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Expression-based analyses indicate a central role for hypoxia
in driving tumor plasticity through microenvironment
remodeling and chromosomal instability
Anqi Jing1, Frederick S. Vizeacoumar2, Sreejit Parameswaran2, Bjorn Haave2, Chelsea E. Cunningham 3, Yuliang Wu3, Roland Arnold4,
Keith Bonham3,5, Andrew Freywald2,3, Jie Han1 and Franco J. Vizeacoumar 2,3,5

Can transcriptomic alterations drive the evolution of tumors? We asked if changes in gene expression found in all patients arise
earlier in tumor development and can be relevant to tumor progression. Our analyses of non-mutated genes from the non-
amplified regions of the genome of 158 triple-negative breast cancer (TNBC) cases identified 219 exclusively expression-altered
(EEA) genes that may play important role in TNBC. Phylogenetic analyses of these genes predict a “punctuated burst” of multiple
gene upregulation events occurring at early stages of tumor development, followed by minimal subsequent changes later in tumor
progression. Remarkably, this punctuated burst of expressional changes is instigated by hypoxia-related molecular events,
predominantly in two groups of genes that control chromosomal instability (CIN) and those that remodel tumor microenvironment
(TME). We conclude that alterations in the transcriptome are not stochastic and that early-stage hypoxia induces CIN and TME
remodeling to permit further tumor evolution.
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INTRODUCTION
The Darwinian model of clonal selection, where a subset of
genetic lesions drives tumor evolution and progression in a step-
wise manner,1–4 is widely accepted as the mode of evolution of
malignant cells under therapy or basal conditions.5–7 However,
recent findings in prostate, pancreatic or triple-negative breast
cancer (TNBC), challenge this paradigm and question if gradualism
is indeed the single mode of evolution.8–10 It may be instead a
punctuated burst of molecular alterations in the early stages of
cancer, where changes in biological environment of growing
tumors require massive adaptations in the molecular machinery of
cancer cells.11–13 Usually, normal cells respond to stress by
deploying repair or resistance tools to maintain their genetic
integrity and assure survival.14,15 In contrast, cancer cells typically
do not have intact repair tools, which lead to genetic instability.
Chromosomal instability (CIN) is a form of genetic instability that
causes changes in both the structure and number of chromo-
somes.15–25 For example, mutations in CIN genes like BRCA1/2
increase the number of deletions up to 50 bps, causing multiple
defects within the genome.26 Progressive accumulation of CIN
within a tumor allows development of cell populations with
heterogeneous properties. Some of these cells will carry selective
survival advantages and will be responsible for further tumor
progression.3 Likewise, overexpression of APOBEC3, a member of
the cytidine deaminase gene family, may generate frequent C > T
base substitutions also leading to tumor heterogeneity and
progression along the malignancy pathway.27 Understanding the
sequence of molecular events essential for tumor evolution may

not only benefit early detection of malignancies but may also
allow the development of more effective treatment and even
prevention strategies. While the role of accumulating genetic
mutations in tumor progression has been extensively discussed, it
is still not clear how alterations in gene expression patterns
contribute to tumor evolution.
Changes to gene expression can be brought about by number

of factors, including epigenetic modifications, translation regula-
tion, and differences in mRNA, and protein stability.28 For example,
increased activities of growth factor, chemokine and cytokine
receptors can set off specific signaling cascades and subsequent
changes in gene expression, without any direct involvement of
genetic mutations. However, what are the most significant
changes that occur within the transcriptome of cancer cells and
how they may contribute to tumor evolution is not clear. Here, we
use an aggressive malignancy, TNBC, as a model to explore the
role of transcriptomic alterations during early stages that are
caused not by genomic mutations, but exclusively by differential
gene expression. We achieve this by focusing specifically on genes
that are heavily upregulated in the non-amplified regions of the
genome. We focused specifically on upregulated genes because
direct inhibition of these molecules may provide viable cancer
treatment/prevention options at early stages of tumor develop-
ment. Remarkably, our analysis of RNA seq data in 158 TNBC cases
revealed that there is indeed a punctuated burst of expressional
changes in two major groups of genes controlled by hypoxia-
related factors. These two groups included molecules that
regulate CIN and remodel tumor microenvironment (TME). This
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not only reveals new potential targets for TNBC therapy, but also
indicates a critical role for hypoxia in very early stages of tumor
development.

RESULTS
A multi-step process to identify differentially expressed genes in
breast cancer
To identify genes with aberrant expression patterns, we initially
curated all the genes that are differentially regulated. We used the
breast cancer-specific data from The Cancer Genome Atlas (TCGA)
that represents the largest collection of patient samples with
information on the mutation status, copy number aberrations
(CNA), as well as gene expression patterns at different stages of
tumor development. Gene expression in breast tumor samples
was compared to the expression of the matching genes in normal
samples using fold-change (FC) and false discovery rate (FDR) after
Empirical Bayes moderated t-test with Benjamini-Hochberg
correction. Genes were considered as upregulated genes if
FDR ≤ 0.01 and FC ≤ 2. Downregulated genes were selected if
FDR ≤ 0.01 and FC ≤−2. Our initial analyses in overall breast
cancer identified 586 genes that were upregulated and 1446
genes that were downregulated at multiple stages of cancer
progression (Supplementary Fig. 1a). The overlap between all
stages is presented in Supplementary Table 1a. We also ran a
complementary analysis to identify differentially regulated genes
in specifically in TNBC. We found 1127 genes to be upregulated
and 1752 genes downregulated across multiple stages of TNBC
(Fig. 1a). The overlap between all stages is shown in Supplemen-
tary Table 1b. The Gene Set Enrichment Analysis (GSEA) indicated
that the upregulated genes in TNBC are enriched for molecules
involved in cell-cycle regulation and chromatin organization (p <
0.001) (Fig. 1b). Results of our GSEA analysis of genes differentially
upregulated in TNBC tumors correlated well with the previously
reported, differentially regulated genes from an independent
cohort (p < 0.001) (Fig. 1b),29 which provides an additional support
for the relevance of our observations. While we found a higher
abundance of downregulated genes, compared to the upregu-
lated genes, no similar significant enrichment was observed within
the pool of the downregulated genes. Similar results were
obtained for overall breast cancer (Supplementary Fig. 1b). Taken
together, these observations indicate that the application of our
approach to the analysis of TCGA data allows identifying subsets
of genes differentially regulated in TNBC tumors.

Not all differentially expressed genes are equally deregulated
across the population of breast cancer patients
While gene expression analysis to identify differentially regulated
genes has been a common approach in cancer biology, we
attempted to determine, how many of these genes are aberrantly
expressed with high frequencies across the population of TNBC
patients. We rationalized that common aberrations found in all
patients should have arisen earlier in the development of the
malignancy, compared to alterations that were found only in a
subset of patients. Therefore, we have calculated a frequency of
differential expression of each affected gene in TNBC tumors (Fig.
1c and Supplementary Fig. 1c). Throughout this analysis, we
maintained a twofold change in the expression level as a
minimum requirement for a gene to be considered differentially
regulated. The frequency of changes in each differentially
expressed gene is calculated as a percentage of patients in whom
the gene is up- or downregulated. We found 254 genes were
upregulated and 1197 genes were downregulated in almost 70%
of the TNBC patients (Supplementary Table 2a, b). Similar results
for overall breast cancer are presented Supplementary Table 3a, b.
Unfortunately, there were only two patient samples that were
available in TNBC-stage IV in TCGA dataset, which was not

sufficient to minimize random effects. Therefore, we computed
our analyses using the larger number of samples involved in the
first three stages of TNBC.
Changes in gene expression may not only arise from aberrant

expression from an endogenous promoter, but also from
accompanying chromosomal amplifications, deletions and other
types of mutations. To account for this, we isolated the
differentially regulated genes exclusively from the non-ampli-
fied/deleted regions of the genome. We identified 77 amplified
chromosome regions from the TCGA dataset based on CNA,
including several previously reported regions in 1q, 8q, 16p, and
20q (Supplementary Table 4),30 as presented in the circos plot for
TNBC (Fig. 2a) or overall breast cancer (Supplementary Fig. 2a). We
further evaluated the concordance of amplification and gene
expression by fold-change with FDR and Pearson’s correlation. We
considered genes likely to be driven by CNA if their Pearson’s
correlation coefficient between expression and CNA was greater
than 0.3, or they show significant differential CNA-associated
expression change (Supplementary Fig. 2b, c and Supplementary
Table 5a, b). Subsequently, we filtered out from our analysis 20
genes from TNBC patients that were in amplified regions or had
strong correlations with chromosome amplification.
We also used somatic mutational analyses of 560 breast cancer

whole-genome sequencing database available at COSMIC to
eliminate any gene that might be differentially expressed because
of a mutation.31 By also excluding 13 genes whose loci
information was ambiguous, we finally identified 219 exclusively
expression-altered (EEA) genes that elevated their expression in
TNBC (Fig. 2b) and, therefore, may represent good therapeutic
targets. Interestingly, we observed multiple distinct patterns of
upregulation with varying frequencies across different cancer
stages (Fig. 2b). For example, some genes were constitutively
upregulated across all stages (PLK1, UBE2C, or KIF4A). Similarly,
certain genes were upregulated mostly at later stages (CCNE1,
HMGB3, or NUF2). In contrast to this category, some genes were
upregulated selectively at early stages but were gradually
downregulated through the later stages (MMP1, MMP11, or
MMP13). Among the 219 upregulation events, majority of changes
occurred in chromosome 1 and 17 (Supplementary Fig. 2d).
Surprisingly, although the expression of some initially upregulated
genes gradually decreased, we did not observe any instance
where their expression returned to normal levels (Fig. 2c).
Importantly, while we find that not all upregulated genes are
overexpressed in all breast tumors across all cancer stages, our
analysis has generated an explicit set of genes that are
overexpressed in over 70% of patients at all stages of both all
breast cancer and TNBC tumors (Supplementary Table 6a, b).

Lineage analysis of upregulation profiles reveals a punctuated
pattern of evolution in early TNBC tumors
Previous studies have used somatic mutations and CNA to
understand tumor evolution.8,10,11,13 However, it is not clear,
how alterations in gene expression may affect tumor progression.
To further address this, we performed a progression-based
analysis on the expression profiles of the newly identified EEA
genes to describe how they may influence TNBC progression. First,
based on the profile of upregulation status of EEA genes, we
partitioned TNBC samples into groups so that the samples within a
group have more similar upregulation profiles than other samples
in different groups. Hierarchical clustering was applied to group
tumor samples into clusters32. The cluster structure was graphi-
cally represented in Fig. 3a, which revealed that the most
distinguishable cluster C1 is diverged at the highest overhang
with the highest dissimilarities from the remaining samples. In
addition, several distinguishable branches C2, C3, and C4 were
also clustered. After identifying distinct tumor clusters, we
constructed their distance tree to gain insights into the
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progression path in the context of accumulation of aberrant
expression, analogous to a phylogenetic analysis. The construction
of the distance tree was based on the neighbor-joining
algorithm33 to display the lineage between the four clusters.
Assuming that the tumor is derived from a single or a group of
homogenous normal cells and the complexity of upregulation in a
tumor increases with time, the history of its progression can be
partially inferred by comparing homogeneous groups. We used
the vector with 219 elements of all zeros representing no
upregulations of EEA genes in normal status as the root vertex,
and constructed a tree-like structure by neighbor-joining to
evaluate the extent of the accumulation of upregulatory events for
each cluster.
The phylogenetic lineage showed that cluster C1 has the

shortest distance from normal samples, which suggests that
tumors in C1 may be recorded at the early tumor stage and the
upregulated genes in C1 may be of importance to tumor initiation
and early progression (Fig. 3b). The lineage shows a large distance
from normal cell to C1, indicating a large number of upregulatory
events are required for successful tumor progression through very
early stages. C2, C3, and C4 clusters diverged for relatively small
distances from the common ancestor n2, which suggests less

dissimilarity from C2 to C3 and C4, indicating that minimal
changes in gene expression were required at later stages. By
measuring the Cosine similarity between mean upregulation
profile and subset vector (See Methods for details), we found that
a burst of 83 upregulation events occurred earliest in
C1 suggesting that the 83 EEA genes that may act as potential
enabling factors within the early tumor evolution (Supplementary
Table 7).
To confirm that the 83 upregulation events are relevant to

breast cancer progression, we next inquired if these changes in
gene expression correlate with the loss of expression of known
tumor suppressors. Vogelstein and colleagues identified ~70
tumor suppressor genes that when inactivated by intragenic
mutations can promote tumorigenesis.34 We found a strong
negative correlation in the expression of the 83 EEA genes and the
74 tumor suppressors (Fig. 3c). In summary, our analysis revealed
that a large number of EEA events appear at the earliest stage of
tumor development with fewer subsequent events at later stages,
reflecting an emerging pressure from rapidly changing biological
environment within early progressing tumors.
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Fig. 1 Identification of upregulated genes in TNBC. a Venn-diagram of differentially expressed genes in TNBC-stage-specific tumors. The
number of up- and downregulated genes at each stage of tumor and at the intersection between different stages have been represented. b
Gene set enrichment analysis for up/downregulated genes across all TNBC tumor stages. Gene Set Enrichment Analysis for 244 upregulated
genes (left) and 529 downregulated genes (right) across four tumor stages along with previously identified, differentially upregulated genes
from Sotiriou et al.29 c Frequency distribution of differential expression in TNBC-stage-specific tumors. Dot plot represents the fold-change
and the frequency range of TNBC-stage-specific differentially expressed genes, where the red denotes upregulated gene and the blue
denotes downregulated gene
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Fig. 2 Elimination of amplified genes to identify 219 upregulated events. a Amplified chromosome cytobands and upregulated genes locus.
Track A displays the cytoband diagram where the texts in red indicate identified amplified regions. Track B and C displays the frequency of
genes showing amplification and deletion, respectively, in at least in 40% of patients in each cytoband. Genes in Fig. 1d were mapped to the
Track D. b Fold-change and frequency distribution for genes showing upregulation in at least 70% of TNBC patients. Nodes in each column
represent upregulated genes with their sizes indicating the frequency of samples and their colors representing the fold-change value in the
specific tumor stage. c Box plots of Cluster 1 gene expression at various stages of TNBC tumor. The y-axis represents log2-transformed gene
expression and x-axis denotes TNBC stages
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Fig. 3 Identification of 83 upregulation events that occur in early stages. a Hierarchical clustering of 219 EEA genes in TNBC patients. Different
colors show TNBC patients clustered into four clusters represented as Red for Cluster 1 (C1), Purple for Cluster 2 (C2), Blue for Cluster 3 (C3),
and Green for Cluster 4 (C4). b The progression of gene upregulations in different TNBC clusters as shown by the phylogenetic tree. The figure
shows the lineage of progression of gene upregulations from the normal to distinct subpopulations. Heat maps with genes in columns and
TNBC samples in rows display the upregulation status (yellow: no upregulation; blue: upregulation) for different TNBC clusters. c Correlation
clustergram of cluster 1 genes compared to known tumor suppressors. Red indicates negative correlation and green indicates positive
correlation. The panel on the right represents, the significance of the correlation as a heat map. Blue indicates significance (<0.05) and white
indicates lack of significance (>0.05)
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TME remodeling and CIN cooperatively drive TNBC
Since our phylogenetic analysis indicated that the 83 upregulated
EEA genes are crucial early events in early tumorigenesis, we next
explored the functionalities of these genes. Interestingly, we
found a large subset of genes that are known to be involved in
remodeling TME, including metalloproteinases (MMP1, MMP11,
MMP13, ADAMDEC1, ADAMTS14), chemokine receptors and
ligands (CXCL11, CXCL10, CCL11, CCR8), protease inhibitors
(CST4, CST1), pH maintenance factors (CAIX), and different
collagens (COL9A3, COL10A1). This emphasizes the critical role
of extracellular matrix and TME remodeling at the early-stage of

tumor progression. Similarly, we also identified several of the EEA
genes including, FOXM1, PLK1, BUB1, KIF2C, CDCA2, CDC20,
CDKN3, KNL1 to name a few, that are known for their role in CIN
and tumor development.35–43 This may reflect a selective pressure
for additional genetic alterations in early tumors that would allow
their further evolution. In addition, cluster 1 included genes like
DEPDC1B and HMMR that have known roles in both TME
remodeling as well as CIN associated functions.44–48 Overall, our
identification of cluster 1 genes indicates that a punctuated burst
of expressional changes occurs simultaneously in both CIN and
TME remodeling genes very early in tumor development.
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Supplementary Table 8a lists literature evidence for the role of
cluster 1 genes in TME and CIN.
If both CIN and TME remodeling ensue simultaneously, we

should ask what possible factors could drive such punctuated
burst. To address this, we used recently published causal analyses
tools49 available in the Ingenuity Pathway Analysis. In particular,
we performed Upstream Regulator Analysis, and Causal Network
Analysis to curate all interactions of cluster 1 genes (Fig. 4a, b).
Interestingly, a large subset of direct upstream interactions as well
as causal interactions of both the CIN and TME genes (cluster 1),
are hypoxia responsive genes50 (Fig. 4a, b and Supplementary
Table 8b, c). Invariably, almost 50% of the cluster 1 genes are also

associated with poor prognosis (Fig. 5a and Supplementary Fig. 3).
A multivariate expression score was derived from these 50% of the
cluster 1 genes by the multivariate survival analysis to further
evaluate their simultaneously effect on survival. TNBC patients
were divided into two groups based on the multivariate
expression score, one with high value multivariate expression
and the other one with low expression. Survival probability curves
of the two groups compared by the Kaplan–Meier method
indicates a poor prognosis (Fig. 5b). This strongly suggests that
very early in the course of tumor progression gradually increasing
hypoxic conditions induce both CIN and TME remodeling to
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permit survival of cancer cells and their further evolution at later
stages of malignancy.

DISCUSSION
Differential gene expression analyses have been traditionally used
to examine fluctuations within the transcriptome in a given
context for decades. This has been a powerful strategy to identify
biomarkers and drug targets.51–54 However, tumor genome
sequencing has provided new opportunities to re-examine these
fluctuations in the context of tumor evolution. We rationalize that
common aberrations detected across all patients arose earlier in
the development of the malignancy compared to alterations that
were found only in a subset of patients. Based on this, our strategy
in this work is to explore the frequency of changes in the
expression pattern of genes at different stages of TNBC
progression. This is similar to previous studies that explored
dynamic changes in mutations or CNA for a given patient at a
given stage.8–10,55,56

Changes in gene expression, unless constitutively observed, are
often ignored as stochastic noise, specifically those that arise from
variations in transcriptional regulation or biochemical modifica-
tions within cells. Our analyses deliver several important observa-
tions. First, compared to mutational changes, alterations within
the transcriptome are more common and occur at high frequency.
For example, the highly significant mutations in genes like PIK3CA
or KRAS are observed in ~30% of breast cancer patients. In
contrast, overexpression of PLK1 or FOXM1 genes is observed in
over 90% of patients (Supplementary Fig. 4). Second, more genes
are downregulated compared to upregulated genes. Third, during
tumor evolution, changes in expression pattern occur as
punctuated bursts, where the initial singular burst results in
simultaneous accumulation of overexpression of multiple EEA
genes. Fourth, early changes in the expression of EEA molecules
occur in genes that remodel TME and maintain chromosomal
stability. This is most likely because survival within the progres-
sively changing biological landscape during early stages requires
cancer cells to both actively adjust to their microenvironment for
their needs and to enhance CIN to facilitate their plasticity and
adapt. Indeed, our unbiased genome-wide investigation reveals a
strong functional connection between these two mechanisms and
a crucial role of their coordinated effort in establishing early
tumors. Interestingly, some TME genes, including MMP1, MMP11,
and MMP13 proved to be upregulated at early stages and
gradually downregulated through the later stages, although never
achieving their normal levels. This suggests that their activities are
essential at all stages of cancer progression, but their higher
activity is required in early tumors, where the TME is not adjusted
yet to the needs of malignant cells. Fifth, while we know that
hypoxic TME can trigger tumor metastasis and invasion at later
stages of cancer progression,57,58 our causal network analyses
suggest that increasing hypoxia may be responsible for the
cooperative induction of CIN and TME remodeling much earlier
than previously appreciated (Fig. 5c). As hypoxic environment is
also known to promote the propagation of tumor initiating cells
(TICs),59,60 we suspect that the expressional changes of EEA genes
may facilitate this process.
Although, CIN is nearly ubiquitous in cancer cells, and is

considered as an important factor in tumor development,61 our
findings indicate that hypoxic TME of early tumor may function as
a trigger of genetic instability. This model is consistent with
previous observations, showing that repeated cycles of hypoxia,
can downregulate a number of DNA repair pathways in cancer
cells, ultimately leading to genetic instability.62,63 In regards to
this, the Glazer group has provided one of the first quantitative
assessments of how genetic instability can be instigated by TME.64

Interestingly, several of the core EEA genes that maintain genome
stability were experimentally shown to be involved in tumor

development.35–43 Although some of these examples might be
indicative of a direct role for CIN genes in tumorigenesis, in the
context of our analyses, we suggest that overexpression of these
genes may have enabled cancer cells to acquire properties that
allowed them to survive at the early-stage of cancer and thus, to
develop detectable tumors (Fig. 5c). This is particularly interesting
in the light of apparent disagreements between the somatic
mutation theory (SMT), where mutations are argued to be the
primary cause of tumor evolution and tissue organization field
theory (TOFT), that proposes a direct role for TME and its
surrounding tissues in tumor development.65,66 In this context, our
data agrees with a unified model, where tumor initiation is
triggered by accumulated driver mutations, while its evolution
depends on the interactions of cancer cells with TME (Fig. 5c).
In summary, our unbiased comprehensive analyses of the

transcriptome directly link the early onset of hypoxia to the
collective burst of CIN and TME remodeling factors in the initial
stage of tumor progression, which highlights a therapeutic
potential of targeting these molecules in TNBC tumors in their
earliest detectable stage.

METHODS
Number of patient samples analyzed
We collected data of breast cancer samples from the Cancer Genome Atlas
(TCGA) with information on the copy number aberration, gene expression
as well as tumor information. According to the stage information,
1078 samples were classified into four tumor stages; from stage I to stage
IV with tumors in stage V not being considered in this study. According to
the IHC markers, 158 samples were classified as TNBC tumors in which the
ER, PR, and HER2 were all negative. With the tumor stage information, we
classified TNBC tumors into TNBC-stage I, TNBC-stage II, TNBC-stage III, and
TNBC-stage IV. Similarly, TNBC tumors in stage IV were excluded. Moreover,
114 normal samples were collected from TCGA for comparison with tumor
sample data. The numbers of samples in each stage and TNBC-stage-
specific samples are displayed in the Supplemental Table 9. No human or
animal experiments were performed, which required prior approval.

Fold-change and FDR calculation
We applied two criteria, fold-change and FDR calculation on the selection
of differentially expressed genes. Fold-change is a biological assessment of
changes in gene expression that is estimated by log2 (ratio), as
represented in Equation 1, where the ratio of average expression of gene
i in patients to the average expression in normal samples is calculated.

Fold� changegene i ¼ log2
ave Epatientsgene i

� �

ave Enormal
gene i

� � (1)

Empirical Bayes moderated t-test was applied to assess the statistical
significance of differential expression. False discover rate (FDR) was
obtained after Benjamini and Hochberg correction. We employed the
Limma package67 to derive the two assessments of differentially expressed
genes.

Computing frequency of differential expression in stage-specific
patients
After the identification of up/downregulated genes in each stage and
TNBC-stage patients, next we aimed to evaluate the frequency of identified
differential expression in stage-specific patients. For each tumor stage, we
calculated the fold-change of identified up- or downregulated gene i by
comparing the expression in patient j to the average expression in normal
samples (Equation 2). Following this, the frequency of patients in which the
fold-change of gene i is greater than 2 or less than −2 was calculated.

Fold� changepatient jgene i ¼ log 2
Epatient jgene i

ave Enormal
gene i

� � (2)
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Evaluating the concordance between copy number amplification
and upregulated gene expression
As changes in gene expression may arise from the chromosomal
amplification, here we aimed to evaluate the associations between copy
number amplification (CNA) and upregulations in gene expression and
identify the upregulations that are driven by CNA. We generated the CNA
profile with patients (in rows) and genes (in columns) from the data
obtained from TCGA. Only the data of patients whose CNA profile and
upregulation status are available were considered for this study. Using a
scoring system, genes getting amplified in a patient were represented as 1
or otherwise 0 and the amplified genes were grouped based on the profile
scoring. To avoid patient heterogeneities, only genes showing amplifica-
tion over 40% of patients were considered as cancer relevant amplified
genes. CNA regions were identified by calculating the percentage of
amplification of genes on each chromosome region, and regions with at
least 40% of amplification genes were identified as CNA regions. Then we
analyzed the concordance between CNA and upregulations in gene
expression by two evaluation ways. Primarily, for each upregulated gene i
at CNA regions, according to the gene i’s amplification status, the patient
set S were grouped into two sets S1i ; S

2
i

� �
, where S1i and S2i denotes

patients with and without gene i getting amplified, respectively. The fold
CNA-associated change was calculated by comparing the difference
between the log2 of mean expression of gene i in S1i and S2i . Meanwhile
empirical Bayes moderated t-test is applied on the two groups. To correct
for multiple hypothesis testing, the p-value was converted to FDR by
Benjamini-Hochberg correction. If gene i showed at least 1 positive fold
CNA-associated change and FDR smaller than 0.01, it is considered to be
associated strongly with CNA. Secondly, Pearson’s correlation coefficient
was calculated to quantify the correlation between CNA and gene
expression. If a gene showed the value of Pearson’s correlation coefficient
larger than 0.3, it is considered as CNA-driven genes as well.

TNBC clusters and neighboring-joining algorithm analyses
To identify the distinguishable TNBC subpopulations, which reveal similar
upregulation profiles, we performed clustering analysis within TNBC
patients. The binary matrix was generated with upregulation status in
rows and patient in columns. If a gene is upregulated in a patient, it was
indicated by 1, otherwise 0 using the scoring system described in the
previous section. Then, we calculated pairwise Euclidian distance between
patients and performed hierarchical clustering that clustered TNBC
patients into distinguishable clusters. The mean upregulation profile for
each cluster was generated to represent the upregulation status. Assuming
that no gene upregulations appeared before the initiation of cancer, the
profile with all zeros was generated to represent normal samples. The
distance tree was constructed based on profiles in normal and mean
profiles by Euclidian distance and neighbor-joining algorithm.

Identifying genes in different clusters
To determine the appearance of upregulations in various subsets of the
four subpopulations, we generated the four-dimensional binary vectors to
represent each of the fifteen possible subsets of the four subpopulations,
from (0, 0, 0, 1) to (1, 1, 1, 1). Four each gene i, the cosine similarities
between mean profile pi and each subset vector vi is calculated by the
Equation 3.

similarity pi ; vj
� � ¼ cos θð Þ ¼ pi � vj

pik k2 vj
�� ��

2
(3)

The gene was assigned to the subset vector with the maximum
similarity to its mean profile.68 For example, if a gene has the maximum
similarity with the subset vector (0, 1, 1, 1), it means it getting upregulated
in subpopulations 2, 3, and 4.

Multivariate survival analysis
We derived a multivariate expression score by multivariate Cox regression
model, which evaluates the simultaneously effect of the multiple factors on
survival. The regression coefficients in Cox regression relate to prognosis
effect, thus we calculated the multivariate expression score as the sum of
multiplications of the gene expression values by the respective regression
coefficients. Based on the multivariate expression score, patients were
divided into two groups using the median as the cutoff, one with high
multivariate expression score and the other with low score. Survival

analysis on the multivariate expression score was performed by
Kaplan–Meier method.

IPA and hypoxia analysis
IPA analysis was performed on the genes from cluster 1 as described in
Kramer et al.49 The gene list was first annotated, and the dataset
underwent various analyses including for core expression to study the
interactions. The gene interactions were explored, built and different
overlays including pathways, disease and function and molecule activity
prediction were applied to obtain the required outputs. Comparison
analysis was also performed among the different subpopulations (referred
as clusters). Hypoxia analyses were performed using the hypoxia database
(http://www.hypoxiadb.com). This database includes 72,000 manually
curated entries taken on 3500 proteins extracted from 73 peer-reviewed
publications selected from PubMed. As described in Khurana et al.50, it
provides manually curated literature references to support the inclusion of
the protein in the database and establish its association with hypoxia.
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