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Dear Editor,
The COVID-19 pandemic has been ongoing for nearly two and

half years, and new variants of concern (VOCs) of SARS-CoV-2
continue to emerge, which urges the development of broadly
neutralizing antibodies.1,2 Variants such as the delta (B.1.617.2
lineage) and Omicron (BA.1 and BA.2) were reported to exhibit
immune evasion to some of the current therapeutic antibodies.2,3

The ever-evolving SARS-CoV-2 calls for rapid prediction of
antibody binding to new variants and development of broadly
neutralizing antibodies. Considering the application of deep
learning in antibody engineering and optimization, we wonder
whether the broadly reactive antibodies against SARS-CoV-2
variants can be rapidly designed and generated by deep learning.
Here we report the development of an Atrous Convolution Neural
Network (ACNN)4 based deep learning framework: cross-reactive B
cell receptor network (XBCR-net) that can predict broadly reactive
antibodies against SARS-CoV-2 and VOCs directly from single-cell
BCR sequences. XBCR-net composes of two parts, the first part
extracts the features relevant to the antibody–antigen interaction
via three-branch ACNN, and the second part predicts the binding
probability of the antibodies to antigens (14 different RBD
sequences) by a residual structural Multi-Layer Perceptron (Fig. 1a;
Supplementary information, Fig. S1a). The performance of the
ACNN-based XBCR-net prediction on SARS-CoV-2 binding was
evaluated, showing significantly higher accuracy, precision and
recall value than other frameworks (Fig. 1a; Supplementary
information, Fig. S1b).
To evaluate the adaptability of XBCR-net to unseen VOCs, RBD

of the new Omicron variant (BA.1, BA.2 and BA.4) and 142 anti-
Omicron mAbs (including therapeutic antibodies LY-CoV016, AZD-
1061, REGN10933 and S309) were used for testing.5 XBCR-net
predicted 102 out of the 142 binders as positive and 116 out of
the 142 non-binders (anti-SARS-CoV-2 antibodies that do not bind
Omicron) as negative, illustrating the practicality of XBCR-net in
predicting Omicron binding antibodies without prior knowledge
(Supplementary information, Table S1, Data S3).
We then used XBCR-net to predict wild-type (WT) SARS-CoV-2

and VOC binders from a single-cell BCR dataset of the COVID
patients (GSE171703), who are not infected by the Omicron
variant.6 We identified 153 and 89 clusters based on 80%
HCDR3 sequence similarity from predicted SARS-CoV-2 binders
and Omicron variant binders (Fig. 1b). Three clusters have a size
greater than 8 and are predicted to be cross-reactive to both
SARS-CoV-2 and Omicron variants. The dominant cluster (cluster 1)
is highly convergent to a well-studied public clonotype encoded
by IGHV1-58, including the therapeutic antibody Tixagevimab,
which is reported to neutralize SARS-CoV-2.7 Two other clusters
(clusters 2 and 3) also belong to the public anti-SARS-CoV-2
clonotypes encoded by IGHV3-30 (such as therapeutic antibody
REGN 10987) and IGHV4-59 V-region (such as cross-reactive

antibody 47D11), respectively (Fig. 1b). The cluster 4 antibodies
were also described in some studies, such as COV2-2733 and
COV2-2752, which bind to SARS-CoV-2 but not SARS-CoV.8

XBCR-net predicted that 336 out of 6743 BCRs were cross-
reactive to the RBD region of the WT SARS-CoV-2 and its VOCs
(pan-SARS2, including alpha, beta, delta and gamma variants),
while only 54 of them showed cross-reactivity towards RBD of
SARS-CoV (pan-SARS). The V–J region usage of the pan-SARS-2
showed slightly higher IGHV3-30, IGHV3-23 and IGKV1-39 gene
usage (Fig. 1c). More biased usage of IGHV3-30 and lower diversity
were observed in the sequences of the pan-SARS compared with
the pan-SARS2 antibody sequence repertoire (Fig. 1d; Supple-
mentary information, Fig. S2a, b).
Because of the biased IGHV3-30 usage and enlarged IGHV3-30

cluster that we observed in the predicted cross-reactive RBD
binders (Fig. 1c; Supplementary information, Fig. S2a–c), we
selected 10 IGHV3-30 antibodies and 15 antibodies with various
IGHV usage from the filtered antibody lists (described in Supple-
mentary information). All 25 mAbs showed significant binding to
RBD of WT SARS-CoV-2 compared with negative control anti-
bodies at 1 μg/mL. In agreement with the Omicron validation
dataset, 20 of 25 mAbs were also cross-reactive to RBD of the
SARS-CoV-2 Omicron variant at 1 μg/mL (Fig. 1e). Interestingly, all
the IGHV3-30 antibodies in our study were able to bind Omicron
variant (Fig. 1e). To further empirically validate the XBCR-net, we
applied it to the cloned 25 mAbs for SARS-CoV binding. Out of the
8 mAbs predicted to cross-react to SARS-CoV, 6 of them bound
significantly to the RBD of SARS-CoV (Supplementary information,
Fig. S3). These results demonstrated the capability of XBCR-net in
extrapolating the BCR cross-reactivity to emerging variants
without additional training data.
SARS-CoV-2 Omicron variants have been reported to evade the

neutralization by some therapeutic mAb drugs. We then tested
the neutralization competence of these cross-reactive mAbs on
the Omicron and delta variants of SARS-CoV-2. XBN-1 showed
neutralization activity against both delta (B.1.617.2) and Omicron
(BA.1) with IC50 of 7 ng/mL and 418 ng/mL, respectively. XBN-6
neutralized delta (D614G) with IC50 of 1200 ng/mL while XBN-11
displayed neutralization to Omicron (BA.1) with IC50 at 17 ng/mL
(Fig. 1f; Supplementary information, Table S2).
Because SARS-CoV-2 is continuously evolving, treatments of the

new variants need to be updated rapidly for clinical decisions.9,10

Our XBCR-net can predict antibody binding to the newly discovered
variants of SARS-CoV-2 rapidly after acquiring the RBD sequences.
The IGHV1-58 mAb we cloned showed convergence to the
published antibodies PDI-306 and C598 which neutralize SARS-
CoV-2. The IGHV3-30 mAb we cloned showed heavy chain
convergence to published coronavirus antibodies PDI234 and
COV2-2700 (Fig. 1g). The PDI234 and COV2-2700 do not bind to
SARS-CoV,8 indicating that key mutations on the HCDR3 and
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different light chain (IGKV1-13) can render the IGHV3-30 clonotype
mAbs cross-reactive. From the prediction of XBCR-net, we found
mAbs derived from the cluster encoded by IGHV3-30 and IGKV1-13
can bind to SARS-CoV and Omicron variant in addition to SARS-CoV-
2 (Fig. 1e, h; Supplementary information, Fig. S3), suggesting that

the IGHV3-30, IGKV1-13 encoded cluster we identified can be
further developed to be broadly neutralizing antibodies against
SARS-CoV and SARS-CoV-2. In sum, our XBCR-net can predict the
broadly reactive antibodies against newly discovered variants of
SARS-CoV-2 without prior knowledge of new variant-specific
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antibodies, contributing to the rapid generation of antibodies
against SARS-CoV-2 variants and other emerging viruses.
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jianqingzheng/XBCR-net.
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Fig. 1 Development of broadly reactive antibodies by ACNN-based deep learning framework XBCR-net. a The features of the amino acid
sequences of VH, VL and RBD sequences were extracted, localized and max-pooled to be concatenated together as input to the fully
connected layers. The active features in the latent space were then processed by Multi-Layer Perceptron to predict the binding probability of
antibody to multiple antigens. The impact score of VH, VL and RBD is calculated on the local histogram impact score map, representing how
much weight is given to the specified amino acids on VH, VL (y axis) and RBD (x axis). Prediction results are evaluated by Precision-Recall
curves of ACNN (Violet), Transformer (Gray), FCN (Red) and CNN (Blue). b The HCDR3 sequences of the predicted SARS-CoV-2 and Omicron
variant binders are clustered by using an 80% sequence similarity. Cluster size represents the number of BCR sequences in the cluster. For each
expanded cluster, the HCDR3 sequences are visualized as a sequence logo plot, where y-axis represents the frequency of the individual amino
acid at the corresponding position in x-axis. The frequency of the dominating VH gene is listed above the logo. c Circos plot showing the
frequency of antibodies encoded by the specified V region to J region pairing of the pan-SARS2 sequences. d The diversity of the four groups
of BCR repertoire is analyzed, which is linked to the sample number of each group. e Binding of the predicted cross-reactive antibodies to RBD
of SARS-CoV-2 and Omicron variants (left panel) was examined by ELISA. Representative OD reading is plotted as heatmap ranging from 0.05
to 5.0, and OD of 0.1 is used as cut-off value (n= 3 per group). f The SARS-CoV-2 Omicron variant (BA.1) pseudovirus neutralization curves of
XBN-1, XBN-6 and XBN-11 mAbs were generated from luciferase readings at 8 dilutions (n= 3). g HCDR3 sequences of the XBN-1 and XBN-11
are aligned with the most convergent anti-SARS-CoV-2 antibodies from the published studies. h The HCDR3 sequence frequency of the
dominant cluster (encoded by IGHV3-30 and IGKV1-13) of the pan-SARS group is shown.

Letter to the Editor

3

Cell Research (2022) 0:1 – 3

http://orcid.org/0000-0002-1823-1419
http://orcid.org/0000-0002-1823-1419
http://orcid.org/0000-0002-1823-1419
http://orcid.org/0000-0002-1823-1419
http://orcid.org/0000-0002-1823-1419
http://orcid.org/0000-0001-6360-9065
http://orcid.org/0000-0001-6360-9065
http://orcid.org/0000-0001-6360-9065
http://orcid.org/0000-0001-6360-9065
http://orcid.org/0000-0001-6360-9065
http://orcid.org/0000-0001-8223-5003
http://orcid.org/0000-0001-8223-5003
http://orcid.org/0000-0001-8223-5003
http://orcid.org/0000-0001-8223-5003
http://orcid.org/0000-0001-8223-5003
http://orcid.org/0000-0001-9162-7447
http://orcid.org/0000-0001-9162-7447
http://orcid.org/0000-0001-9162-7447
http://orcid.org/0000-0001-9162-7447
http://orcid.org/0000-0001-9162-7447
http://orcid.org/0000-0002-4838-3552
http://orcid.org/0000-0002-4838-3552
http://orcid.org/0000-0002-4838-3552
http://orcid.org/0000-0002-4838-3552
http://orcid.org/0000-0002-4838-3552
mailto:hantao.lou@nankai.edu.cn
mailto:caoxt@immunol.org
https://github.com/jianqingzheng/XBCR-net
https://github.com/jianqingzheng/XBCR-net
https://doi.org/10.1038/s41422-022-00727-6
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Deep learning-based rapid generation of broadly reactive antibodies against SARS-CoV-2 and its Omicron variant
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




