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Social distancing as one of the main non-
pharmaceutical interventions can help slow down the
spread of diseases, like in the COVID-19 pandemic.
Effective social distancing, unless enforced as drastic
lockdowns and mandatory cordon sanitaire, requires
consistent strict collective adherence. However,
it remains unknown what the determinants for
the resultant compliance of social distancing and
their impact on disease mitigation are. Here, we
incorporate into the epidemiological process with
an evolutionary game theory model that governs
the evolution of social distancing behaviour. In our
model, we assume an individual acts in their best
interest and their decisions are driven by adaptive
social learning of the real-time risk of infection
in comparison with the cost of social distancing.
We find interesting oscillatory dynamics of social
distancing accompanied with waves of infection.
Moreover, the oscillatory dynamics are dampened
with a non-trivial dependence on model parameters
governing decision-makings and gradually cease
when the cumulative infections exceed the herd
immunity. Compared to the scenario without social
distancing, we quantify the degree to which social
distancing mitigates the epidemic and its dependence
on individuals’ responsiveness and rationality in their
behaviour changes. Our work offers new insights into
leveraging human behaviour in support of pandemic
response.

1. Introduction
Emerging novel zoonotic diseases, such as Zika [1],
Ebola [2] and the most recently COVID-19 [3], have
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imposed great threats to global health and humanity [4]. Some of these new diseases are caused by
respiratory viruses and highly contagious through proximity transmissions, and may turn into an
unprecedented pandemic well before effective treatments and vaccines have been developed and
widely deployed. In this case, the world may have to resort to non-pharmaceutical interventions
(NPI), such as face covering and social distancing so as to mitigate disease impact before
effective pharmaceutical interventions become available. However, the ultimate effectiveness of
NPI measures is highly contingent on compliance and adherence, since NPI is usually not a
one-off measure, but rather requires repeated, consistent adherence in order to reduce potential
transmission routes of contracting the infection. From this perspective, human behaviour plays
an important role in impacting the course of a pandemic outbreak as well as the health outcome.

In recent years, there has been growing interest in understanding social factors in
epidemiology (see, for example, [5] for a brief review). In the field of behavioural epidemiology,
of particular interest is the use of disease-behaviour interaction models for this purpose [6]. Prior
work has extensively used this framework to study how vaccine compliance can be influenced
by a wide range of factors [7–9], ranging from vaccine scares [10] to disease awareness [11].
The feedback loop between behavioural change and disease prevalence gives rise to a variety
of interesting, non-trivial dynamics [12–15], e.g. the hysteresis effect [16]. Among others, an
important approach is combining evolutionary game theory with epidemiological models [7,
17,18]. Evolutionary game theory provides a general mathematical framework for modelling
behavioural changes in a population driven by both social influence and self-interest. In the
past decades, the approach of replicator dynamics has been commonly used to model social
learning/imitation process, and particularly the spread of behaviour (social contagion), in a range
of important real-world problems [19], from peer punishment [20] over cooperation [21], altruistic
punishment [22], honesty [23], trust [24] and moral behaviour in general [25] to antibiotic
usage [26].

Unlike vaccination, social distancing effort of an individual requires repeated decisions
whether or not to comply by evaluating the necessity of doing so throughout the epidemic,
despite public health recommendations or even mandates [27]. The cost of social distancing is not
negligible, but rather has a huge impact on the economic status and well-being of people [28].
Previous work has modelled social distancing as a differential game [29], that is, individuals
try to maximize their payoffs by adjusting their effort in social distancing (namely, the level
of exposure to potential transmission routes) by comparing the risk of contracting the disease
with the cost of social distancing. Their numerical results show that the collective dynamics of
social distancing would approach to a steady level (i.e. a Nash equilibrium with constant effort
for social distancing) without any oscillatory dynamics [29]. While this prior study sheds useful
insights for social distancing from the game theory perspective, it remains largely unknown how
the rationality and the responsiveness of individuals in reacting to an epidemic would impact the
compliance level of social distancing.

Social distancing is costly, yet if not optimized for timing and duration and intensity, it would
lead to wasted effort [30,31]. Combined with real data, the impact of social distancing can also
be quantitatively assessed and optimized for past pandemics like influenza [32,33]. Noteworthy,
there have been efforts to predict and quantify the effectiveness of reactive distancing on the
COVID-19 pandemic, in anticipation of multiple waves of infections in the coming years [34,35].

Aside from individual perspective, the optimization of disease control is often studied using
optimal control theory by assuming a central social planner aiming to minimize the cost of disease
outbreak [36–39]. While these results are insightful from the perspective of population optima [40]
(that is, optimized policies are complied uniformly in the population), it is challenging to attain
these goals in practice due to compliance issues.

To shed light on driving factors of compliance levels of social distancing, here we take
into account important aspects of human decision-making—bounded rationality [41] and loss
aversion [42]—which is informed by the real-time disease prevalence, and prompted by peers’
choice. We incorporate into the epidemiological process with an evolutionary game dynamics of
social distancing behaviour. Individuals decide on whether or not to commit to social distancing
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by weighing the risk of infection with the cost of social distancing. The responsiveness parameter
in our model modulates the relative time scale of individuals revisiting their social distancing
decisions, as compared to the pace of an unfolding epidemic. We introduce bounded rationality
that individuals are not necessarily using the best response but rather with some probability of
changing their behaviour.

In this work, we find an interesting oscillatory tragedy of the commons in the collective
dynamics of social distancing. Individuals are inclined to social distancing when the disease
prevalence is above a threshold that depends on the transmissibility of the disease and the
relative cost of social distancing versus contracting the disease. As the epidemic curve is being
flattened, individuals consequently feel more safe not to practise social distancing, thereby
causing the decline in the compliance of social distancing and further resulting in a resurgence
of disease outbreaks in the population. Even though such reactive social distancing is hardly
able to help reach the optimality of disease mitigation, it can avoid the overshooting of
infected individuals which typically happens in an susceptible–infected–recovered (SIR) model
in the absence of any interventions. We also find non-trivial dependence of the effectiveness
of social distancing, measured by the fraction of susceptible individuals who would become
infected without social distancing, on model parameters governing individuals’ rationality and
responsiveness.

2. Model and methods

(a) Model
Our model is basically a combination of the classical SIR model with the replicator equation:
In a well-mixed infinite population each individual is either susceptible, infected or recovered.
Moreover, each susceptible individual can at each time choose to either practise social distancing
or not to practise social distancing. If the individual practises social distancing they cannot
become infected. If they do not practise social distancing they become infected in an encounter
with an infected individual with probability β > 0. At each time an infected recovers with
probability γ > 0 (figure 1).

We denote the proportion of susceptible individuals at time t by S(t), the proportion of infected
by I(t), and the proportion of removed by R(t). Furthermore, we denote by E(t) the proportion of
susceptible individuals that practise social distancing. We denote the initial conditions by I0 =
I(0), S0 = S(0) as well as E0 = E(0). A susceptible individual determines his strategy based on a
cost-benefit analysis. Hence, by πsd we denote the payoff of social distancing, and by πnsd the
payoff of no social distancing. In our model, the perceived cost of social distancing is Csd > 0 at
each time t. Thus, we have

πsd = −Csd.

πnsd depends on two factors: the perceived cost of infection that we denote by CI > 0 and
the risk of infection. The risk of infection in time (t, t + 1) without social distancing is given
by

1 − exp

(
−β

∫ t+1

t
I(τ ) dτ

)
≈ 1 − exp (−βI(t)) .

Therefore, the payoff of not socially distancing is given by

πnsd = −CI(1 − exp (−βI(t))).



4

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A476:20200686

...........................................................

S

SD NSD I
b g

R

Figure 1. Schematic of our model. In contrast to the SIR model, we divide the susceptible population into those that practise
social distancing (and cannot be infected) and those that do not practise social distancing (and can be infected). The dynamics
of the amount of people practising social distancing is given by a replicator equation. Here as well as in later figures, we refer to
those practising social distancing as SD and those that do not as NSD. (Online version in colour.)

Hence, the dynamics of our model are given by the following system of ordinary differential
equations (ODEs):

Ṡ(t) = −β(1 − E(t))S(t)I(t)

İ(t) = β(1 − E(t))S(t)I(t) − γ I(t)

Ṙ(t) = γ I(t)

and Ė(t) = ωE(t)(1 − E(t)) tanh
(κ

2

(
−Csd + C I

(
1 − e−βI(t)

)))
.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.1)

Here, ω is a responsiveness parameter, determining the time scale for updating the social
distancing behaviour. κ is a rationality parameter. For large κ individuals change their strategy
if the payoff of the other strategy is larger. For small κ only a fraction of the susceptible
individuals depending on the difference in payoff change their strategy. The behaviour of this
model is illustrated in figure 2 for different parameters. For this figure as well as for all other
figures, we used the Matlab method ode23, which is an implementation of the Bogacki–Shampine
method—an explicit Runge–Kutta (2,3) pair.

(b) Perfect adaption
In Model (2.1), the dynamics of social distancing E change to direct the amount of infected
I towards the amount where πsd = πnsd, i.e. towards I∗. Assuming that this adaption works
perfectly, we obtain the following model given by the ODEs.

This model is given by the ODEs

İPA(t) =
{

0, t < t∗

βI(t)S(t) − γ I(t), t > t∗

and ṘPA(t) = γ I(t)

⎫⎪⎪⎬
⎪⎪⎭ (2.2)

with S(t) = 1 − IPA(t) − RPA(t), t∗ = −(γ − β + βI∗)/βI∗γ , and with initial condition

IPA(0) = I∗, RPA(0) = 0.

An illustration of this model is given in figure 3.
Then, the total amount of people that get infected RPA(∞) is given by

RPA(∞) = γ

β
W
(

− exp
(

− I∗β
γ

− 1
))

+ 1,

where W denotes the Lambert W function. Thus, in the case of perfect adaption, we can achieve

RPA(∞) → 1 − γ

β
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Figure 2. Model (2.1) for different parameters with I0 = 0.01, S0 = 0.99,E0 = 0.2. SD Here, as well as for all other figures,
we used theMatlabmethod ode23, which is an implementation of the Bogacki–Shampinemethod—an explicit Runge–Kutta
(2,3) pair. (Online version in colour.)
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Figure 4. Oscillations of the number of infected around I∗ inModel (2.1) with initial condition I0 = 0.01, S0 = 0.99,E0 = 0.3.
In each instance, I oscillates around I∗ with decreasing amplitude until the peak is smaller than I∗. We see that the number and
amplitude of oscillations depends on the parametersω, κ , Csd, CI as well asβ and γ . (Online version in colour.)

by choosing Cd/CI → 0. We want to use this model of perfect adaption to understand how the
total amount of infected R(∞) in Model (2.1) depends on the parameters Csd, CI, ω, κ .

3. Results

(a) Oscillatory tragedy of the commons
In Model (2.1), the cost of social distancing and no social distancing are equal at time t if

I(t) = I∗ := − 1
β

log
(

1 − Csd

CI

)
.

If I > I∗, then E is increasing. If I < I∗ then E is decreasing. On the other hand, if E is sufficiently
large, this causes a decrease in I and if E is sufficiently small this causes an increase in I. If the
amount of infections is high, people are more aware of the disease and practise social distancing.
As soon as the amount of infections is small again, this awareness fades and people do not feel
the need to practise social distancing anymore. As a result, more people become infected again
leading to a higher awareness and more people practising social distancing. We refer to this
feedback loop as oscillatory tragedy of the commons. Instead of high compliance to social distancing
until the disease has died of, we find a decrease in individuals practising social distancing when
the amount of infected is sufficiently small. This then causes another rise of infections. We can
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Figure 5. Comparison of the SIR model with Model (2.1) for β = 0.8, γ = 0.4 with I0 = 0.01, S0 = 0.99, E0 = 0.2, Csd =
0.75 and (b) CI = 100,ω = 1, κ = 2, respectively (c) CI = 250,ω = 0.5, κ = 0.5. We clearly see here that social distancing
reduces the total amount of infections. (Online version in colour.)

observe this in Model (2.1) as I oscillates around I∗ with decreasing amplitude until the peak of
the oscillations is smaller than I∗ (figure 4).

(b) Social distancing saves lives
When comparing Model (2.1) to the SIR model, we immediately note that the total number of
infections can be significantly smaller with social distancing (figure 5). Essentially, this means that
voluntary social distancing can significantly reduce the total amount of infections R(∞). However,
we also note that infections after the first wave of infection only emerge due to the oscillatory
tragedy of the commons. If social distancing was practised until I = 0, we would have a much smaller
R(∞).

Perfect adaption and Model (2.1) significantly reduce the total amount of infections compared
to the SIR model. This is especially apparent for small I∗ and slow adaption, i. e. small ω and κ .
This is illustrated in figure 6.

Essentially, the explanation for this behaviour relates to herd immunity. Social distancing
flattens the curve. Instead of one large wave of infections as in the SIR model, in Model (2.1)
we can have several waves of infection with smaller peaks. An example of this is illustrated in
figure 5. In the SIR model, herd immunity occurs if

S <
γ

β
.
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in §d. (Online version in colour.)

Thus, I is increasing until S = γ /β and then is monotonically decreasing. Even though, we have
achieved some kind of herd immunity at this point, the high number of infected I still causes a
high amount of new infections after herd immunity. Thus, the total amount of infections R(∞) is
significantly larger than needed to obtain herd immunity. In Model (2.1), the dynamics are much
more complicated. However, what remains as in the SIR model, is that as soon as (or at latest at
this point) S < γ/β the amount of infected I is monotonically decreasing, since then we have

İ = β(1 − E)SI − γ I ≤ βSI − γ I < 0.

We denote the amount of infected when herd immunity is obtained by IHI. With social distancing
IHI can become significantly smaller since social distancing significantly reduces the amount of
infection. Other factors influencing the amount of new infection after herd immunity are the
amount of recovered when herd immunity is achieved (denoted by RHI) as well as the amount
of people practising social distancing. RHI can be much larger when social distancing is practised
due to the spread of infections over a longer time period. People that practise social distancing
further reduce the amount of new infections.
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Figure 7. Occurrence of herd immunity for different parameters in Model (2.1). In both examples, herd immunity occurs for
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amount IHI causes much less new infections than the larger IHI in (b). Therefore, the total amount of infections for (a) is much
smaller than for (b). (Online version in colour.)

Together, all these factors cause a significant decrease in new infections after herd immunity is
achieved. Since small IHI mostly coincides with large RHI as well as high E , we focus on IHI here.
When choosing the parameters ω, κ , Csd, CI such that IHI is small, RHI and many people practice
social distancing, we can even achieve R(∞) to be near the herd immunity threshold 1 − γ /β. For
an illustration of this, see figure 7.

This also explains why perfect adaption causes larger total amounts of infections than Model
(2.1). For perfect adaption, herd immunity is obtained for t = t∗ with I = I∗ while IHI often is
significantly smaller in Model (2.1). In particular, if we have I > I∗ while S is close to γ /β, small
increases in E cause a decrease in I. Hence, IHI < I∗ in most cases. For instance, in figure 7a,
we have I∗ ≈ 0.00268 while IHI can be much smaller in Model (2.1). However, we once again
remember the oscillatory tragedy of the commons, i.e. that higher compliance to social distancing
when I is small could lead to much smaller R(∞).

Next, we want to analyse how the perceived cost of social distancing Csd as well as the
perceived cost of infection CI influence the total amount of infections R(∞).

(c) Larger cost of infection and smaller cost of social distancing reduce infections
As one might expect, if the cost of infection CI increases or the cost of social distancing Csd
decreases, this induces an increase in the amount of people practising social distancing and
thereby a decrease in infections. This behaviour becomes quite apparent in figure 8.
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Figure 8. Total number of infections dependent of the cost of social distancing. We compare Model (2.1) for different
costs of social distancing. Here, we have I0 = 0.01, S0 = 0.99, E0 = 0.3. In all three scenarios, we see that despite small
oscillations in R(∞) the number of infections is overall increasing in Csd. Moreover, we see that for large CI the total
number of infections can be significantly smaller, i.e. the tendency that higher costs of infection decrease the number of
infections. Moreover, larger CI as well as larger κ and ω cause a higher number of smaller oscillations. (Online version in
colour.)

We can observe a similar tendency for CI. Though, here we have larger oscillations in the
total size of infections. These oscillations decrease in their amplitude and level off at RPA(∞). An
example for this behaviour can be seen in figure 9.

An explanation for this behaviour is connected to the observation made in §b that is illustrated
in figure 7. To reduce R(∞), (among other factors) IHI has to be small. One way to achieve this is
to reduce I∗, the threshold that I oscillates around. Therefore, smaller Csd as well as larger CI tend
to cause a decrease in R(∞). However, this does not yet explain how the oscillations occur. For
this purpose, we have a look at figure 10. Here, we see that reducing I∗ has two opposing effects
on R(∞):

(i) A decrease in I∗ causes a decrease in the size of the waves of infections and thus a decrease
in IHI. This causes a decrease in R(∞).

(ii) When decreasing I∗ too much, this can lead to the development of a new wave of
infections. When this occurs, we have an increase in I, before herd immunity is obtained.
This causes a larger IHI. Therefore, we have an increase in the total amount of infections
R(∞) when a new wave of infections develops.



11

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A476:20200686

...........................................................

0.75(a)

(c)

(b)

0.70

0.65

0.60

0.55

0.50

0.45
20 40 60 80 100

CI

Csd = 1.0

Csd = 1.5

Csd = 2.5

120 140 160 180 200

R
(•

)

0.70

0.60

0.65

0.55

0.50

0.45

0.40

0.35
50 100 150 200 250 300 350 400 450

CI

Csd = 1

Csd = 2

Csd = 3

R
(•

)

0.90

0.85

0.80

0.75

0.70

0.65

0.60
50 100 150

CI

200 250 300 350

R
(•

)

Csd = 1

Csd = 2

Csd = 3

b = 0.9, g = 0.5, w = 1, k = 2 b = 0.7, g = 0.3, w = 1, k = 1

b = 0.8, g = 0.5, w = 0.5, k = 0.5

Figure 9. Total number of infections dependent of the cost of infection. We compare Model (2.1) for different costs of social
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oscillations appear to be levelling of approximately at RPA(∞). We see the tendency that R(∞) decreases for increasing CI .
Moreover, R(∞) is smaller here again for smaller Csd. (Online version in colour.)
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CI = 200, initial condition I0 = 0.01, S0 = 0.99,E0 = 0.15 and different Csd. For (a) Csd = 1.8, we have twowaves of infection
and herd immunity is obtained after approximately 70 days.Wehave IHI ≈ 0.0045 and overall we have a proportion of R(∞)≈
0.4418 infections. For (b) Csd = 1.6, thewaves of infection decrease in size. Thus, herd immunity is obtained after a longer period
of time (t = 90). At the time,we get herd immunity, we have a smaller amount of infections (IHI ≈ 0.0035) and overall we have
R(∞)≈ 0.4389 infections. However, we see the beginning of the development of a third wave of infection. For (c) Csd = 1.4,
we see the effect of this third wave of infection. Herd immunity here is obtained after 105 days with an amount of infected
IHI ≈ 0.0042. Even though, we have a smaller I∗ here, the third wave of infection causes an increase in overall infections. Here,
we have R(∞)≈ 0.4442 and thus even more infections than for Csd = 1.8. (Online version in colour.)
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Figure 11. Development of an oscillation in the total number of infections. In Model (2.1) with β = 0.9, γ = 0.6, κ = 0.5,
CI = 100, Csd = 1 and initial condition I0 = 0.01,E0 = 0.2, we observe the amount of infected I. As can be seen in figure 12,
R(∞) has a local minimum in this case approximately atω = 5. In (a), we haveω = 5, herd immunity is achieved for t ≈
50 and at this time, we have IHI ≈ 0.0083. The total amount of infections is given by R(∞)≈ 0.4316. For (b) ω = 6 herd
immunity is achieved at approximately the same time, with IIHI ≈ 0.0094 and total amount of infections R(∞)≈ 0.4385.
For (c) ω = 7 herd immunity is achieved at approximately the same time, with IHI ≈ 0.0106 and total amount of infections
R(∞)≈ 0.4432. Finally, for (c)ω = 8 herd immunity is achieved at approximately the same time, with IHI ≈ 0.0101 and total
amount of infections R(∞)≈ 0.4395. For increasingω, we observe that the first three waves of infection decrease in duration
and intensity. However, a fourth wave of infection develops. This leads to an increase in the amount of infections when herd
immunity is achieved and therefore an increase in the total amount of infections forω = 6, respectively,ω = 7 compared to
ω = 5. For ω = 8, however, herd immunity is only obtained after the fourth wave of infection is already decreasing again.
Therefore, we have a decrease in the total amount of infections for ω = 8 compared to ω = 7. Note also that the amount
of infected when herd immunity is achieved, is in all cases smaller than I∗. If we have I > I∗ while S is close to γ /β , small
increases inE cause a decrease in I. Hence, I is mostly smaller than I∗ when herd immunity occurs. This also induces that R(∞)
is mostly smaller than RPA(∞) as can also be seen in figure 12. (Online version in colour.)

This leads to the oscillations, that we observed in figure 9. When reducing Csd we first see a
decrease in R(∞) (caused by smaller waves of infection and a smaller IHI) followed by an increase
(induced by a new wave of infections that leads to an increase in IHI).

(d) Faster responses and higher rationality increase infections
Two other important factors determining R(∞) are the responsiveness ω and the rationality
parameter κ . In Model (2.1), a larger ω causes faster adaption of social distancing to the amount
of infected. This has two opposing effects.
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Figure 12. Total number of infections dependent of the responsiveness rate. We compare Model (2.1) for different rationality
parameters with perfect adaption. Again, we have the initial condition I0 = 0.01, E0 = 0.2. R(∞) shows oscillations with
decreasing amplitude converging to perfect adaption here again for the same reasons as explained in §3c. This also explains
the increasing number of oscillations for increasing κ and CI . Moreover, R(∞) appears to be increasing for increasing ω, in
particular, if κ and CI are small. (Online version in colour.)

(i) On the one hand, faster adaptions causes a decrease in the duration of the waves of
infection with smaller maxima and larger minima.

(ii) On the other hand, these smaller waves of infection can cause the development of another
wave of infection. In particular, if herd immunity is obtained before this new wave
recedes, this leads to an increase in IHI. Thus, leading to an increase of infections.

Overall, we thus have oscillations in R(∞) depending on ω. An example of this is illustrated in
figure 11.

With increasing ω the deviations of I from I∗ are decreasing due to faster adaption. This leads
to a decrease in the amplitude of the oscillations in R(∞) and to R(∞) levelling off approximately
at RPA(∞). As explained before, we mostly have IHI < I∗. Therefore, larger deviations from perfect
adaption where IHI = I∗ cause a decrease in R(∞). An example of this behaviour is illustrated in
figure 12.

The rationality parameter κ has a nearly similar effect as ω on the dynamics of our model.
In Model (2.1), a large rationality parameter κ means that individuals change their strategy as
soon as the payoff of infection becomes larger than the payoff of social distancing and vice versa.
Therefore, large κ induce faster adaption of E and therefore smaller oscillations of I around I∗. An
increase in κ thus causes a decrease in the duration in the waves of infection as well as smaller
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Figure 13. Total number of infections dependent of the rationality parameter. We compare Model (2.1) with initial condition
I0 = 0.01,E0 = 0.2 for different responsiveness rates with perfect adaption. Again, we observe the same kind oscillations in
R(∞) that are caused by the development of new waves of infection. Smaller responsiveness parameters ω cause smaller
oscillations and tendentially fewer infections. (Online version in colour.)

maxima and larger minima. Hence, a change in κ has a similar effect on R(∞) as a change in ω.
Here as well, we have oscillations caused by the development of new waves of infection, that are
decreasing and levelling off at RPA(∞). Thus, R(∞) tends to decrease for smaller κ (figure 13).

4. Discussion and conclusion
Social distancing is often used in combination with other control measures such as mask
wearing, and testing and isolation. It is worthy of further investigation to account for individual
preferences in their adoption choices when multiple interventions for disease mitigation are
available. Generally speaking, individuals become less vigilant and feel less need to follow
disease intervention measures suggested by public health officials, if the epidemic curve
is being bent down, but as a result, the uptick of cases in turn causes individuals to
increase their compliance levels. The feedback loop of this sort gives rise to an oscillatory
dynamics of behavioural compliance and disease prevalence, as reported in the present work.
Similar phenomena have previously been studied in the context of eco-evolutionary dynamics
where the payoff structure of individual interactions can be regulated by the environmental
feedback [43–45].

Social distancing can be regarded as an altruistic behaviour that incurs a cost to oneself but
collectively benefits other community members especially these vulnerable in the population.
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Thus monetary or non-monetary means can be used to incentivize non-compulsory social
distancing. For example, during the COVID-19 health crisis, governments have subsidized the
cost of staying at home through tax reduction or other stimulus packages for both workers and
their employers [28]. Besides, an individual who opts for social distancing can create a positive
psychological reward, which in fact reduces the perceived overall cost of social distancing. As
shown in several experimental works [46–48], encouraging altruistic social distancing, especially
if people can afford to do so, through promoting a strong sense of community, empathy and
compassion [49], can lead to desired compliance of social distancing. In this sense, promoting
human cooperation in the social dilemma of disease control is a new promising direction for
future work.

While our proof-of-principle model offers enlightening insights into understanding
compliance issues in the dilemma of social distancing, targeted social distancing can be
investigated by further accounting for individual heterogeneity as the attack rate and mortality
rate of infectious diseases, such as the influenza [50,51] and the COVID-19 pandemic [52], are
age-dependent. Thus, extending our model with an age structure will be useful to quantify the
heterogeneity in both the risk of infections and the cost of social distancing for each age group.
This consideration parameterized using realistic contact mixing matrices in a social network [53]
as well as with an age structure (more generally, multilayer networks [54]) can be used to optimize
social network-based distancing protocol (targeted social distancing) [34]. Further work along this
direction is promising and will help provide practical guidance. Moreover, it appears that instead
of the actual likelihood to get infected, one’s perceived likelihood to get infected influences the
decision whether to engage in social distancing and face covering [46]. Variation in individual
risk assessment might therefore influence the results in our model and be an interesting extension
to the model in future work.

In sum, we analyse and characterize oscillatory dynamics in the dilemma of social distancing,
which arises from the non-trivial feedback between disease prevalence and behavioural
intervention. Our results suggest an oscillatory tragedy of the commons in disease control when
individuals act in their own right without coordination or in the absence of centralized institutions
to enforce their compliance, a phenomenon that has been observed in past pandemics like
the Spanish flu [55] and seems to repeat in the current COVID-19 pandemic [56]. Our work
provides new insight into the dual role of human behaviour that can fuel, or fight against, the
pandemic [57]. To resolve the dilemma of disease control from global pandemics to resurgence
of common diseases (like measles which has become endemic in some regions [58]), a deep
understanding of pertinent behavioural aspect in disease control and prevention, and large-scale
human cooperation in particular, is urgently needed and will help to better inform pandemic
support in the future [49].
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