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ARTICLE INFO ABSTRACT

Keywords: Background: Glioblastoma (GBM) has the feature of aggressive growth and high rates of recur-
Glioblastoma (GBM) rence. Immunotherapy was not included in standard therapy for GBM due to lacking the pre-
IRGP

dictive biomarkers. In the present study, we performed an immune-related gene pair (IRGP)
signature to predict the prognosis and immunotherapy response of GBM.

Methods: A total of 160 GBM patients from TCGA were included. ssGSEA was conducted to
evaluate the immune infiltration level. Univariate Cox, LASSO regression analysis, ROC analysis,
and Kaplan-Meier survival analysis were applied to construct and evaluate the risk model.
Moreover, the association between immune infiltration and the risk score was assessed. Finally,
the expression of immune checkpoints between different risk groups was explored.

Results: According to the normal/tumor, high-/low-immunity group, we identified 125 differen-
tially expressed immune-related genes. Subsequently, a prognostic model including 22 IRGPs was
established. The area under the ROC curve to predict 1, 3, and 5-year was 0.811, 0.958, and 0.99
respectively. According to the optimal cut-off value of the 3-year ROC curve, patients were
classified into high- and low-risk groups. The Kaplan-Meier analysis result indicated that patients
in the low-risk group have longer survival time. The risk score was an independent prognostic
predictor (P < 0.001). Moreover, PDCD1 was positively correlated with the risk score (P < 0.01).
We also found that patients with high PDCD1 expression had worse survival.

Conclusions: The IRGP signature was built to predict the prognosis of GBM patients. This signature
can serve as a tool to predict the response to immunotherapy in GBM.

Prognostic model
Immune infiltration
Immune checkpoints

1. Introduction

Glioblastoma (GBM) is a kind of typical malignant primary brain tumor in adults [1]. Because of its high invasiveness and lethality,
the median overall survival of newly diagnosed GBM cases is only approximately 15 months [2,3]. Despite initial treatment with
maximal surgical resection followed by chemoradiotherapy, most of the cases still relapse within approximately 2 cm around the
tumor cavity 6-9 months after treatment [4]. Hence, its five-year survival rate is very low, at about 6.8 % [5]. Moreover, GBM has

* Corresponding author. No. 235 Hashuang Road, 150088, Harbin, China.
** Corresponding author. No. 150 Haping Road, 150000, Harbin, China.
E-mail addresses: z1j870502@163.com (L. Zhang), haocc@hrbmu.edu.cn (C. Hao).

https://doi.org/10.1016/j.heliyon.2024.e39025
Received 21 June 2024; Received in revised form 2 October 2024; Accepted 4 October 2024

Available online 5 October 2024
2405-8440/© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).


mailto:zlj870502@163.com
mailto:haocc@hrbmu.edu.cn
www.sciencedirect.com/science/journal/24058440
https://www.cell.com/heliyon
https://doi.org/10.1016/j.heliyon.2024.e39025
https://doi.org/10.1016/j.heliyon.2024.e39025
http://creativecommons.org/licenses/by-nc-nd/4.0/

G. Wang et al. Heliyon 10 (2024) 39025

different molecular characteristics and subtypes, and the same treatment model may lead to different clinical outcomes [6]. Therefore,
patients are needed be more accurately stratified to develop the optimal treatment.

Programmed death-1 (PD-1) is a cell surface receptor expressed on a variety of immune cells [7]. The programmed death-ligand 1
(PD-L1) is overexpressed on the surface of malignant tumor cells. The binding of PD-1 to its ligand PD-L1 activates the downstream
pathways and causes the immune evasion of tumors [8]. The inhibitors targeting PD1 and PDL1 exert significant antitumor effects by
restoring the killing effects of immune cells and avoiding immune escape [9] and have shown significant efficacy in many tumors, like
melanoma [10] and NSCLC [11]. Nevertheless, it failed to demonstrate the expected benefit of GBM [12-14], which may be related to
the inability to identify specific cases that would benefit from immunotherapy [14]. PD-L1 is an important biomarker for predicting the
effect of immunotherapy. Some scholars found that PD-L1 is related to poor prognosis in GBM [15], while others showed inconsistent
results [16]. Due to these contradictory results, it is necessary to combine other markers to identify cases that are suitable for
immunotherapy.

Some models based on gene expression characteristics have been constructed to identify such specific patients [17,18]. In GBM
studies, most of the models are based on a single gene [19,20] or different phenotypes, such as inflammation [21], cuproptosis [22],
immune response, oxidative stress [23], and cellular senescence [24]. They were constructed based on the exact expression level of
genes, which are easily affected by individual variations. In this study, we utilized pairwise comparison and score calculation to
construct an IRGP signature. This method utilized the relative ranking of gene expression levels and did not need the normalization of
data. Then, we explored the diagnostic and prognostic value of the IRGP signature. The association between the immunological pa-
rameters and the signature was also explored. Subsequently, GSEA was applied to investigate the specific mechanisms of the signature.

2. Methods
2.1. Data acquisition and differentially expressed analysis

The transcriptome profiling data of 160 GBM patients containing clinical data was obtained from TCGA. Cases with a survival time
of less than one month were excluded. An immune gene chip was downloaded from the MSigDB database (http://software.
broadinstitute.org/gsea/downloads.jsp). The ssGSEA was applied to evaluate the types of immune cells and infiltration level with
the GSVA (version 1.34.0) and GSEABase (version 1.67.0) packages of R. Through clustering analysis, the GBM cases were divided into
high- and low-immunity groups according to their immune infiltration levels with the sparcl package of R (version 1.0.4-1). Differ-
ential expression analysis was carried out in two immunity groups (log2-fold change (FC) > 1, FDR <0.05), as well as between tumor
and normal samples (log2-FC>1.5, FDR<0.05). Differentially expressed immune-related genes (DEIRGs) were obtained with the venn
diagram package of R (version 1.7.3).

2.2. Pairing DEIRGs

The method of constructing the model has been previously reported [25]. In short, we first performed the pairwise comparison in
all samples. In each sample, if the expression of the first gene was higher, it was labeled as 1, or else as 0. The score of every IRGP was
computed. Hence, the condition of the IRGP score included in the model is its frequency value in a range of 20 % and 80 % of all
samples.

2.3. Establishment of an IRGP risk model

Univariate Cox method was applied to identify the prognostically relevant IRGPs based on the survival package of R (version 3.3.1)
(P < 0.01). Next, LASSO Cox regression was conducted to further filter meaning IRGPs with the glmnet package of R (version 3.0-2)
[26]. The LASSO regression was iterated for 1000 cycles. Ultimately, a total of 22 IRGPs were identified, and the risk score was
determined as follows: RiskScore = score of DEIRG pairs 1 x p1 DEIRG pairs 1+ ... ... + score of DEIRG pairs n x fn DEIRG pairs n. The
optimal cutoff value of the riskscore was calculated according to the 3-year ROC curve via the survivalROC package of R (version 1.0.3)
[27]. Then cases were divided into high- and low-risk groups.

2.4. Validation of the established risk model

Kaplan-Meier approach was used to explore the prognostic significance of the risk score with the survival and survminer (version
0.4.9) packages of R. We also investigated the relation between the riskscore and clinicopathological factors. Univariate and multi-
variate Cox analyses were conducted to confirm the predictive ability of the riskscore. A nomograph was developed to predict survival
probability with the rms package of R (version 6.3-0).

2.5. Estimation of immune infiltration

The immune infiltration status was analyzed using TIMER, CIBERSORT, XCELL, and EPIC. The Spearman analysis was applied to
analyze the association between the risk score and the immune cell infiltration (P < 0.05).
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2.6. Exploration of immune checkpoint molecular expression

We applied the ggplot2 package of R and the Wilcoxon test to explore the expression of immune checkpoint molecules between two
risk groups.

2.7. Gene set enrichment analyses (GSEA)

GSEA software (version 4.0.1) was applied to conduct GSEA between two risk groups. Identified the enriched terms in KEGG and
Hallmarks in two groups. P < 0.05 and FDR <0.05 were used as the selection criteria.

2.8. Statistical analysis

We performed statistical analyses based on R software (version 4.0.3, Vienna, Austria). The log-rank test was applied to compare
the survival time in different risk groups. The Cox regression method was used to assess the prognostic role of the risk model. Spearman
test was applied for correlation analyses. Statistical significance was defined as P < 0.05 unless specified otherwise.

3. Results
3.1. Identification of DEIRGSs

The flowchart of this study is exhibited in Fig. 1. The transcriptome profiling data of GBM including 5 normal and 160 tumor
samples were downloaded from TCGA. Subsequently, the tumor samples were subjected to ssGSEA based on immune gene sequence,
followed by clustering analysis to divide them into high- and low-immunity groups according to the immune enrichment scores
(Fig. 2A). The distinct difference in immune enrichment scores was depicted through a heat map and PCA diagram (Fig. 2B and C).
Further differential analysis identified 257 immune-related genes with significant differences in two groups (Fig. 2D) (log2FC > 1,
FDR<0.05). Additionally, 4736 differentially expressed genes between tumor and normal samples were identified (log2FC > 1.5,
FDR<0.05) (Fig. 2E). By intersecting these two datasets, we identified 125 DEIRGs for further analysis (Fig. 2F).

3.2. Establishment of an IRGP risk model

The 125 DEIRGs were transformed into gene pairs by iteration loop and a 0-or-1 matrix screening, a total of 2893 IRGPs were
identified. These IRGPs were included in univariate Cox model (P < 0.01), and 57 IRGPs related to prognosis were obtained. Next,
these prognostic IRGPs were subjected to LASSO Cox analysis (Fig. 3A and B). Ultimately, 22 IRGPs consisting of 36 genes (Table 1)
were identified to construct the risk model. The risk score can be determined according to the coefficients of selected IRGPs.

Next, we conducted the time-dependent ROC curve analysis of the risk model. The AUC was 0.811, 0.958, and 0.99 for 1, 3, and 5-
year respectively (Fig. 3C). However, due to the limited number of GBM patients surviving beyond 5 years in the TCGA dataset, there
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Fig. 1. Study flow chart.
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Fig. 2. Identification of differentially expressed immune-related genes (DEIRGs) using TCGA dataset. (A) Hierarchical clustering of patients with
GBM based on ssGSEA, with each branch representing a sample, height in the vertical coordinate being the clustering distance, and the horizontal
coordinate being the grouping information. (Red: high immunity group, blue: low immunity group). (B) The enrichment levels of 29 immune-related
cells and types in the high- and low-immunity groups. (C) Principal component analysis (PCA) plot of the distribution status of the high- and low-
immunity groups. (D) Volcano plot of differential expression analysis between high- and low-immunity groups. (E) Volcano plot of differential
expression analysis between tumor and normal samples. (F) The Venn Diagram of two gene sets.

may be potential bias in predicting the 5-year OS using this model. Next, based on the 3-year ROC curve, cases were classified into
high- and low-risk groups according to the optimal cut-off value (Fig. 3D and E). It is worth noting that the risk score is negatively
related to the survival time and positively related to the mortality rate (Fig. 3F).

3.3. Association in risk model and clinical features
The Kaplan-Meier result suggested that cases in the high-risk group exhibited poor prognosis (P < 0.001) (Fig. 4A). Next, Wilcoxon

tests were used to investigate the relation between the risk score and clinical factors. It was found that when compared with patients
without radiotherapy, patients treated with radiotherapy had lower risk scores (Fig. 4B). Nevertheless, there exists no difference in the
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Fig. 3. Screening prognostic immune-related gene pairs (IRGPs) for model construction. (A) Lasso coefficient profiles of 22 prognostic gene pairs.
(B) One thousand times random stimulation for the optimal Lasso model. (C) The AUC values for predicting 1-year, 3-year, and 5-year overall
survival are 0.811, 0.958, and 0.99. (D) Patients were sorted by increasing risk score in the GBM set. (E) Time-dependent ROC curve for the risk
score. The optimal cut-off value of the risk score is —0.615, and patients are divided into high- and low-risk groups. (F) Living status of patients in

GBM set.

risk scores in different gender patients (P = 0.47, Fig. S1A), and patients with age <65 and age >65 (P = 0.34, Fig. S1B). In addition,
univariate Cox model result demonstrated that radiotherapy (P < 0.001, HR = 0.279, 95 % CI [0.166-0.471]), age (P = 0.024, HR =
1.524, 95 % CI [1.057-2.169]), risk score (P < 0.001, HR = 8.912, 95 % CI = 5.557-14.294) were all obviously related to the OS
(Fig. 4C). Moreover, multivariate Cox model results revealed that radiotherapy (P < 0.001, HR = 0.359, 95 % CI = 0.202-0.636) and
risk score (P < 0.001, HR = 9.346, 95 % CI = 4.985-17.522) were independent prognostic predictors of OS (Fig. 4D).
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Table 1
Information of 22 IRGPs.
Gene Pairs Genel Gene2 Coefficient
AGAP2|IGHA1 AGAP2 IGHA1 —0.37389
ATCAY|DLL3 ATCAY DLL3 0.085646
BCL2A1|LUM BCL2A1 LUM 0.183921
C1R|HLA-DPB1 CIR HLA-DPB1 0.059028
C5AR1|HLA-DQB1 C5AR1 HLA-DQB1 0.062105
CD163|HLA-DQB1 CD163 HLA-DQB1 0.001608
CHI3L2|HLA-DMA CHI3L2 HLA-DMA 0.11647
CMKLR1|POSTN CMKLR1 POSTN —~0.11862
CXCL10|LOXL1 CXCL10 LOXL1 —-0.21639
CXCL11|MMP7 CXCL11 MMP7 —0.0358
DLL3|NSG2 DLL3 NSG2 —~0.16289
GPC2|ZDHHG22 GPC2 ZDHHG22 0.189634
HLA-DPA1|VGF HLA-DPA1 VGF —0.07695
HLA-DQA1|LOXL1 HLA-DQA1 LOXL1 —0.27508
HLA-DQB1|NNAT HLA-DQB1 NNAT —0.02409
HLA-DRB6|RPRM HLA-DRB6 RPRM 0.191532
IGHG1|IGLC2 IGHG1 IGLC2 0.22982
LTF|SAA1 LTF SAA1 —0.25532
NNAT|RNASE6 NNAT RNASE6 0.150905
NNAT|VOPP1 NNAT VOPP1 0.075533
TACC3|ZNF488 TACC3 ZNF488 0.006009
VGF|ZDHHC22 VGF ZDHHG22 0.161788
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| |
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Fig. 4. Evaluate the predictive ability of the risk score. (A) Kaplan-Meier analysis shows that patients in the low-risk group experienced a longer
survival time. (B) The distribution of risk score between the radiotherapy group and the non-radiotherapy group. (C) Forest plot of univariate Cox
regression results of the risk score and clinical characteristics. (D) Forest plot of multivariate Cox regression results of the risk score and clinical
characteristics.
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3.4. Establishment and assessment of the nomogram

Subsequently, we constructed a nomogram via the risk score and radiotherapy (Fig. 5A). The C-index of the nomogram was 0.783.
Calibration curves were generated to evaluate the prognostic performance of it to predict survival rates, which exhibited significant
precision (Fig. 5B). In addition, decision curve analysis was used to assess the reliability of the nomogram. The result showed that the
profile of the nomogram is higher compared to the limit curve, and with higher reliability (Fig. 5C).

3.5. Estimation of immune infiltration and immune checkpoints

Combined with the download data from the TIMER2.0 website, we researched the relationship between the riskscore and immune
infiltration. The findings revealed a positive association with fibroblasts, macrophages, and monocytes, while a negative association
was observed with B-cells (Fig. 6A). To deeply elucidate the association between the risk score and immunity, we determined its
association with immune checkpoints. Our analysis demonstrated that PDCD1 was upregulated in the high-risk group (P = 0.0016,
Fig. 6B), whereas LAG3 was downregulated (P = 0.042, Fig. S1D). Moreover, there exists an obvious positive association between the
riskscore and PDCD1 levels (P < 0.01, r = 0.24, Fig. 6C). Notably, the PDCD1 high-expression group has a worse prognosis (Fig. 6D).
Furthermore, survival analysis of patients receiving radiotherapy showed significantly better outcomes regardless of their PDCD1
expression status. Among radiotherapy-treated patients specifically, those in the PDCDI high-expression group had shorter OS
(Fig. 6E).

3.6. Gene set enrichment analysis

We used GSEA to investigate the molecular mechanisms associated with the risk score. The results revealed significant enrichment
of multiple KEGG pathways, including cytokine-cytokine receptor interaction, ECM-receptor interaction, the Notch pathway, WNT

A B S | T

TCGA nomogram — 5-year
) — 3-year s
Points 0 200 40 60 80 100 w | — 17vear %
: . ~°1 /
: o e
YES < g
: NO 8 ©
ek i o 7
RT e [ 2
g (3]
unknown >
: o T
: [P =2
- Qo
: ]
Risk score*** H JAN S 1
-16 -12 -08 -04 0 04 08
o
g
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
M Nomogram-prediced OS (%)
Total points 64.6 c '
20 40 60| 80 100 120 140 160 — Risk score
0= RT+Risk score
o
All
— None
N \
0.184 o] \\
Pr( futime < 365 ) »;—5 \
0.02 005 01 0f 04 06 0.85 0.9750.998 L
o)
g \
O =
0.92 e \W
Pr( futime < 1095) ———— %
0.3 0.45 0.65 0.8% 0.98 0.999 V\
o AN B ¥
o
0.997
Pr( futime <1825) ——m— %
0.65 0.85 0.98 0.999 ! . I . I !
0.0 0.2 0.4 0.6 0.8 1.0

High Risk Threshold

Fig. 5. Construction and evaluation of the nomogram. (A) Nomogram for predicting the survival probability based on the risk score and clinical
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dictable probability, and the y-axis represents the actual probability. (C) Decision curve analyses of the nomogram.



G. Wang et al. Heliyon 10 (2024) 39025

A B.cell_TIMER B risk Il high ll low
Macrophage.M1_CIBERSORT - 2.0
Macrophage.M2_CIBERSORT - Wilcoxon, p = 0.0016
Macrophage.M1_XCELL - C s
B.cell.memory_CIBERSORT.ABS - .
Macrophage_EPIC (] =
Cancer.associated.fibroblast XCELL O O 10
Granulocyte.monocyte.progenitor_XCELL 4 (] E
B.cell. memory_CIBERSORT -
Mast cell.resting_CIBERSORT ABS 1 o | Type 08
Myeloid.dendritic.cell_MCPCOUNTER - ° CIBERSORT
NK.cell.resting_CIBERSORT - : E:DBERSORTABS 0.0
microenvironment.score_XCELL - o M1 QUANTISEQ
immune.score_XCELL - ® o MCPCOUNTER high . low
Neutrophil_CIBERSORT 1 TIMER risk
T.cell.CD4..memory.activated_CIBERSORT + ° XCELL C Relationship between PDCD1 and Risk score
Myeloid.dendritic.cell_TIMER
Neutrophil_CIBERSORT.ABS - e | pvalue
NK.cell.resting_CIBERSORT.ABS - o | ® 00025
T.CD4..memory.activated_CIBERSORT.ABS - ° : 83832 ..
Myeloid.dendritic.cell_XCELL - )
T.cel.CD4._EPIC - °
Neutrophil_TIMER 1 o 1o :
Monocyte XCELL 4 ° 8 3
Macrophage.M1_QUANTISEQ A o .
Cancer.associated.fibroblast_EPIC .
Cancer.associated.fibroblast. MCPCOUNTER - . - | ’
-02 0.0 0.2 -15 -0 -05 00 05
correlation Risk score
D E
e R L Tpr?r + PDCD1 high
! no i
- :Zggg] ::)"?Vh ‘4, == RT no + PDCD1 |o\g/_v
| == RT yes + PDCD1 high
2075 2075 RT yes + PDCD1 low
Ke) Ke)
3 3
o o
= 0.50 =050
2 =
g 5
%] 2]
0.25 0.25
p<0-001
0.00 0.00
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
Time(years) Time(years)
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Kaplan Meier survival analysis between high and low PDCD1 expression groups. (E) Kaplan Meier survival analysis of radiotherapy in combination
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pathway (Fig. 7A). Furthermore, analysis of patient samples demonstrated enrichment of hallmarks such as IL2-STAT5, IL6-JAK-
STAS3 pathway, NOTCH signaling, and Wnt/beta-catenin signaling (Fig. 7B). These significantly enriched hallmarks played a critical
role in shaping the immune microenvironment.

4. Discussion

GBM is a highly malignant, invasive, and poorly prognosis brain tumor [28]. The main therapy method includes surgery,
chemotherapy, and radiotherapy [29]. Besides the traditional treatments, there are no novel treatments that can be applied in clinical
practice to improve the survival of GBM. Recently, immune checkpoint inhibitor (ICI) therapy, the most extensively studied immu-
notherapy, has displayed promising clinical efficacy in various tumors [30]. Nevertheless, for the immunosuppressive tumor micro-
environment, and extensive heterogeneity, the majority of GBM patients respond to immunotherapy ineffectively [31,32]. Hence, it is
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Fig. 7. Results of gene set enrichment analysis (GSEA). (A) The significantly enriched KEGG pathways by GSEA. (B) The significantly enriched
Hallmarks by GSEA.

very necessary to develop new biomarkers in the therapy of GBM.

Firstly, we used ssGSEA to determine the enrichment score of the included samples and grouped samples into two immunity groups.
The differential expressed genes of the high-versus low-immunity group, and normal versus tumor group were intersected. Secondly,
the intersecting genes were assigned in pairs to construct the risk model. In the past, traditional prognostic models were involved in the
exact expression level of genes, which are susceptible to individual variation. In our study, the pairwise comparison and score
calculation are entirely based on the relative ranking of gene expression values of the same patient. Therefore, our signature can
effectively overcome the bath effects and does not need data normalization. This method was robust in many solid tumors, including
bladder cancer [33], colorectal cancer [34], esophageal cancer [35], ovarian cancer [36], and NSCLC [25].

Our signature includes 36 immune-related genes which are mainly related to immune cell function and antigen identification and
presentation. We focus on the CXCL10 and CXCL11, which are a subfamily of chemokines that are mainly involved in immune cell
recruitment and participate in the pathological process of tumors [37]. CXCL10 enhances anti-tumor immunity and transforms cold
tumors into hot tumors [38]. In the tumor microenvironment, by increasing tumor-infiltrating T cells and enhancing T-cell activity,
CXCL10 can significantly limit GBM growth [39]. Li reported that CXCL9 and CXCL10 can be regarded as immune therapy targets [40].
Other immune-related genes in our signature are also tightly correlated with cancer [41,42]. Especially, CD163, CMKLR1, CHI3L2,
POSTN, LTF, SAA1, and TACC3 et al. were associated with various phenotypes of GBM, such as radioresistance, proliferation,
epithelial-mesenchymal transition, migration, invasion, apoptosis, immune infiltration, stem cell self-renewal, etc. and are signifi-
cantly correlated with poor prognosis of GBM [43-51]. In addition, the riskscore exhibits high prediction performance for OS, and the
AUC values to predict 1, 3, and 5-year OS are 0.811, 0.958, and 0.99, respectively. Survival and Cox analysis result confirmed that our
risk score is an independent prognostic factor. It should be noted that age and sex have lower predictive values. Hence, our risk score
may be more valuable in predicting the survival of GBM patients.

Moreover, the risk score was positively associated with fibroblasts, macrophages, and monocytes, while inversely related to B cells.
Immune heterogeneity was observed between different risk groups. The tumor microenvironment (TME) means the surrounding
environment in which tumor cells reside, including extracellular matrix, signaling molecules, immune cells, fibroblasts, lipocytes, etc.
[52]. Among the multiple components of the TME, cancer-associated fibroblasts facilitate the formation of the immunosuppressive
microenvironment that affects the response to immune checkpoint therapy [53]. In addition, tumor-associated macrophages (TAMs) in
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the TME play a dominant role at different stages of tumor invasion and metastasis [54]. They are mainly classified into anti-tumor M1
and pro-tumor M2 subtypes, the level of which is closely related to patient survival depending upon their M1 to M2 type [55]. In
addition, TAMs can inhibit the therapeutic effect of ICI through various mechanisms, such as elevating the levels of PD-1 and PD-L1
[56] and inhibiting the interaction between T cells and tumor cells [57].

In addition, the risk score was positively associated with PD-L1 expression. Therefore, patients in the high-risk group may be more
sensitive to immunotherapy. Moreover, high PD-L1 expression predicted poor prognosis, consistent with the previous study [58].
Previous studies have shown that immunotherapy alone may not achieve a positive effect on GBM, but shows encouraging results in
combination with radiotherapy [59]. Therefore, radiotherapy exerts a crucial role in the treatment of GBM patients. In our study, we
observed improved survival rates in the group receiving radiotherapy combined with low expression of PD-L1 compared to those with
high expression. Therefore, we speculate that patients in low-risk group combined with radiotherapy may observe more benefits.

Finally, the molecular mechanisms associated with the risk score were explored via GSEA. The Wnt and Notch pathways were more
abundant in the low-risk group. Both of these signaling pathways are evolutionarily conserved and play a critical role in carcinogenesis
and the regulation of immune response [60,61]. Wnt pathway boosts the maturation and infiltration of macrophages for immune
surveillance in the steady state but also polarizes TAMs toward immunosuppressive M2-like phenotypes for immune escape in the TME
[62]. Another study showed that pharmacologic inhibition of Wnt signaling represents a promising method for reversing immune
tolerance and improving the effect of PD-1 blockade [63]. Conversely, the ECM receptor interaction pathway was more abundant in
the high-risk group. Glycosaminoglycans and proteoglycans regulate the adhesion of glioma cells to ECM protein and cause cell
proliferation and migration [64]. Furthermore, we observed an extensive enrichment of immune-related hallmarks in the high-risk
group.

There exist a few limitations in our research. Firstly, it is only based on bioinformatic analysis, the collection of clinical samples is
needed for further validation. Secondly, due to the lack of immunotherapy data, immunotherapy combined with radiotherapy for
predicting the prognosis of glioblastoma needs further research. Hence, further prospective research is needed to prove the obtained
findings.

5. Conclusions

The IRGP signature can precisely predict the prognosis of patients with GBM. Additionally, the IRGP signature might help in the
identification of patients who are more likely to benefit from immunotherapy.
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