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chlororaphis strain UFB2, a soil bacterium
with antibacterial activity against bacterial
canker pathogen of tomato
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Abstract

Strain UFB2 was isolated from a soybean field soil in Mississippi and identified as a member of Pseudomonas chlororaphis.
Strain UFB2 has a broad-spectrum antimicrobial activity against common soil-borne pathogens. Plate assays showed that
strain UFB2 was especially efficient in inhibiting the growth of Clavibacter michiganensis 1–07, the causal agent of the
devastating bacterial canker of tomato. Here, the complete genome sequence of P. chlororaphis strain UFB2 is
reported and described. The strain UFB2 genome consists of a circular chromosome of 6,360,256 bp of which
87.86 % are protein-coding bases. Genome analysis revealed multiple gene islands encoding various secondary
metabolites such as 2,4-diacetylphloroglucinol. Further genome analysis will provide more details about strain
UFB2 antibacterial activities mechanisms and the use of this strain as a potential biocontrol agent.

Keywords: Pseudomonas chlororaphis strain UFB2, Complete genome, Biocontrol, Bacterial canker of tomato,
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Introduction
Bacterial strains of Pseudomonas chlororaphis are aerobic
Gram-positive bacteria and many of the strains possess a
wide-spectrum antifungal activity against soil-borne plant
pathogens [1–5]. P. chlororaphis strains have been reported
to be efficient plant-growth-promoting bacteria, which can
be used as inoculants for biofertilization, phytostimulation
and biocontrol [6]. The use of P. chlororaphis strains as bio-
control agents is promising because they are capable of pro-
ducing a variety of antimicrobial secondary metabolites
including phenazine-1-carboxamide, 2-hydroxyphenazine,
pyrrolnitrin, hydrogen cyanide, chitinases and proteases [6–
8]. Moreover, P. chlororaphis is considered to be nonpatho-
genic to humans, wildlife, or the environment according to
U.S. environmental protection agency (EPA) [9]. Antimicro-
bial activities and low risks to animals and the environments
have made the bacterium P. chlororaphis highly potential
biocontrol agents in agriculture [8, 10]. A genome-wide

research and analysis could provide useful information
about the mechanisms of how P. chlororaphis protects
plants against soil-borne phytopathogens. Currently, the
whole genomes of a few P. chlororaphis strains that exhibit
antifungal activity have been sequenced. These include P.
chlororaphis strain PA23 that can protect canola from stem
rot disease caused by the fungal pathogen Sclerotinia sclero-
tiorum [2, 11], and P. chlororaphis PCL1606 that was iso-
lated from avocado rhizosphere and exhibited biocontrol
activity against soil-borne phytopathogenic fungi [1]. In
addition, another functionally-uncharacterized strain, P.
chlororaphis subsp. aurantiaca JD37, was recently se-
quenced (NCBI reference sequence: NZ_CP009290.1). Gen-
ome sequences of P. chlororaphis strains with significant
antibacterial activity have not been reported previously.
Strain UFB2 was isolated from a soybean field soil in

Mississippi. Preliminary analysis of the 16S rRNA gene in-
dicated that it is a member of P. chlororaphis. Plate assays
indicated P. chlororaphis strain UFB2 has a broad spectrum
of antimicrobial activities, especially against bacterial canker
pathogen of tomato: Clavibacter michiganensis [12, 13].
Greenhouse trials demonstrated both living cells and
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Fig. 1 Image of P. chlororaphis UFB2 cells and plate assay of UFB2 antibacterial activity against Clavibacter michiganensis 1–07. The plate bioassay
was conducted as described by Scholz-Schroeder and colleagues [44]

Table 1 Classification and general features of Pseudomonas chlororaphis UFB2 according to the MIGS recommendations [55]

MIGS ID Property Term Evidence codea

Classification Domain Bacteria TAS [56]

Phylum Proteobacteria TAS [57]

Class Gammaproteobacteria TAS [58, 59]

Order Pseudomonadales TAS [19, 60]

Family Pseudomonadaceae TAS [19, 61]

Genus Pseudomonas TAS [19, 61–63]

Species Pseudomonas chlororaphis TAS [19, 64, 65]

strain: UFB2 NAS

Gram stain negative TAS [66]

Cell shape Rod TAS [66]

Motility Motile TAS [66]

Sporulation None NAS

Temperature range Mesophilic IDA

Optimum temperature 33 °C IDA

pH range; Optimum not determined IDA

Carbon source D-glucose, D-galactose, L-rhamnose, D-mannitol, D-raffinose,
D-fructose, D-arabinose, 2D-ribose, L-arabinose, L-xylose, D-xylose.

TAS [66]

MIGS-6 Habitat Soil NAS

MIGS-6.3 Salinity not determined IDA

MIGS-22 Oxygen requirement Aerobic NAS

MIGS-15 Biotic relationship free-living/Rhizospheric NAS

MIGS-14 Pathogenicity non-pathogen IDA

MIGS-4 Geographic location Mississippi, USA IDA

MIGS-5 Sample collection 2011 IDA

MIGS-4.1 Latitude 34.1 N IDA

MIGS-4.2 Longitude 90.6 W IDA

MIGS-4.4 Altitude 40 M IDA
aEvidence codes - IDA Inferred from Direct Assay, TAS Traceable Author Statement (i.e., a direct report exists in the literature), NAS Non-traceable Author Statement
(i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence codes
are from the Gene Ontology project [67]
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culture extract of strain UFB2 can be used for disease man-
agement of bacterial canker of tomato. In this study, the P.
chlororaphis strain UFB2 complete genome sequence and
annotation are reported. The gene islands within strain
UFB2 genome that encode various secondary metabolites,
including antimicrobial compounds, are also described.
The detailed description of the strain UFB2 genome will
shed light into further studies of biocontrol effectiveness
and applications of Pseudomonas species.

Organism information
Classification and features
Strain UFB2 was isolated from rhizosphere soil sample
collected from soybean field near Cleveland, Mississippi,
USA, where healthy soybean plants were found growing
in charcoal rot disease patch. Phylogenetic analyses
based on multilocus sequence typing [14] (gyrB, rpoB,
rpoD and 16 s rRNA) revealed that strain UFB2 belongs
to Pseudomonas chlororaphis (Fig. 2). Strain UFB2 is
rod-shaped, motile, non-spore-forming Gram-negative
bacterium in the order Pseudomonadales of the class
Gammaproteobacteria. UFB2 cells are approximately
3.0 ± 0.8 μm in width and 0.9 ± 0.3 μm in length (Fig. 1).
The strain is relatively fast-growing, forming approxi-
mately 1 mm opaque yellowish colonies after overnight
incubation at 28 °C on nutrient-broth yeast extract agar

[15]. Strain UFB2 can also be grown on rich media such
as LB [16] and PDA, as well as M9 minimal medium
[17]. Phenotypic characterization of strain UFB2 was
carried out using the API 50CH system as recommended
by manufacturer. According to the result, strain UFB2
could utilize almost all carbon sources in API 50CH
tests, including D-glucose, D-galactose, L-rhamnose, D-
mannitol, D-raffinose, D-fructose, D-arabinose, D-ribose,
L-arabinose, L-xylose and D-xylose, but not potassium
gluconate.
Plate bioassays demonstrated that strain UFB2 pos-

sesses significant antibacterial activity against a broad
array of plant bacterial pathogens. Other than Clavibac-
ter michiganensis 1–07, the tested bacteria sensitive to
strain UFB2 also include Erwinia amylovora [18, 19],
Burkholderia glumae [20], Ralstonia solanacearum Rso
[21, 22] and Erwinia carotovora WSCH1 [19, 23]. Of the
tested plant pathogenic bacteria, the Gram-positive bac-
terium Clavibacter michiganensis 1–07, the pathogen
causing bacterial canker of tomato [24], is most sensitive
to strain UFB2 with a radius of 28 ± 1 mm clear inhibi-
tory zone (Fig. 1). In addition, the growth of fungal
pathogen Geotrichum candidum Km, which causes sour
rot of citrus fruits, tomatoes, carrot and some vegetables
[25], can also be inhibited by strain UFB2. To test the
field biocontrol efficacy of strain UFB2, greenhouse

Fig. 2 Phylogenetic analysis of concatenated four multilocus sequence typing loci of P. chlororaphis UFB2 and related species. Phylogenetic tree
based on the concatenated sequence (3775 bp) of four housekeeping gene fragments [gyrB (729 bp), rpoB (885 bp), rpoD (711 bp) and 16 s rRNA
(1450 bp)]. Phylogenetic analyses were performed using MEGA, version 6.06 [51]. The tree was built using the Neighbor-Joining method [52].
Bootstrap analysis with 1000 replicates was performed to assess the support of the clusters
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experiments were set up according to the method de-
scribed by Lu and Ingram [26]. Preliminary data showed
the control efficacies of both strain UFB2 culture extract
and living cells on bacterial canker of tomato are equiva-
lent to that of streptomycin at the recommended rate
for plant disease management. The genome of strain
UFB2 was sequenced with the aim to identify the genes
associated with the antimicrobial characters. The infor-
mation about the genome sequence of strain UFB2 is
summarized in Table 1, and its phylogenetic position is
shown in Fig. 2.

Chemotaxonomic data
Fatty acid analysis was performed by gas chromatog-
raphy (gas chromatograph, model 6890 N, Agilent Tech-
nologies) and analyzed by the Microbial Identification
System (MIDI, Sherlock Version 6.1; database, TSBA40).
The analysis of total cells showed the major fatty acids
are C 16:1

ω7c (32 %), C 16:0 (28 %), C 18:1
ω7c (19 %). Fatty

acid 3-hydroxy C 12:0 (5 %), C 12:0 (4 %), 2-hydroxy C 12:0

(4 %) and 3-hydroxy C 10:0 (3 %) were found in minor
amount.

Genome sequencing information
Genome project history
P. chlororaphis strain UFB2 was selected for sequencing
because of its significant antimicrobial activities and its
potential as a biocontrol agent for agricultural use. Ge-
nomes of three P chlororaphis strains have been sequenced
as of May 2015. Sequencing of the whole genome of strain
UFB2 makes more data available for genome comparison
and analysis within P. chlororaphis species.
The genome project is deposited in the Genomes On-

Line Database [27] and the NCBI BioProject database
[28]. The annotated genome is publicly available from

the Intergrated Microbial Genomes Database [29] under
the accession number Gp0111981 and GenBank under
accession number CP011020. A summary of the project
information is provided in Table 2.

Growth conditions and genomic DNA preparation
P. chlororaphis strain UFB2 was cultured in liquid NBY
medium overnight at 28 °C in a shaker at 220 rpm. The
genomic DNA was extracted from 50 mL of the culture
using the Wizard Genomic DNA Purification Kit (Pro-
mega Corporation, Madison, WI, USA). Totally approxi-
mately 900 μg of DNA were obtained with an OD260/
280 of 1.9. The DNA sample was used for library

Table 3 Genome statistics

Attribute Value % of Total

Genome size (bp) 6,360,256 100.00

DNA coding (bp) 5,588,126 87.86

DNA G + C (bp) 3,945,558 62.03

DNA scaffolds 1 100.00

Total genes 5,556 100.00

Protein coding genes 5,473 98.51

RNA genes 83 1.49

Pseudo genes 90 1.62

Genes in internal clusters 5,473 98.51

Genes with function prediction 4,886 87.94

Genes assigned to COGs 4,092 73.65

Genes with Pfam domains 4,748 85.46

Genes with signal peptides 577 10.39

Genes with transmembrane helices 1,228 22.10

CRISPR repeats 0 0

Table 2 Project information

MIGS ID Property Term

MIGS 31 Finishing quality Finished

MIGS-28 Libraries used libraries of 400 bp, mate pair library of 2,000, 5,000 and 8,000 bp

MIGS 29 Sequencing platforms Illumina

MIGS 31.2 Fold coverage 600 ×

MIGS 30 Assemblers DNAStar Seqman NGen v12

MIGS 32 Gene calling method NCBI Prokaryotic Genome Annotation Pipeline

Locus Tag VM99

Genbank ID CP011020

GenBank Date of Release Jun 9th, 2015

GOLD ID Gp0111981

BIOPROJECT PRJNA277727

MIGS13 Source Material Identifier UFB2

Project relevance Biocontrol
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construction with Illumina Genomic DNA Sample Prep-
aration Kit (Illumina, CA, USA).

Genome sequencing and assembly
One standard library with an average insert size of
400 bp and three mate pair libraries with an average in-
sert size of 2,000 bp, 5,000 bp and 8,000 bp were pre-
pared and sequenced on the Illumina MiSeq instrument
according to the manufacturer’s instructions. The gen-
ome was de novo assembled using a method as described
by Durfee et al. [30] using DNAStar Seqman NGen
(Version 12, DNASTAR, Inc. Madison, WI U.S.). The
standard library and 2,000 bp mate pair library were se-
lected for the de novo assembly. A total of 30 million
short reads were scanned and extracted from the raw
data files as input data. The short reads were prepro-
cessed by Seqman NGen to trim adaptors and filter low-
quality reads. Automatic Mer size and a minimum

match percentage of 98 % were selected. 29 million short
reads were assembled into 29 contigs and SeqMan Pro
(Version 12, DNASTAR, Inc. Madison, WI U.S.) was
used to order the contigs in one scaffold according to
the mate pair data. The first round assembled sequence
was then used as a template for a complete reassembly.
The 2,000 bp and 8,000 bp mate pair data were incorpo-
rated to proofread the first assembly and to maximize
coverage and quality. Adjacent contigs, if possible, were
merged. Remaining gaps were filled by PCR and Sanger
sequencing. No contigs that might correspond to plas-
mids remained unassembled. IslandViewer [31] was used
to predict and identify genomic islands.

Genome annotation
Automatic annotation was performed using the NCBI
Prokaryotic Genome Annotation Pipeline [32], which
combines gene calling algorithm with similarity-based

Fig. 3 Circular representation of the P. chlororaphis UFB2 genome compared with six sequenced Pseudomonas whole genomes. Rings from inside
to outside: (1) Scale, (2) GC content (navy), (3) GC skew (purple), (4) BLAST comparison with P. syringae pv. syringae B728a (deep pink), (5) BLAST
comparison with P. putida KT2440 (pink), (6) BLAST comparison with P. chlororaphis strain PA23 (cyan), (7) BLAST comparison with P. aeruginosa
PAO1 (violet), (8) BLAST comparison with P. fluorescens Pf0-1 (skyblue), (9) BLAST comparison with P. sp. UW4 (yellow), (10) Coding sequences of
P. chlororaphis UFB2 genome (dark cyan), (11) Gene islands (medium purple), (12) rRNA genes (orange), tRNA genes (dark green) and ncRNA (red).
BLASTn comparison of genomes was visualized by BRIG [53] and UFB2 genome the image was generated with Circos [54]
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gene detection approach to predict protein-coding genes,
structural RNAs (5S, 16S, 23S), tRNAs and small non-
coding RNAs. Additional gene prediction analysis and
functional annotation were performed by the Integrated
Microbial Genomes platform [29].

Genome properties
The complete genome of P. chlororaphis strain UFB2
consists of one circular chromosome of 6,360,256 bp
with a GC content of 62.03 %. 5,556 genes were identi-
fied from the genome, of which 5,473 are protein cod-
ing genes. 90 of the 5,556 genes were predicted to be
pseudogenes or partial genes. The genome encodes 1
noncoding RNA, 5 rRNA operons and 65 tRNAs. Sev-
enty genomic islands ranging from 4 kbp to 43.5 kbp
were also identified throughout the strain UFB2 gen-
ome, among which majority of the islands encode
hypothetical proteins. The genome features of P.
chlororaphis strain UFB2 are summarized in Tables 3
and 4, and the circular chromosome of strain UFB2 is
shown in Fig. 3.

Insights from the genome sequence
Blast research of P. chlororaphis strain UFB2 genome
against P. syringae pv. syringae B728a (NC_007005), P.
putida KT2440 (NC_002947), P. chlororaphis strain
PA23 (NZ_CP008696), P. aeruginosa PAO1 (NC_002516),
P. fluorescens Pf0-1 (NC_007492) and P. sp. UW4
(NC_019670) genome revealed multiple unique gene
regions which were only found in the strain UFB2 genome
(Fig. 3). The BLASTn atlas showed noticeable genome di-
versity of strain UFB2 when compared to other Pseudo-
monas species. Seventy genomic islands ranging from 4
kbp to 30 kbp were also identified throughout the strain
UFB2 genome, indicating significant horizontal gene
transfers occurred during the evolution of strain UFB2 to
better adapt the environment it inhabited.
P. chlororaphis strain UFB2 harbors an intact phl gene

cluster (VM99_23970-23995), which is responsible for
biosynthesis of the antimicrobial compound 2,4-diace-
tylphloroglucinol [33, 34]. 2,4-diacetylphloroglucinol is
an especially efficient agent against soil borne fungal
plant pathogens [35]. The phl gene cluster is involved in
the Pseudomonas antifungal activity against Clavibacter

Table 4 Number of genes associated with general COG functional categories

Code Value % age Description

J 231 4.89 Translation, ribosomal structure and biogenesis

A 1 0.02 RNA processing and modification

K 418 8.85 Transcription

L 123 2.60 Replication, recombination and repair

B 3 0.06 Chromatin structure and dynamics

D 39 0.83 Cell cycle control, Cell division, chromosome partitioning

V 101 2.14 Defense mechanisms

T 316 6.69 Signal transduction mechanisms

M 262 5.55 Cell wall/membrane biogenesis

N 166 3.52 Cell motility

W 44 0.93 Extracellular structures

U 137 2.90 Intracellular trafficking and secretion

O 166 3.52 Posttranslational modification, protein turnover, chaperones

C 304 6.44 Energy production and conversion

G 227 4.81 Carbohydrate transport and metabolism

E 483 10.23 Amino acid transport and metabolism

F 92 1.95 Nucleotide transport and metabolism

H 242 5.12 Coenzyme transport and metabolism

I 234 4.96 Lipid transport and metabolism

P 257 5.44 Inorganic ion transport and metabolism

Q 142 3.01 Secondary metabolites biosynthesis, transport and catabolism

R 430 9.11 General function prediction only

S 260 5.51 Function unknown

- 1464 26.35 Not in COGs

The total is based on the total number of protein coding genes in the genome
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michiganensis 1–07 [36]. Hydrogen cyanide [37, 38] bio-
synthesis gene homologs were also identified in strain
UFB2 genome. The production of hydrogen cyanide by
Pseudomonas species helps protect plants from soil-borne
fungal pathogens [39, 40]. Biosynthetic gene clusters of
common Pseudomonas species-produced antibiotics such
as phenazine [41], pyrrolnitrin [42] and pyoluteorin [43]
were not identified in strain UFB2 genome. Biosynthetic
gene clusters of common toxins that contribute to plant
and animal pathogenicity and/or virulence of Pseudo-
monas species were also searched for within strain UFB2
genome. The toxin biosynthetic gene cluster that were not
identified in strain UFB2 genome include the phytotoxin
lipopeptide syringomycin [44], tobacco wildfire spotting
causal agent tabtoxin [45], bacterial canker of kiwifruit
causal agent phaseolotoxin [46], plant-hormone-mimic
toxin coronatine [47], and cytotoxic agent pederin [48].
Strain UFB2 genome harbors homolog genes to those in
the bacterial apical necrosis causal agent mangotoxin [49]
biosynthesis gene cluster. However, mboC gene homolog
that is required for mangotoxin production [50] was not
identified in strain UFB2 genome. Overall, the lack of the
key pathogenicity/virulence genes in strain UFB2 further
indicates that strain UFB2 has a great potential as a bio-
control agent.

Conclusions
The complete genome sequence of P. chlororaphis strain
UFB2 is described in this report. The strain UFB2 was
originally isolated from the rhizosphere of a healthy soy-
bean plant growing in a group of plants exhibiting char-
coal rot disease in Mississippi. This strain possesses
significant antimicrobial activities against a wide range
of plant pathogenic bacteria and fungi. It is evident that
the genome of P. chlororaphis strain UFB2 harbors the
complete gene set for production of the antimicrobial
compounds 2,4-DAPG and HCN, which may largely
contribute to its antimicrobial activities. However, gene
homologs required for biosynthesis of all the known
toxins to plants, such as syringomycin, tabtoxin, phaseo-
lotoxin, tolaasin, coronatine, or pederin, were absent
from the strain UFB2 genome. The genome sequence of
P. chlororaphis strain UFB2 will help in understanding
genetic mechanisms of the antimicrobial activity studies
that are useful for development of biologically-based dis-
ease management in agriculture.

Competing interests
The authors declare no competing interests.

Authors’ contributions
PD and SL designed the experiments; PD, XW, and SB performed the
experiments; PD and SL wrote the manuscript and all authors read, critiqued
and edited the manuscript.

Acknowledgements
We thank Chuan-Yu Hsu and Kurt C. Showmaker for sequencing services and
Richard Baird, Sead Sabanadzovic and Justin Thornton for helpful discussion.
This research was funded by USDA NIFA to SL (MIS-401170).

Author details
1Department of Biochemistry, Molecular Biology, Entomology and Plant
Pathology, Mississippi State University, Mississippi State, USA. 2Department of
Plant Pathology, Shandong Agricultural University, Taian 271018Shandong,
China.

Received: 19 June 2015 Accepted: 29 September 2015

References
1. Calderon CE, Ramos C, de Vicente A, Cazorla FM. Comparative genomic analysis

of Pseudomonas chlororaphis PCL1606 reveals new insight into antifungal
compounds involved in biocontrol. Mol Plant Microbe Interact. 2015;28(3):249–60.

2. Loewen PC, Villenueva J, Fernando WG, de Kievit T. Genome Sequence of
Pseudomonas chlororaphis Strain PA23. Genome Announc 2014; 2(4),
doi: 10.1128/genomeA.00689-14.

3. Loper JE, Hassan KA, Mavrodi DV, Davis 2nd EW, Lim CK, Shaffer BT, et al.
Comparative genomics of plant-associated Pseudomonas spp.: insights into
diversity and inheritance of traits involved in multitrophic interactions. PLoS
Genet. 2012;8(7):e1002784.

4. Shen X, Chen M, Hu H, Wang W, Peng H, Xu P, et al. Genome sequence
of Pseudomonas chlororaphis GP72, a root-colonizing biocontrol strain.
J Bacteriol. 2012;194(5):1269–70.

5. Kim MS, Kim YC, Cho BH. Gene expression analysis in cucumber leaves primed
by root colonization with Pseudomonas chlororaphis O6 upon challenge-
inoculation with Corynespora cassiicola. Plant Biol (Stuttg). 2004;6(2):105–8.

6. Bloemberg GV, Lugtenberg BJ. Molecular basis of plant growth promotion
and biocontrol by rhizobacteria. Curr Opin Plant Biol. 2001;4(4):343–50.

7. Chin AWTF, Bloemberg GV, Mulders IH, Dekkers LC, Lugtenberg BJ. Root
colonization by phenazine-1-carboxamide-producing bacterium
Pseudomonas chlororaphis PCL1391 is essential for biocontrol of tomato foot
and root rot. Mol Plant Microbe Interact. 2000;13(12):1340–5.

8. Selin C, Habibian R, Poritsanos N, Athukorala SN, Fernando D, de Kievit TR.
Phenazines are not essential for Pseudomonas chlororaphis PA23 biocontrol
of Sclerotinia sclerotiorum, but do play a role in biofilm formation. FEMS
Microbiol Ecol. 2010;71(1):73–83.

9. Pseudomonas chlororaphis strain 63–28 (006478) Fact Sheet [http://www.
epa.gov/opp00001/chem_search/reg_actions/registration/fs_PC-006478_01-
Apr-01.pdf]

10. Tombolini R, van der Gaag DJ, Gerhardson B, Jansson JK. Colonization
pattern of the biocontrol strain Pseudomonas chlororaphis MA 342 on barley
seeds visualized by using green fluorescent protein. Appl Environ Microbiol.
1999;65(8):3674–80.

11. Savchuk S, Dilantha Fernando WG. Effect of timing of application and
population dynamics on the degree of biological control of Sclerotinia
sclerotiorum by bacterial antagonists. FEMS Microbiol Ecol. 2004;49(3):379–88.

12. Eichenlaub R, Gartemann KH. The Clavibacter michiganensis subspecies:
molecular investigation of gram-positive bacterial plant pathogens. Annu
Rev Phytopathol. 2011;49:445–64.

13. Davis MJ, Gillaspie AG, Vidaver AK, Harris RW. Clavibacter: a new genus
containing some phytopathogenic coryneform bacteria, including Clavibacter
xyli subsp. xyli sp. nov., subsp. nov. and Clavibacter xyli subsp. cynodontis subsp.
nov., pathogens that cause ratoon stunting disease of sugarcane and
bermudagrass stunting disease. Int J Syst Bacteriol. 1984;34:107–17.

14. Maiden MC. Multilocus sequence typing of bacteria. Annu Rev Microbiol.
2006;60:561–88.

15. Vidaver AK. Synthetic and complex media for the rapid detection of
fluorescence of phytopathogenic pseudomonads: effect of the carbon
source. Appl Microbiol. 1967;15(6):1523–4.

16. Bertani G. Studies on lysogenesis. I. The mode of phage liberation by
lysogenic Escherichia coli. J Bacteriol. 1951;62(3):293–300.

17. Wang CH, Koch AL. Constancy of growth on simple and complex media.
J Bacteriol. 1978;136(3):969–75.

18. Winslow CE, Broadhurst J, Buchanan RE, Krumwiede C, Rogers LA, Smith GH.
The families and genera of the bacteria: final report of the committee of

Deng et al. Standards in Genomic Sciences  (2015) 10:117 Page 7 of 9

http://dx.doi.org/10.1601/nm.10662
http://dx.doi.org/10.1601/nm.2552
http://dx.doi.org/10.1601/nm.2552
http://dx.doi.org/10.1601/nm.2552
http://dx.doi.org/10.1601/nm.2552
http://dx.doi.org/10.1601/nm.2586
http://dx.doi.org/10.1601/nm.2586
http://dx.doi.org/10.1601/nm.2586


the society of american bacteriologists on characterization and classification
of bacterial types. J Bacteriol. 1920;5(3):191–229.

19. Skerman VBD, McGowan V, Sneath PHA. Approved lists of bacterial names.
Int J Syst Bacteriol. 1980;30:225–420.

20. Urakami T, Ito-Yoshida C, Araki H, Kijima T, Suzuki KI, Komagata K. Transfer of
Pseudomonas plantarii and Pseudomonas glumae to Burkholderia as
Burkholderia spp. and description of Burkholderia vandii sp. nov. Int J Syst
Bacteriol. 1994;44:235–45.

21. Yabuuchi E, Kosako Y, Yano I, Hotta H, Nishiuchi Y. Transfer of two
Burkholderia and an Alcaligenes species to Ralstonia gen. Nov.: Proposal of
Ralstonia pickettii (Ralston, Palleroni and Doudoroff 1973) comb. Nov.,
Ralstonia solanacearum (Smith 1896) comb. Nov. and Rals tonia eutropha
(Davis 1969) comb. Nov. Microbiol Immunol. 1995;39(11):897–904.

22. Validation of the publication of new names and new combinations previously
effectively published outside the IJSB. Int J Syst Bacteriol. 1996;46(2):625–626.

23. Waldee EL. Comparative studies of some peritrichous phytopathogenic
bacteria; 1945.

24. Gartemann KH, Kirchner O, Engemann J, Grafen I, Eichenlaub R, Burger A.
Clavibacter michiganensis subsp. michiganensis: first steps in the
understanding of virulence of a Gram-positive phytopathogenic bacterium.
J Biotechnol. 2003;106(2–3):179–91.

25. Thornton CR, Slaughter DC, Davis RM. Detection of the sour-rot pathogen
Geotrichum candidum in tomato fruit and juice by using a highly specific
monoclonal antibody-based ELISA. Int J Food Microbiol. 2010;143(3):166–72.

26. Ingram DM, Lu S-E. Evaluation of Foliar Sprays of Bacteriophages for the
Management of Bacterial Canker in Greenhouse Tomatoes. [http://www.
plantmanagementnetwork.org/pub/php/research/2009/tomato/].

27. Pagani I, Liolios K, Jansson J, Chen IM, Smirnova T, Nosrat B, et al. The
Genomes OnLine Database (GOLD) v.4: status of genomic and
metagenomic projects and their associated metadata. Nucleic Acids Res.
2012;40:D571–9.

28. Barrett T, Clark K, Gevorgyan R, Gorelenkov V, Gribov E, Karsch-Mizrachi I,
et al. BioProject and BioSample databases at NCBI: facilitating capture and
organization of metadata. Nucleic Acids Res. 2012;40(Database issue):D57–63.

29. Chen IM, Palaniappan K, Chu K, Szeto E, Grechkin Y, Ratner A, et al. IMG: the
Integrated Microbial Genomes database and comparative analysis system.
Nucleic Acids Res. 2012;40:D115–22.

30. Durfee T, Nelson R, Baldwin S, Plunkett 3rd G, Burland V, Mau B, et al. The
complete genome sequence of Escherichia coli DH10B: insights into the
biology of a laboratory workhorse. J Bacteriol. 2008;190(7):2597–606.

31. Langille MG, Brinkman FS. IslandViewer: an integrated interface for
computational identification and visualization of genomic islands.
Bioinformatics. 2009;25(5):664–5.

32. Tatiana T, Mike D, Azat B, Vyacheslav C, Stacy C, Wenjun L. Prokaryotic Genome
Annotation Pipeline. The NCBI Handbook [Internet]. 2nd edition. 2013.

33. Bangera MG, Thomashow LS. Identification and characterization of a gene
cluster for synthesis of the polyketide antibiotic 2,4-diacetylphloroglucinol
from Pseudomonas fluorescens Q2-87. J Bacteriol. 1999;181(10):3155–63.

34. Cronin D, Moenne-Loccoz Y, Fenton A, Dunne C, Dowling DN, O’Gara F.
Role of 2,4-Diacetylphloroglucinol in the Interactions of the Biocontrol
Pseudomonad Strain F113 with the Potato Cyst Nematode Globodera
rostochiensis. Appl Environ Microbiol. 1997;63(4):1357–61.

35. Shanahan P, O’Sullivan DJ, Simpson P, Glennon JD, O’Gara F. Isolation of
2,4-diacetylphloroglucinol from a fluorescent pseudomonad and
investigation of physiological parameters influencing its production. Appl
Environ Microbiol. 1992;58(1):353–8.

36. Lanteigne C, Gadkar VJ, Wallon T, Novinscak A, Filion M. Production of
DAPG and HCN by Pseudomonas sp. LBUM300 contributes to the biological
control of bacterial canker of tomato. Phytopathology. 2012;102(10):967–73.

37. Laville J, Blumer C, Von Schroetter C, Gaia V, Defago G, Keel C, et al.
Characterization of the hcnABC gene cluster encoding hydrogen cyanide
synthase and anaerobic regulation by ANR in the strictly aerobic biocontrol
agent Pseudomonas fluorescens CHA0. J Bacteriol. 1998;180(12):3187–96.

38. Gross H, Loper JE. Genomics of secondary metabolite production by
Pseudomonas spp. Nat Prod Rep. 2009;26(11):1408–46.

39. Voisard C, Keel C, Haas D, Defago G. Cyanide production by Pseudomonas
fluorescens helps suppress black root rot of tobacco under gnotobiotic
conditions. EMBO J. 1989;8(2):351–8.

40. Haas D, Blumer C, Keel C. Biocontrol ability of fluorescent pseudomonads
genetically dissected: importance of positive feedback regulation. Curr Opin
Biotechnol. 2000;11(3):290–7.

41. Mavrodi DV, Bonsall RF, Delaney SM, Soule MJ, Phillips G, Thomashow LS.
Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-
carboxamide from Pseudomonas aeruginosa PAO1. J Bacteriol.
2001;183(21):6454–65.

42. Costa R, van Aarle IM, Mendes R, van Elsas JD. Genomics of pyrrolnitrin
biosynthetic loci: evidence for conservation and whole-operon mobility
within gram-negative bacteria. Environ Microbiol. 2009;11(1):159–75.

43. Souza JT, Raaijmakers JM. Polymorphisms within the prnD and pltC genes
from pyrrolnitrin and pyoluteorin-producing Pseudomonas and Burkholderia
spp. FEMS Microbiol Ecol. 2003;43(1):21–34.

44. Scholz-Schroeder BK, Hutchison ML, Grgurina I, Gross DC. The contribution
of syringopeptin and syringomycin to virulence of Pseudomonas syringae
pv. syringae strain B301D on the basis of sypA and syrB1 biosynthesis
mutant analysis. Mol Plant Microbe Interact. 2001;14(3):336–48.

45. Kinscherf TG, Coleman RH, Barta TM, Willis DK. Cloning and expression of
the tabtoxin biosynthetic region from Pseudomonas syringae. J Bacteriol.
1991;173(13):4124–32.

46. Hwang MS, Morgan RL, Sarkar SF, Wang PW, Guttman DS. Phylogenetic
characterization of virulence and resistance phenotypes of Pseudomonas
syringae. Appl Environ Microbiol. 2005;71(9):5182–91.

47. Zheng XY, Spivey NW, Zeng W, Liu PP, Fu ZQ, Klessig DF, et al. Coronatine
promotes Pseudomonas syringae virulence in plants by activating a signaling
cascade that inhibits salicylic acid accumulation. Cell Host Microbe.
2012;11(6):587–96.

48. Piel J, Hofer I, Hui D. Evidence for a symbiosis island involved in horizontal
acquisition of pederin biosynthetic capabilities by the bacterial symbiont of
Paederus fuscipes beetles. J Bacteriol. 2004;186(5):1280–6.

49. Arrebola E, Cazorla FM, Codina JC, Gutierrez-Barranquero JA, Perez-Garcia A,
de Vicente A. Contribution of mangotoxin to the virulence and epiphytic
fitness of Pseudomonas syringae pv. syringae. Int Microbiol. 2009;12(2):87–95.

50. Carrion VJ, Arrebola E, Cazorla FM, Murillo J, de Vicente A. The mbo operon
is specific and essential for biosynthesis of mangotoxin in Pseudomonas
syringae. PLoS One. 2012;7(5), e36709.

51. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular
evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30(12):2725–9.

52. Saitou N, Nei M. The neighbor-joining method: a new method for
reconstructing phylogenetic trees. Mol Biol Evol. 1987;4(4):406–25.

53. Alikhan NF, Petty NK, Ben Zakour NL, Beatson SA. BLAST Ring Image Generator
(BRIG): simple prokaryote genome comparisons. BMC Genomics. 2011;12:402.

54. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, et al.
Circos: an information aesthetic for comparative genomics. Genome Res.
2009;19(9):1639–45.

55. Field D, Garrity G, Gray T, Morrison N, Selengut J, Sterk P, et al. The
minimum information about a genome sequence (MIGS) specification. Nat
Biotechnol. 2008;26(5):541–7.

56. Woese CR, Kandler O, Wheelis ML. Towards a natural system of organisms:
proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci
U S A. 1990;87(12):4576–9.

57. Garrity GM, Bell JA, Lilburn T. Phylum XIV. Proteobacteria phyl. nov. In: Garrity
GM, Brenner DJ, Krieg NR, Staley JT, editors. Bergey’s Manual of Systematic
Bacteriology, vol. 2. 2nd ed. New York: Springer; 2005. p. 2. part B:1.

58. Validation of publication of new names and new combinations previously
effectively published outside the IJSEM. List no. 106. Int J Syst Evol
Microbiol. 2005; 55:2235–2238.

59. Garrity GM, Bell JA, Lilburn T. Class III. Gammaproteobacteria class. nov. In:
Garrity GM, Brenner DJ, Krieg NR, Staley JT, editors. Bergey’s Manual of
Systematic Bacteriology, vol. 2. 2nd ed. New York: Springer; 2005. p. 2. part B:1.

60. Orla-Jensen S. The main lines of the natural bacterial system. J Bacteriol.
1921;6(3):263–73.

61. Winslow CEA, Broadhurst J, Buchanan RE, Krumwiede C, Rogers LA, Smith
GH. The families and genera of the bacteria: preliminary report of the
committee of the society of american bacteriologists on characterization
and classification of bacterial types. J Bacteriol. 1917;2(5):505–66.

62. Commission J. Opinion 5: Conservation of the generic name Migula 1894
and designation of aeruginosa (Schroeter) Migula 1900 as type species. Int
Bull Bacteriol Nomencl Taxon. 1952;2:121–2.

63. Migula W. Über ein neues System der Bakterien. Arb Bakteriol Inst Karlsruhe.
1894;1:235–8.

64. Anzai Y, Kim H, Park JY, Wakabayashi H, Oyaizu H. Phylogenetic affiliation of
the pseudomonads based on 16S rRNA sequence. Int J Syst Evol Microbiol.
2000;50(Pt 4):1563–89.

Deng et al. Standards in Genomic Sciences  (2015) 10:117 Page 8 of 9



65. Bergey DH, Harrison FC, Breed RS, Hammer BW, Huntoon FM. Pseudomonas
chlororaphis (Guignard and Sauvageau). In: Bergey et al., editors. Bergey’s
Manual of Determinative Bacteriology. 1930. p. 166.

66. Palleroni NJ. Pseudomonadaceae. In: Krieg NR, Holt JG, editors. Bergey’s
Manual of Systematic Bacteriology. Baltimore: The Williams and Wilkins Co;
1984. p. 141–99.

67. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene
ontology: tool for the unification of biology. The Gene Ontology
Consortium. Nat Genet. 2000;25(1):25–9.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Deng et al. Standards in Genomic Sciences  (2015) 10:117 Page 9 of 9


	Abstract
	Introduction
	Organism information
	Classification and features
	Chemotaxonomic data


	Genome sequencing information
	Genome project history
	Growth conditions and genomic DNA preparation
	Genome sequencing and assembly
	Genome annotation

	Genome properties
	Insights from the genome sequence
	Conclusions
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References



