would be size-dependent when the species
of opposite charge cannot sample the same configurational
space. For example, in Figure 6B, we have shown that the self-
interaction energy of an ion in the water phase of the lipid−water
system can be quite different compared with the same ion in the
hydrophobic core. Thus, in the case where the charge species
cannot sample the whole configurational space, such as when the
ligand is restrained to the protein during path sampling, the self-

interaction energy of the charged ligand cannot be compensated
by an ion of opposite charge in the water phase. Thus, the self-
interaction energy of the ligand will be size-dependent and could
give different results when the simulation box has different sizes.
This difference in the self-interaction energy could also explain
the conformational dependence on the box size,51 where smaller
boxes would favor the conformation that minimizes the self-
interaction energy.

■ CONCLUSIONS

To solve the finite-size effect, we have shown that the Rocklin
correction, the co-alchemical ion with charge transfer, and
coannihilation of the charge would all work for a soluble protein
system. For systems with lipid bilayers, however, only the co-
alchemical ion using charge transfer will avoid the finite-size
effects, and thus for these kinds of calculations, this is the
recommended approach.

■ METHODS

Construction of Water Box. To investigate the charge
annihilation free energy, empty boxes were constructed, where
the box dimension, L, was 2.1, 2.5, 3, 4, 5, 6, 7, 8, 9, and 10 nm.
For the single-ion charge annihilation free-energy calculations,
the ion was placed at the center of the box and the box was
solvated with the gmx solvate tools.52 For the charge transfer or
coannihilation calculations, the chloride ion was position-
restrained at the center of the box with a restraint strength of
1000 kJ/(mol nm2) at the x-, y-, and z-axes. The sodium ion,
chloride ion, or formic acid was position-restrained to the edge
of the box (0, 0, 0) at the same strength.

Construction of the Lipid−Water Box. The lipid−water
box was constructed using a pre-equilibrated POPC system
obtained from the slipid website (http://www.fos.su.se/~sasha/
SLipids/Downloads.html, accessed 09/12/2021).53 The lipid
was replicated in the x- and y-dimensions with MDAnalysis54

and was trimmed to the desired dimension, L, as required (i.e., 8,
8.5, 9, 9.5, 10 nm). The box was solvated with water and
equilibrated for 100 ns under isobaric and isothermal ensemble
(NPT) conditions. For the charge annihilation of a single ion,
the ion was placed at the center of the box and was position-
restrained on the z-axis with a restraint of 1000 kJ/(mol nm2).
For the charge transfer or coannihilation calculations, the
chloride ion was placed at the center of the box (L/2, L/2, L/2)
and the sodium ion, chloride ion, or formic acid was placed at the
edge at the same z-axis (0, 0, L/2) and position-restrained in all
(x, y, and z) axes. To ensure the ion remains in the middle of the
water phase (in the middle of the box), the equilibrated box was
centered with respect to the water phase.

Construction of the Protein−Lipid−Water Box. The
open form of OmpG (PDB: 2IWV)46 was embedded in a POPC
bilayer using a self-assembly protocol, as described previously by
us.55 Both protein and lipid were described using the Martini 3
force field.44 The lipids were trimmed to the desired box size and
equilibrated for 20 ns with the “New-RF” parameters.56 The
system was then converted to an atomistic representation with
cg2at57 and then further equilibrated for 100 ns. The ion to be
annihilated was position-restrained to the center of the protein
(i.e within the barrel), where the reference z-axis coordinate is
the center of the membrane defined as the mean of the
phosphate groups of the lipids. The coordinate in the x−y-plane
was chosen such that it is the furthest from any atoms in the
protein. To ensure that the same result is obtained in different
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box sizes, the protein was position-restrained to the center of the
box using the same reference coordinate from the crystal
structure. The co-alchemical ion where the charge is created was
restrained to the corner of the box [0, 0, 0]. All positional
restraints were set to 1000 kJ/(mol nm2).
Simulation Setup. Simulations were run with the

GROMACS 2020 MD engine.52 The force field for lipids was
slipid,53 and the TIP3P water model was used for water. Formic
acid was parameterized with GAFF2.58 The electrostatic
interactions and Lennard-Jones interaction were computed
with particle mesh Ewald (PME).5 The pme-order was set to 6,
the Fourier spacing was set to 0.1, and the ewald-rtol was set to 1
× 10−6 for electrostatic interactions and 1 × 10−3 for Lennard-
Jones interactions. The direct space cutoff was set to 1 nm. The
H-bond length was constrained by LINCS59 with lincs-iter and
lincs-order set to 2 and 6, respectively. The time step of
integration was 2 fs. The alchemical transformation was done via
11 steps with a delta of 0.1. The charge of the chloride, sodium,
or formic acid was scaled linearly from the full charge to zero or
vice versa.
The system was energy-minimized before a 100 ps NPT

equilibration with Langevin dynamics at 298.15 K,60 and the
pressure was restrained to 1 bar with the Berendsen barostat.61

Production runs employed replica exchange, and exchanges
were performed every 1000 steps and used the Parrinello−
Rahman barostat.62 For the calculations involving only sodium
and chloride ions, production runs were 1 ns and were repeated
30 times. For the calculations involving formic acid, five repeats
of 30 ns production runs were performed. The free-energy
estimate was done with MBAR63 and alchemlyb.64

Poisson−Boltzmann Calculations. APBS 1.565 was used
to numerically solve Poisson−Boltzmann equations. A POPC
water box with a dimension of (64.26 * 67.47 * 71.67 Å) was
simulated in the NVT ensemble for 100 ns, where 100 snapshots
were taken to compute the electrostatic potential profile. The
APBS input files were modeled on the Rocklin correction.11

For the computation of the continuum model, the input files
(charge density, dielectric constant mesh) were prepared with
rocklinc (https://github.com/bigginlab/rocklinc, accessed 11/
11/2021) and all analysis codes are included in the same
depository.
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