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Efficient Adaptive Speech Reception
Threshold Measurements Using
Stochastic Approximation Algorithms

Gertjan Dingemanse and Andr�e Goedegebure

Abstract

This study examines whether speech-in-noise tests that use adaptive procedures to assess a speech reception threshold in

noise (SRT50n) can be optimized using stochastic approximation (SA) methods, especially in cochlear-implant (CI) users. A

simulation model was developed that simulates intelligibility scores for words from sentences in noise for both CI users and

normal-hearing (NH) listeners. The model was used in Monte Carlo simulations. Four different SA algorithms were opti-

mized for use in both groups and compared with clinically used adaptive procedures. The simulation model proved to be

valid, as its results agreed very well with existing experimental data. The four optimized SA algorithms all provided an

efficient estimation of the SRT50n. They were equally accurate and produced smaller standard deviations (SDs) than the

clinical procedures. In CI users, SRT50n estimates had a small bias and larger SDs than in NH listeners. At least 20 sentences

per condition and an initial signal-to-noise ratio below the real SRT50n were required to ensure sufficient reliability. In CI

users, bias and SD became unacceptably large for a maximum speech intelligibility score in quiet below 70%. In conclusion,

SA algorithms with word scoring in adaptive speech-in-noise tests are applicable to various listeners, from CI users to NH

listeners. In CI users, they lead to efficient estimation of the SRT50n as long as speech intelligibility in quiet is greater than

70%. SA procedures can be considered as a valid, more efficient, and alternative to clinical adaptive procedures currently

used in CI users.
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Many cochlear-implant (CI) recipients and hearing-

impaired people experience difficulties with understand-

ing speech in a noisy environment. To characterize a

subjects’ ability to listen in noise, speech-in-noise tests

have been developed in many languages. For clinical use

of a test, it is important that the test is accurate in the

sense that the test should have a small test–retest vari-

ance and bias. With an accurate test, a clinician is able to

measure differences between amplification and signal

processing settings. Furthermore, the test should be effi-

cient to be applicable in a busy clinic and to prevent

fatigue. Efficiency here means that a sufficient accuracy

is reached within a limited number of trials.
A frequently used measure of speech perception in

noise is the speech reception threshold in noise

(SRT50n), defined by the signal-to-noise ratio (SNR)

that yields an average response of 50% correctly recog-
nized items over a number of trials (Plomp & Mimpen,
1979). This SRT50n can be measured with an adaptive
procedure that varies the SNR based on previous
responses of the listener to track the 50% score.
The SNR and the percent correct score are related by a
psychometric curve, which is often referred to as the intel-
ligibility function. The slope of this curve is steepest
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around the 50% correct score in normal-hearing (NH)
listeners. The adaptive procedure keeps the trials in this
steep part of the curve and avoids potential floor and
ceiling effects. In general, tests of sentence recognition
in steady-state speech-spectrum noise have intelligibility
functions with steep slopes, giving the advantage that the
SRT50n estimate is accurate, because the test–retest var-
iance is inversely related to the slope (e.g., Kollmeier
et al., 2015). The slope of the intelligibility function is
often increased by optimizing the homogeneity of the
sentences with respect to their SRT50n and slope.

For CI users, speech-in-noise tests may not be opti-
mally designed. First, the just-mentioned optimization of
the homogeneity of the sentences is usually done in a
group of NH listeners, and it is unknown whether this
homogeneity also applies to CI users. Second, the slope
is often less steep in CI recipients. Dingemanse and
Goedegebure (2015) found an average slope of 6.4%/
dB around 50% for CI recipients, which is much lower
than the typical slope of 10%/dB to 15%/dB obtained
with NH listeners (e.g., Versfeld et al., 2000). However,
the step sizes used in adaptive speech tests are often the
same in CI recipients as in NH listeners (e.g., Chan et al.,
2008; Dawson et al., 2011; Zhang et al., 2010), which
may result in different step size to slope ratios for CI
recipients compared with NH listeners. This can reduce
the accuracy of the adaptive procedure. Third, the max-
imum proportion correct score (measured in quiet) is
lowered and may range from 1 to 0.1 (e.g., Gifford
et al., 2008), making the proportion correct score of
0.5 no longer the point with the steepest slope.
Consequently, the accuracy of the SRT50n measure
may be insufficient for CI listeners, or an adaptive
estimation of the SRT50n is not even feasible if the max-
imum proportion correct score of a CI listener
approaches 0.5. Given these concerns, there is a need
to address the accuracy of SRT50n measures in CI
listeners and to explore if SRT50n measurements need
special procedures in CI listeners to enhance accuracy.

Several researchers have attempted to modify the
simple up-down procedure for use in CI recipients
because of their reduced speech intelligibility. The
Hearing in Noise Test procedure was modified by allow-
ing one or more errors in repeating a sentence (Chan
et al., 2008) or allowing a maximum error of 20%,
40%, or 60% (Wong & Keung, 2013). Wong and
Keung showed that adaptive procedures based on
these criteria could be used in a greater percentage of
CI users. These modifications of the scoring may
improve the accuracy because of the increase in maxi-
mum proportion correct score and the slope at SRT50n.

Another well-known option to enhance the accuracy
of the SRT50n estimate is to score the correctly repeated
sentence elements (often words, so-called word scoring;
Brand & Kollmeier, 2002; Terband & Drullman, 2008).

The test–retest reliability is inversely proportional to the
square root of the number of sentences and for word
scoring also to the number of statistically independent
elements per sentence. The effective number of statistical-
ly independent elements in a sentence is typically around
two words per sentence. This is less than the number of
words in the sentence because the words in a sentence are
related by the contextual information of the sentence
(Boothroyd & Nittrouer, 1988). In CI users having a
lowered maximum proportion correct score, word scoring
is a good option, because this type of scoring can still be
used, while sentence scoring is not feasible.

If word scoring is used, an adaptive procedure has to
prescribe how the step size depends on the proportion of
correct words. Hagerman and Kinnefors (1995)
described such a procedure. They used small step sizes
if only some of the words were recognized and larger
steps if all words or none of the words were recognized.
Brand and Kollmeier (2002) proposed a generalization
of the Hagerman and Kinnefors procedure based on the
difference between the proportion of correct words in
the previous trial and the target proportion correct.
This difference was divided by the slope of the intelligi-
bility function and scaled by a scaling function that gov-
erned the step size sequence. A concern with this
adaptive procedure is that the optimal step size is related
to the slope of the intelligibility curve, which is most
often unknown and can vary considerably in CI users
and hearing-impaired listeners.

The accuracy of an SRT50n estimate also depends on
the adaptive procedures themselves and the way in which
the SRT50n is calculated. Often, adaptive procedures use
a fixed step size to govern SNR placement and the aver-
age SNR over the trials as the SRT50n estimate (Nilsson
et al., 1994; Plomp & Mimpen, 1979). These simple
up-down procedures are nonparametric. Several
researchers used a parametric maximum-likelihood
estimation of the SRT50n and the slope, with the aim
of improving accuracy (Brand & Kollmeier, 2002;
Versfeld et al., 2000). However, Versfeld et al. showed
that maximum-likelihood estimates were not systemati-
cally different from an estimate based on the average of
the last 10 sentences of the nonparametric simple
up-down procedure. Others have proposed Bayesian
methods to estimate the parameters of the psychometric
function (King-Smith & Rose, 1997; Kontsevich &
Tyler, 1999). Such methods can also be used to control
SNR placement (e.g., Doire et al., 2017; Shen &
Richards, 2012). In general, both maximum-likelihood
estimation and Bayesian estimation require some prior
knowledge of the intelligibility function. Most studies
have assumed the maximum proportion correct near 1
and did not test the performance of an estimation
method for a lower maximum proportion correct score
(but cf. Green, 1995). Shen and Richards (2012) proposed
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a method that includes an estimation of the maximum
proportion correct. A disadvantage of their method is
that all parameters of the psychometric function must be
estimated concurrently, which requires a larger number of
trials at well-distributed SNRs. In contrast, nonparametric
methods only assume a monotonic increasing intelligibility
function (cf. Robbins & Monro, 1951) and are able to esti-
mate the SRT50n as the only parameter. Although some
prior knowledge of the mean and slope may help to opti-
mize nonparametric adaptive procedures, this knowledge is
not a fundamental requirement. Furthermore, nonpara-
metric methods are easier in concept and calculation.

The nonparametric adaptive procedures are in fact
stochastic approximation (SA) methods that try to
approximate the SRT50n based on scores from earlier
trials, which are stochastic in nature. SA algorithms were
originally developed to find the roots of a function if
only noisy observations are available (Robbins &
Monro, 1951). In the context of this study, it means to
find the root of the function f(SNR) – 0.5, in which f is
the intelligibility function. Nowadays, there is a large
body of literature on SA describing a variety of recursive
SA algorithms with different step size sequences (for an
overview, see Kushner & Yin, 2003).

SA algorithms often have step size sequences that
decrease with increasing trial number n. The rationale
is that the estimation of the root (or target proportion
correct) is more accurate if the step size decreases during
the recursive approximation (Kushner & Yin, 2003).
Decreasing step size sequences have also sometimes been
used for speech-in-noise measurements (Brand &
Kollmeier, 2002; Keidser et al., 2013).

A concern of using a decreasing step size sequence in
speech tests is that it makes an adaptive threshold esti-
mation algorithm more prone to bias due to nonstation-
ary behavior of the listener, such as lapses in attention.
Fatigue can also occur, although Dingemanse and
Goedegebure (2015) have found no effect of fatigue in
a typical experiment with CI users. A second concern
regarding the use of decreasing step sizes is that there
is a risk of bias if the SNR of the first trial is relatively far
from the real SRT50n. So, when using SA algorithms
with decreasing step sizes, consideration should be
given to possible effects of nonstationary behavior of
the listener and the selection of the initial SNRs.

The aim of this study is to find an efficient SA algo-
rithm for SRT50n estimation in CI users, using word
scoring, and taking into account intelligibility functions
with less steep slopes and a lower maximum intelligibility
score in quiet.

The research questions are as follows:

1. Is there an SA algorithm based on word scoring that
provides a more efficient estimate of the SRT50n than
clinically used procedures in CI users?

2. What are the conditions for reliable use of adaptive

measurements of SRT50n in CI users, with respect to

the speech intelligibility score in quiet and the initial

SNR?

To answer these questions, we selected several SA

algorithms from the literature. We used Monte Carlo

simulations to investigate the efficiency and accuracy

of the SA algorithms. The main outcome measures

were the standard deviation (SD) and the bias of the

estimated SRT50n. Simulations with NH subjects were

included to get insight into possible differences in opti-

mal algorithms or parameters between CI recipients and

NH listeners.

Materials and Methods

SA Algorithms

To find the root of a function f(SNR) – Pt, with Pt the

target proportion correct, SA algorithms use an adaptive

up-down procedure of the form:

xnþ1 ¼ xn þ anð Pt � yn Þ (1)

where xn is the stimulus value (the SNR) of the nth trial,

yn the proportion of correctly recognized words as a

noisy measurement of the value f(xn), Pt the target pro-

portion correct, and an the step size parameter of the nth

trial. Robbins and Monro (1951) proved that a decreas-

ing step size sequence of an¼ b/n implies convergence of

xn to xt with f(xt)¼Pt, where b is the step size constant,

and f a monotonically increasing function. In the litera-

ture on SA, many other step size sequences and their

convergence are described, and even other recursive for-

mulas have been proposed (Kushner & Yin, 2003).
For our purpose, we need SA algorithms that have

the following properties: (a) a good small-sample con-

vergence because sentence lists have a relatively small

number of trials (10–30 sentences) for reasons of test

efficiency; (b) good rejection of the noise in the yn
because the variance of the noise in yn is large; (c) insen-

sitivity to badly chosen initial values or large deviations

of yn from Pt early in the procedure to prevent bias; and

(d) tolerance with respect to some nonstationarity in the

intelligibility function due to nonstationary behavior of

the participants, such as varying attention. Note that

these four requirements describe different aspects but

are not independent of each other. In general, smaller

step sizes are better for noise rejection, and larger step

sizes lead to faster forgetting of initial conditions.
In the SA literature, four algorithms were found that

may meet the aforementioned criteria. The first algo-

rithm is the accelerated SA (Kesten, 1958). Kesten
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proved that the convergence of the SA sequence can be
accelerated compared with the original form (Equation
1) if the step size decreases on reversals of the direction
of the iterates.

xnþ1 ¼ xn þ anrev Pt � ynð Þ; anrev ¼
b

nrev þ 1
(2)

where nrev is the number of reversals. The last iterate xnþ1

is the estimate of the xt for which f(xt)¼Pt. The accel-
erated SA has good small-sample convergence. We need
to determine the optimal value of b for speech tests.

A second algorithm is the averaged SA with decreas-
ing step size (dss) sequence (averaged dss SA). It uses the
original algorithm of Equation 1 together with averaging
of the iterates:

xnþ1 ¼ xn þ an Pt � ynð Þ; an ¼ b

na
and �xn ¼ 1

n� ne

Xn

i¼1þne

xi

(3)

with step size decrease rates a. Because x has to converge
to the target, it is likely that the first trials are not close
to the target. Therefore, the first ne trials may be left out
of the average. The result of the average �xnþ1 gives the
estimate of xt. In the SA literature, this is known as
Polyak–Ruppert averaging (Polyak, 1990; Polyak &
Juditsky, 1992; Ruppert, 1988). It was shown by
Polyak and Juditsky (1992) that this average is prefera-
ble if the step size sequence [an] goes to zero slower than
order 1/n. The idea is that relative large step sizes [an]
lead to faster forgetting of initial conditions, while use of
the average reduces noise. In the original form, ne ¼ 0,
but it is also possible to introduce exclusion of the initial
values with ne > 0. For this algorithm, we need to deter-
mine the optimal step size sequence parameters b, a, and
ne.

A third option is the use of a not decreasing step size
(ndss) sequence together with averaging (averaged ndss
SA). In fact, this is the Polyak–Ruppert averaging from
Equation 3 with a¼ 0 and an ¼ b. This option was used
in speech recognition tests by Hagerman and Kinnefors
(1995). They proposed a procedure with Pt¼ 0.4 and
an¼ b¼ 5 for five-word sentences. If applied to six-
word sentences, as in this study, the procedure is imple-
mented by choosing Pt¼ 0.5 and an¼ b¼ 6.

A fourth algorithm that may be suitable to use with a
speech test is the so-called smoothed SA that was first
described by Bather (1989) and was further considered
by Schwabe (1994; Schwabe & Walk, 1996). In this algo-
rithm, the average of both the iterates xn and the noisy
observations yn are used in the recursive equation:

xnþ1 ¼ �xn þ n an ð Pt � �yn Þ (4)

where

�xn ¼ 1

n

Xn

i¼1

xi ; �yn ¼
1

n

Xn

i¼1

yi and an ¼ b

na
(5)

The average of the iterates �xnþ1 is the estimate of xt,
also with the possibility to exclude the first ne trials.
Schwabe and Walk (1996) showed that for step sizes
with 1=2< a< 1, the influence of inappropriate starting
points decays faster than in Polyak–Ruppert averaging.

Simulation Model of a Listener

To be able to test the accuracy of the proposed SA algo-
rithms with Monte Carlo simulations, we have made a
simulation model of speech recognition that generates a
listener’s response for a given SNR.

The first element of the listener model is an intelligi-
bility function that describes the average proportion cor-
rect words in a sentence as a function of the SNR. The
intelligibility function was modeled as

p SNRð Þ ¼ 1� kð Þ pmax
1þ expð4sðSRTm � SNRÞÞ (6)

with p the proportion of correctly recognized words in a
sentence, k the lapse rate, pmax the proportion correct in
quiet, SRTm the x where p(x) is half (1–k)�pmax, and s
the nominal slope (the slope of p at SRTm is (1–k)�
pmax � s). For higher p, lapses may occur due to moments
of inattentiveness, and for low p, there may be
some lapsing because the listener gives up (Bronkhorst
et al., 1993).

The intelligibility function was fitted to the data of a
group of 20 CI users from a study of Dingemanse and
Goedegebure (2015). In that study, speech intelligibility
in noise was measured at three SNRs, with three corre-
sponding performance levels: adaptively estimated SRTs
at 50% and 70% words correct and performance level at
a fixed SNR of SRT50%þ 11 dB. The performance was
measured with and without activation of a noise reduc-
tion algorithm. Furthermore, speech intelligibility in
quiet was measured. For each of the participants, the
intelligibility function was fitted to all the data because
the noise reduction algorithm had no measurable effect
on the speech performance. Table 1 shows mean, SD,
and range of the group for the different parameters of
the intelligibility function. Only relatively high-
performing CI users were included. SRTm and s were
not significantly correlated.

The intelligibility function was also fitted to the data
of a reference group of 16 NH subjects with a mean age
of 22 years, described by Dingemanse and Goedegebure
(2019). In that study, the SRT50n was adaptively
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measured using word scoring and the ndss SA algorithm
with b¼ 4, along with the proportion of correct words at

four SNRs around the individual SRT50n. The intelligi-

bility function was fitted to the performance at these
four SNRs, assuming that k � 0. Table 1 shows the

parameter values found. In both studies, Vrije
Universiteit (VU) sentences (2 lists of 13 sentences for

each condition) and steady-state speech-spectrum noise
were used (Versfeld et al., 2000).

In practice, variation in intelligibility from trial to
trial occurs due to variability in the SRT and slope of

sentences, differences between listeners, and variability
in listening effort and attention. We modeled variability

in sentences by adding a normal distribution of SRTm

values with a small SD SD_SRTm ¼ 0.5 dB and a normal

distribution of variation is slopes with SD_slope¼ 0.01.

These values were in accordance with Versfeld et al.
(2000). To incorporate differences between subjects, var-

iation of SRT50n between subjects was modeled as a
normal distribution with an SD of 1 dB for the NH

group (based on Versfeld et al., 2000) and 3 dB for the
CI group (based on Table 1). The variation in slope

between listeners was varied according to a normal dis-
tribution with an SD of 0.02, according to Table 1.

To account for variability in attention, the lapse rate
(k in Equation 6) was set to 0.02 independent of the

proportion correct score. This means that in 2% of the
trials the listener is not attentive.

The second element of the listener model models the

response of a listener in a trial. For this element, a mul-
tinomial distribution is used, giving the probabilities that

k out of l words (k¼ 0, . . . ,l) of a sentence were correctly
recognized as a function of the average proportion

correct word score. The multinomial distribution was
obtained from a model of Bronkhorst et al. (1993,

2002) for context effects in speech recognition. This
model gives predictions of the probabilities pw,k that

k elements (k¼ 0, . . . ,l) of wholes containing l elements
are recognized. These probabilities pw,k are a function of

a set of context parameters ci (i¼ 1, . . . ,l) and the

recognition probabilities of the elements if presented in

isolation (no context) pi,nc.

pw;k ¼ F ci; pi;ncð Þ; 0 � ci � 1; i ¼ 1; . . . ; l (7)

The context parameters ci give the probabilities of

correctly guessing a missing element given that i of the

l elements were missed. They quantify the amount of

contextual information used by the listener. The maxi-

mum value of 1 means that a missing element is available

from context information without uncertainty. The min-

imum value is the guessing rate if the whole contains no

context information. For details of the model, we refer

to Bronkhorst et al. (1993, 2002). From the array of pw,k
values, we can calculate the average proportion of cor-

rectly recognized words in sentences:

pe ¼ pw;l þ ðl� 1Þ
l

pw;l�1 þ ðl� 2Þ
l

pw;l�2 þ . . .þ 1

l
pw;1

(8)

This model was fitted to speech recognition data of a

group of CI users and a group of NH listeners from the

study of Dingemanse and Goedegebure (2019), resulting

in a set context parameters for each group (see their

Figure 4). In the study of Dingemanse and

Goedegebure, VU sentences (Versfeld et al., 2000) were

used as speech material in both groups.
Figure 1 shows in the left panel the probabilities pw,k

as a function of pe for the CI group. For example, at the

50% correct point of the intelligibility function (pe ¼ 0.5)

in 25% of the trials, the whole sentence is recognized

(k¼ 6), but in another 25%, no words are recognized

(k¼ 0); this is illustrated in the right panel of Figure 1.
In the Monte Carlo simulations, the response of a

listener in a trial was obtained following the next steps:

First, the average word recognition probability was cal-

culated from the intelligibility function (Equation 6) for

the SNR of the trial, resulting in value px. Next, a

Table 1. Values of the Parameters of the Intelligibility Function (see Text at Equation 6) for a Group of CI Recipients and a Group of NH
Listeners.

CI group NH group

M Mdn SD Range M Mdn SD Range

SRTm (dB) 3.7 3.4 2.7 –1.0–10.7

SRT50n(dB) 4.2 3.4 3.3 –1.0–12.7 –5.5 –5.5 0.6 –6.6 – –4.6

s (pc/dB) 0.067 0.065 0.021 0.029–0.125

s50 (pc/dB) 0.064 0.064 0.021 0.026–0.122 0.151 0.146 0.025 0.116–0.192

pmax (pc) 0.947 0.965 0.062 0.740–1.0 1.0 1.0 0 1.0–1.0

Note. The mean, median, SD, and range are given. For the NH group, the SRTm and the SRT50n are the same, and s and s50 are the same.

pc¼ proportion correct; SRT50n¼ the speech reception threshold at a proportion of correctly recognized words of 0.5; s50¼ the slope at the 0.5 point;

CI¼ cochlear implant; NH¼ normal hearing; SD¼ standard deviation.

Dingemanse and Goedegebure 5



random number from a continuous uniform distribution

with a minimum value of 0 and a maximum value of 1

was taken, giving value py. Third, point (px, py) was

compared with the cumulative probabilities shown in

the center panel of Figure 1. For example, the point of

px¼ 0.5 and py¼ 0.7 fell in the area of k¼ 5. That is, five

out of six words were correctly recognized in this trial.
We added some variation in the context parameters

using a normal distribution with an SD of 0.01 for c1 to

0.016 for c5 to simulate differences between listeners

(Dingemanse & Goedegebure, 2019).

Validation of the Simulation Model

The validity of the model for the description of averaged

speech recognition scores has already been demonstrated

by Bronkhorst et al. (1993, 2002). To verify if the model

not only describes speech recognition on average but

also produces reliable word scores for single trials in

adaptive procedures, we used the within-staircase SD

as a measure to compare simulation outcomes with

experimental data. The within-staircase SD shows

whether the simulation model produces realistic varia-

tions within a staircase. As the model parameters were

tuned to the CI group of Dingemanse and Goedegebure

(2015), the model should produce the same within stair-

cases as found in the experimental data. The SRT50n

staircases were measured in two conditions in

Dingemanse and Goedegebure (2015). The mean

within-staircase SD was calculated as the root mean

square (RMS) of the individual within-staircase SDs

from the two conditions and resulted in a value of

2.0 dB. The adaptive procedure used was the averaged

ndss SA, with b¼ 4. Simulations with this procedure

resulted in a within-staircase SD of 2.1 dB. This corre-

sponds very well with the experimental value of 2.0 dB.
When parameters of the NH group were applied, a

within-staircase SD of 1.5 dB was found, which is in

good agreement with the 1.4 dB found from the

SRT50n measure in Dingemanse and Goedegebure

(2019). From the same study, a within-staircase SD of

1.9 dB for sentence scoring combined with a fixed step

size of 2 dB and 13 trials was available. The within-

staircase SD of the simulation of this condition was

also 1.9 dB.
Versfeld et al. (2000) reported that the within-subjects

SD of the SRT50n was 1.1 dB for sentence scoring and

an adaptive up-down procedure with a 2 dB step size. A

simulation of this condition resulted in a within-subjects

SD of 1.1 dB.
These results confirmed the validity of the used listen-

er model for use in simulations of adaptive procedures.

Calculation of Reference SDs at SRT50n

The listener model was used to generate 4,000 responses

based on word scoring at an SNR of SRT50n. The SD of

these responses was calculated and served as a reference

measure of the variability in proportion correct speech

recognition at the SRT50n due to the stochastic nature

of the speech recognition process. Table 2 presents the

reference SDs of the simulations at a fixed SNR of

SRT50n. The calculated SD was divided by the slope

of the intelligibility function at the SRT50n point to

obtain a reference SD of the SRT50n measure. The

SDs of the SRT50n estimates of the SA algorithms

were compared with these reference SDs to get a
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Figure 1. Left panel: Probabilities to recognize k words of a sentence correctly as a function of the average proportion of correctly
recognized words pe. Center panel: Cumulative probabilities to correctly recognize k words or less as a function of pe. Right panel:
Example of the multinomial distribution for an average word score of pe.¼ 0.5 that gives the probability to recognize k words
from a sentence.
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measure of the variability introduced by the SA algo-

rithms itself.
In the simulation model, small variations in SRT50n

and slope between sentences and between subjects were

included, as mentioned in the model description. By

comparing the simulation results with and without

applying variations, it turned out that the effect of the

variations in model parameters was a 4% to 6% increase

of the SDs in CI users and a 0.5% to 1.3% increase in

NH users.
The SDs of the Pt estimates in the CI group were

slightly greater than the SDs of the NH group due to

the fact that the model for CI users had higher values for

the context parameters. The SDs of SRT50n are higher

in CI users because the slope of the intelligibility func-

tion is less steep. SDs decreased approximately with the

square root of the list length, bearing in mind that the

first four sentences were excluded in the calculations for

all list lengths.

Simulation Procedures

In the simulations, we used a slope of 0.15 dB–1 for NH

users and half that value for the CI group (Equation 6).

The parameter pmax was set to 1 for NH listeners. For

relatively high-performing CI users, the value was 0.95

according to Table 1. To represent a broader range of

performance values between 0.6 and 1, pmax was set to

0.8 for CI users. The initial SNR (the SNR of the first

trial) relative to the mean SRT50n was taken from a

normal distribution with mean¼ –3 dB (NH) or –6 dB

(CI) and SD¼ 1 dB (NH) or 3 dB (CI). The first trial

was repeated at increasing SNRs (þ2 dB) until at least

half of the words were recognized correctly or the sen-

tence was three times repeated.
In the simulations, independent streams of random

numbers were generated for each variable for which a

probability distribution was defined. For each condition,

2,000 simulations of staircases were generated, and each

staircase consisted of 26 trials. For each simulation, the

SRT50n estimate was the average or the end value of the
staircase, depending of the SA algorithm. For each con-
dition, three outcome measures were calculated: the SD

and bias of SRT50n, and the within-staircase SD calcu-
lated as the RMS average of the 2,000 SDs of the SNRs
within each staircase. We calculated the three outcome
measures for sentence list lengths of 13, 20, and 26 sen-
tences, as the minimum list length is 13 sentences for the

speech material used in the model. A length of 26 sen-
tences (two lists) is around a maximum length that can
be used in clinical settings, in our opinion. A length of 20
sentences is included because this list length is used in
other speech material (e.g., Soli & Wong, 2008), and it is

in the middle of the clinically feasible range of the
number of sentences to be used. All simulations and
analyzes were performed with MATLAB (9.6.0, The
MatWorks Inc., Natick, Massachusetts, USA).

Finding Optimal Parameters for SA Algorithms

To find optimal values of the parameters in the SA algo-
rithms, simulations were performed while varying the
relevant parameters. The step size constant b was
varied from 2 to 14 dB in steps of 2 dB for the CI
group and from 1 to 7 dB in steps of 1 dB for the NH

group. Because the maximum of (yn – pt) in the
Equations 1 to 4 is 0.5, b¼ 4 corresponded to the often
used step size of 2 dB. For the averaged dss SA and the
smoothed SA, optimal parameters were determined by
simulations for step size decrease rates a from 0.1 to 0.5

with a step of 0.1 for the averaged dss SA and from 0.5
to 1 (step 0.1) for the smoothed SA. For the averaging
SA algorithms, the number of excluded trials ne was 4, 6,
or 8 trials.

To find the best parameter set of b, a, and ne, we
looked for minimum SD and bias of SRT50n for each
combination of b, a, and ne. However, the minima of SD
and bias were often not reached at the same parameter

values. We regarded a minimum SD as the most impor-
tant criterion (i.e., for test–retest purposes), but we did
not allow differences in intelligibility greater than 5%
due to bias because that may become a clinically relevant
difference. Based on this criterion, the mean bias should

be �0.85 dB in the CI group and �0.33 dB in the NH
group. The parameter set that produced the smallest SD
of SRT50n within these bias criteria was chosen as the
optimal parameter set of b, a, and ne. The optimization
was done for each of the three list lengths.

Simulations With the Optimal SA Algorithms and

Clinical Procedures

In the simulations, we also included some clinically used

procedures. First, sentence scoring with a fixed step
size of 2 dB was included (Nilsson et al., 1994; Plomp

Table 2. Reference Standard Deviations of Proportion Correct
Words From Sentences Pt and SRT50n Values, Resulting From
Simulations of CI and NH Listeners at a Fixed SNR of SRT50n.

CI group NH group

Sentence

list length SD Pt SD SRT50n SD Pt SD SRT50n

13 0.137 2.33 0.121 0.824

20 0.104 1.77 0.091 0.616

26 0.089 1.52 0.078 0.528

Note. SRT50n¼ speech reception threshold in noise; CI¼ cochlear implant;

NH¼ normal hearing; SD¼ standard deviation.
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& Mimpen, 1979). Second, a procedure of modified sen-

tence scoring was added, allowing 2 errors per sentence

(66.67%) such as in Chan et al. (2008) and Wong and

Keung (2013). In this procedure, the SNR was varied

adaptively as in Chan et al., that is, in 5 dB steps for

the first four sentences and in 3 dB steps for the remain-

ing sentences of the list for the CI group. For the NH

group, the steps were 4 dB for the first four sentences and

2 dB for the remaining trials as in the Hearing in Noise

Test procedure (Soli & Wong, 2008). Because the psy-

chometric curve of Equation 6 applies to word scoring,

we calculated the change of the psychometric curve from

the context model (Equations 7 and 8) for sentence scor-

ing and modified sentence scoring. Figure 2 shows the

resulting curves.
Furthermore, we included a third clinically used pro-

cedure based on word scoring: the procedure of Brand

and Kollmeier (2002). They proposed the following

formula:

xnþ1 ¼ xn þ anrevð Pt � yn Þ; anrev ¼
1:5 � 1:41� nrev

slope

(9)

We used pmax � s as slope value. Brand and Kollmeier

used a maximum-likelihood estimate of the SRT50n, but

because only nonparametric methods are investigated in

this study, the last iterate xnþ1 was used as an estimate of

the threshold xt. Henceforth, this procedure will be

referred as the npBK SA procedure.

We performed simulations with each optimized SA
algorithm and the clinical procedures to investigate
how their accuracy depends on the relative initial SNR
by varying this SNR from –8 dB to þ8 dB relative to the
real SRT50n value. In these simulations, the first trial
was not repeated. In addition, we examined the effect
of the maximum intelligibility in quiet. The parameter
pmax was varied in five steps from 0.6 to 1 for each opti-
mized algorithm, and the relative initial SNR was taken
from a normal distribution, as described earlier.

Results

Simulations With SA Algorithms to Find Optimal
Parameters

Based on all simulations, we selected optimal parameters
for each SA algorithm for both listener groups according
to the criteria given in the Methods section. Exclusion of
the first four trials (ne¼ 4) in the averaging resulted in
the smallest SD and bias values of SRT50n for all list
lengths, compared with 6 or 8 ignored trials, although
differences were small (between 0 and 0.15 dB).
Therefore, only results for ne¼ 4 were presented
throughout the Results section.

For the smoothed SA, we found that the last iterate
was a better estimate for SRT50n with smaller SDs than
the average of the iterates. So this end value was used
instead of the average value.

Regarding the step size decrease rate a, it was found
that a midrange value together with a moderate initial
step size b resulted into the smallest SD and bias in CI
users. A small initial step size and a large decrease rate
resulted in a large bias. A large initial step size and a
large decrease rate resulted in lower SD and bias, but
even lower values were found for a moderate decrease
rate and initial step size. Table 3 shows the optimal
parameters and the SD and bias that were obtained
with these parameters. The optimal step size decrease
rate a was the same for CI and NH listeners, but the
step size constant b was larger for the CI group. In CI
users, the parameters given in Table 3 resulted in a bias
smaller than the criterion value of 0.85 dB in the range of
–8 to þ4 dB for a staircase length of 26 sentences. For
relative initial SNRs> 4 dB, the bias exceeded the crite-
rion value for any set of parameter values. For a stair-
case length of 20 sentences, the bias exceeded the
criterion value for a relative initial SNR> 3 dB. A list
length of 13 sentences resulted in relatively high SDs
and/or large bias (see also Figure 3) and was therefore
not suitable.

Figure 3 shows the effect of the step size constant b on
the SDs and biases of SRT50n for the different SA algo-
rithms (with optimal a value). The panels on top of the
figure show the results for the CI group, and the bottom
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Figure 2. Intelligibility Functions of Correctly Recognized Words
From Sentences, Sentence Scoring, and Modified Sentence Scoring.
The three leftmost curves represent the functions of the NH
group, and the three rightmost curves represent the functions of
the CI group. Dots show the target proportion correct of 0.5.
NH¼ normal hearing; CI¼ cochlear implant; SNR¼ signal-to-
noise ratio.
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panels show the results for the NH group. We observed
that the SD of SRT50n was much greater in CI recipients
than in NH listeners for all SA algorithms. In CI users,
the SD was smallest for b¼ 4, except for the averaged
ndss SA that had the smallest SD for b¼ 2. But for these
b values, too much negative bias was found. Therefore,
b¼ 6 (4 for the averaged ndss SA) was found to be opti-
mal. In the NH group, the SDs of SRT50n were small
and almost independent of b, indicating that the step size
constant is not critical. The bias was close to zero for all
algorithms and b values. Using a larger number of

sentences resulted in smaller SD and bias for all condi-

tions. It is remarkable that the different SA algorithms

resulted in comparable minimum SDs.

The Within-Staircase SD

The left panel of Figure 4 shows the RMS within-

staircase SD as a function of the step size factor b for

the CI group. The RMS within-staircase SD increased

for increasing b, as expected, but differed in size between

SA algorithms. The smallest values were found for
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Figure 3. Estimated Values of SD (Solid Lines) and Bias (Dashed Lines) of SRT50n as a Function of the Step Size Constant b From
Simulations With the Different SA Algorithms. The upper row of panels shows the results of the CI group, and the second row shows the
results of the NH group. Downward-pointing triangles: 13 sentences, squares: 20 sentences, and upward-pointing triangles: 26 sentences.
SRT50n¼ speech reception threshold in noise; CI¼ cochlear implant; NH¼ normal hearing; SD¼ standard deviation; SA¼ stochastic
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Table 3. Optimal Values for the Step Size Constant b and the Step Size Decrease Rate a for the Accelerated SA Algorithm, the Averaged
SA Algorithm With Decreasing Step Size (dss) or Not Decreasing Step Size (ndss), and the Smoothed SA Algorithm if Applied in CI
Recipients and in NH Listeners.

SA algorithm

CI group NH group

b a SD Bias b a SD Bias

Accelerated SA 6 – 1.77 –0.40 4 – 0.55 –0.06

Averaged dss SA 6 0.3 1.65 –0.23 5 0.3 0.55 –0.02

Averaged ndss SA 4 – 1.71 –0.02 4 – 0.58 0.01

Smoothed SA 6 0.7 1.71 –0.30 4 0.7 0.55 –0.06

Note. For each optimized SA algorithm, the SD and bias of the SRT50n estimates are provided. SA¼ stochastic approximation; CI¼ cochlear implant;

NH¼ normal hearing; SD¼ standard deviation.
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algorithms with decreasing step size. The right panel

shows the SRT50n estimates minus the true SRT50n as

a function of the within-staircase SD for the averaged

ndss SA algorithm, with b¼ 4. The data points were

grouped in bins of 1 SD width, and the mean (which is

the bias) and SD were calculated for each bin and then

plotted. Figure 4 shows that no clear relationship exists

between the within-staircase SD and the SD or bias of

the SRT50n estimates. This holds also for a list length of

20 sentences, for the other SA algorithms with optimized

parameters, and for the NH listeners.

The Effect of the Initial SNR

Figure 5 shows the effect of the initial SNR (the SNR of

the first trial relative to the true SRT50n of the intelligi-

bility function) on the SD and bias of the SRT50n esti-

mate. The simulations were performed with the optimal

parameters given in Table 3. Figure 5 only shows results

for a staircase length of 26 trials because the pattern of

results for 20 trials (CI and NH) or 13 trials (NH) was

very similar.
The SD and bias were very similar between the dif-

ferent SA algorithms over the entire SNR range. A rel-

atively high bias was found for positive initial SNR

values for the CI group. The bias was around zero,

and the SDs were smallest for initial SNRs below the

true SRT50n. From these results, it is clear that an initial

SNR below the true SRT50n would be preferable. In the

NH group, the SD was almost independent of the initial

SNR, and the bias was within �0.2 dB.
As a validation, we compared the simulation of the

ndss SA algorithm with b¼ 4 with data of the NH group

from Dingemanse and Goedegebure (2019). In that

study, the SRT50n was adaptively measured using the

same algorithm and an initial relative SNR of 1 dB on

average. In addition, an intelligibility function was fitted

to the proportion of correct words at four fixed SNRs

around the individual SRT50n. The SD of the individual

differences between the SRT50n of the adaptive proce-

dure and the SRT50n of the fitted intelligibility function

was 0.55 dB. The SD of the simulations was 0.58 (Figure

5) and is in good agreement with the experimental SD.
The clinical algorithms had higher SDs of SRT50n

than the SA algorithms over the entire SNR range.

For the CI group, sentence scoring resulted in a high

SD and a bias that showed that the adaptive procedure

was hardly able to move the SNR value away from the

initial SNR. This is in accordance with the almost flat

intelligibility function around a proportion correct of 0.5

(see Figure 2). The modified sentence scoring resulted in

a much better SD around 2.8 dB and a positive bias

between 0.7 and 1.4 dB. The SD of the npBK SA algo-

rithm is nearly as small as the SDs of the SA algorithms
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in the NH group. But in the CI group, the SD is

clearly greater than that of the SA algorithms, and the

bias is positive.
The SA algorithms using word scoring resulted in the

smallest SD and bias. For the NH group, sentence scor-

ing resulted in an SD of 0.92 dB and only a small bias for

all initial SNRs. The modified sentence scoring resulted

in a smaller SD of around 0.73 dB due to the steeper

slope of the intelligibility function (Figure 2), but it

was still higher than the SDs of the SA algorithms that

were around 0.58 dB.

The Effect of Reduced Maximum Intelligibility

The effect of pmax was investigated for the CI group with

each of the optimal algorithms and the three clinical

algorithms. Figure 6 shows that pmax had a large effect

on the SD and bias of the SRT50n estimates. The SD

increased for decreasing pmax. This effect was most

apparent for sentence scoring, modified sentence scoring,

and the npBK SA algorithm. For the range of pmax

between 0.7 and 1, the SA algorithms were efficient,

that is, close to the reference SD from Table 2 that

serves as a theoretical minimum. At pmax¼ 0.6, bias

values become more negative on average. Only the

results for a staircase length of 26 trials were shown

because the pattern of results for 20 trials was very

similar, with small bias and efficient estimation

for pmax � 0.7.

Discussion

SA Methods Versus Clinical Procedures

The four SA algorithms proposed in this study provide

more efficient estimates of the SRT50n than clinically

used adaptive procedures in CI users, as can be observed

from Figures 5 and 6. The SD estimates of the four SA

algorithms were close to the reference SDs from Table 2,

indicating that the SA algorithms add little variance to

the SRT50n estimate, compared with the variability due

to the stochastic nature of the speech recognition pro-

cess. Even with the more shallow intelligibility functions

found in CI users, the algorithms remain efficient, pro-

vided that pmax � 0.7 and the initial SNR is within –8 to

þ4 dB of the real SRT50n.
Several researchers recognized the inaccuracy of sen-

tence scoring in CI users and proposed a modified sen-

tence scoring that allows some errors per sentence (Chan

et al., 2008; Wong & Keung, 2013). Indeed, the modified

sentence scoring resulted in better accuracy. But the SA

algorithms had both smaller SD and bias, especially
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when pmax is below 1 (Figure 6). This can be explained

by their use of word scoring that has a higher number of

statistically independent elements per sentence, as

explained in the Introduction section.
The new proposed SA algorithms also performed

better than the npBK SA algorithm. The main reason

is that this algorithm has relatively large steps early in

the staircase and a high decrease rate. Especially in the

CI group, having a lowered pmax, this combination

resulted in a larger SD and bias. The large steps early

in the staircase may result in high SNR values, were the

intelligibility function is already flat. In this flat part of

the function, the SNR may jump randomly up and down

at high SNRs, while the step size is decreasing. As a

result, the staircase ends with a large positive bias.
The four SA algorithms proposed in this study

resulted in comparable SD and bias if parameters were

used that were optimal for the group that was tested.

There is no clear winner. It is noteworthy that a more

complex SA method, such as the smoothed SA, did not

result in better performance than the simpler ndss SA

method. The optimal step size decrease rate a was the

same in CI and NH listeners, both for the averaged dss

SA and for the smoothed SA algorithm. The only dif-

ference between groups is the step size constant b, except

for the averaged ndss SA algorithm, where b¼ 4 applies

to both groups. The NH group and the CI group repre-

sent the extremes of the intelligibility function. The

group of people with sensorineural hearing loss, using

hearing aids or not, is expected to have intelligibility

functions with slopes in between the slopes of the NH

group and the CI group. So, the averaged ndss SA algo-

rithm with a step size constant of 4 is applicable to a

wide range of hearing-impaired listeners. This algorithm

was already used in speech recognition tests by

Hagerman and Kinnefors (1995). Furthermore, it was

used in several studies with CI recipients and provided

highly reproducible and consistent data (cf. Dingemanse

& Goedegebure, 2015, Figure 3; 2018, Figure 3; Vroegop

et al., 2017).
The use of simulations gave the possibility to gain

insight into the occurrence of a bias. Because the true

SRT50n of the listener model is known, the bias can be

calculated, which is impossible in real subjects with

unknown SRT50n. In NH listeners, the bias was close

to zero for all SA algorithms if initial SNRs were within

–8 to þ8 dB relative to SRT50n. If in the first trials a

large step in the wrong direction is made due to the

stochastic behavior of the speech recognition process,

then the average proportion correct at the next SNR is

much higher or lower because of the steep slope of the

intelligibility function. This leads to a high chance that a

reversal occurs and that is why no bias occurs.

Furthermore, the intelligibility function is symmetrical

in the SRT50n point in NH listeners, making that

steps from above or from below the SRT50n point on
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average have equal but opposite effects that are averaged
out. In CI users, only a small bias (<0.85 dB) was pre-
sent if optimal parameters are used. The bias depended
on the relative initial SNR. An SNR more than 4 dB
above the SRT50n resulted in a relatively large positive
bias. The explanation is that the slope of the intelligibil-
ity function well above SRT50n becomes very shallow,
making the adaptive procedure not very effective, as
already explained for the npBK SA algorithm.

The within-staircase SD was dependent on the step size
constant, the decrease rate of the step size, the number of
trials, and the intelligibility function (s and pmax) of the
group of listeners. As a consequence, the within-staircase
SD cannot be used as a measure of the reliability of a
single SRT50n measurement in combination with a fixed
criterion (cf. Keidser et al., 2013). We analyzed if the SD
and bias of the SRT50n estimates was dependent on the
within-staircase SD. In the stimulations, within-staircase
SDs up to approximately twice the RMS within-staircase
SD of the group were seen. For this range, no relationship
was found for the averaged ndss SA with b¼ 4, neither in
the CI group (Figure 4), nor in the NH group. This means
that the within-staircase SD is not really suitable as a
measure for the reliability of an individual staircase.
Only if a single staircase has a very large within-staircase
SD compared with the group value (as a rule of thumb:
more than twice the RMS within-staircase SD of the
group), one may decide to reject this measurement.

Influence of Maximum Intelligibility on Accuracy

A decrease of the maximum intelligibility in quiet pmax

caused an increase in the SD of the SRT50n estimates.
This was as expected and was mainly caused by the
decrease of the slope of the intelligibility function to
pmax times the original slope at p ¼ 1=2 pmax. At p¼ 0.5,
the slope is reduced even more because at this point the
slope is no longer at its maximum value. For a smaller
part, the increase in the SD of the SRT50n estimates was
caused by a decreasing efficiency of the adaptive proce-
dure for decreasing pmax. As can be seen from Figure 6, if
pmax decreases, the difference between the SDs of the SA
algorithms and the theoretical minimum SD increases.
There was also some bias in the SRT50n estimate, but
this remained acceptable small (< 0.5 dB) if the initial
SNR was not too far from the true SRT50n value.

For CI users with pmax � 0.7, but< 1, it is advanta-
geous to start at an SNR that is below the real SRT50n.
Then, the trials are in the steepest part of the intelligi-
bility function, which makes the SA algorithms converge
better toward the target. As a result, both bias and SD
were smaller (Figure 5). According to Figure 6, the min-
imum pmax required for reliable use of adaptive estima-
tion of SRT50n is pmax¼ 0.7 provided that at least 20
sentences are used.

The Simulation Model

The development and application of a realistic and

detailed simulation model of speech recognition was an

important part of this study. The usefulness of the model

for single trials in adaptive procedures was verified by

comparing the within-staircase SDs of the simulations

with the within-staircase SDs of the participants in the

studies that were used to determine the model parame-

ters. They matched very well. Furthermore, simulation

of sentence scoring was in good agreement with the data

of Versfeld et al. (2000), and simulations of word scoring

with the ndss SA for NH listeners agreed well with

results of Dingemanse and Goedegebure (2019). These

findings show that the model appears to be a valid tool

for evaluation of adaptive speech-in-noise algorithms.
The good agreement between simulations and exper-

imental data is based on the detailed and already vali-

dated model of Bronkhorst et al. (1993) that predicts the

proportions correct of k out of l words correctly. In the

model, the effect of contextual information is incorpo-

rated. Due to the contextual information, a listener has a

higher chance to predict initial missed words correctly

from the words that were already understood. Brand

and Kollmeier (2002) also used Monte Carlo simulations

to examine adaptive procedures for sentences-in-noise

tests with word scoring. To account for the effect of

the contextual information, they used the j factor of

Boothroyd and Nittrouer (1988), a factor that quantifies

the number of statistically independent words in a sen-

tence. In their simulations, each trial consisted of j

Bernoulli trials, and the proportion correct score for

each trial was calculated by dividing the sum of the

results of the Bernoulli trials by j. However, the resulting

distribution of proportion correct scores is not in accor-

dance with the distribution that is found in sentence rec-

ognition, having a relatively large proportion of 0 and 1

values (see Figure 1 and also Hu et al., 2015).

Furthermore, only integer values of j can be used. In

contrast, the multinomial distribution of proportions

from the model of Bronkhorst et al. (1993) as shown

in Figure 1 was in good agreement with experimentally

found distributions for all percent correct values. Also

noninteger values of j that were dependent of the pro-

portion correct value were a result of this model

(Dingemanse & Goedegebure, 2019).
We added small stochastic between-sentence

variations in SRT50n and slope that exist within

speech materials and individual listeners. We also

added between-subject variations in context parameters

and slopes. Addition of these stochastic variations has

made the model more realistic, but the effects of these

variations were small. This is in accordance with the

finding of Smits and Houtgast (2006), who also reported
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that variations in SRT50n and slope had only a small
effect in a digit-in-noise test.

In the simulation model, some lapsing was included,
but the lapse rate was kept constant over time. In future
use of simulation models, it is worth to consider more
variation in this lapse rate to simulate variations in
attention and/or fatigue. These variations should be
based on experimental data on attention variations and
fatigue effects. However, we expect that the effect of
lapsing on the accuracy is limited. The effect of lapsing
is comparable with a reduction of pmax (see Equation 6).
Figure 6 shows that for a reduction of pmax from 1 to 0.9,
the increase of the SD and bias of SRT50n was limited.
So, for lapse rates smaller than 10%, the effect of lapsing
on the SRT50n estimate is small.

Usefulness of Adaptive Speech-in-Noise Tests in
CI Recipients

Although SA algorithms provide relatively accurate esti-
mations of the SRT50n in CI users, the SD of the
SRT50n estimate was still much larger in the CI group
than in the NH group, depending on pmax and the slope
of the intelligibility function. The decreased slope in CI
users (even for pmax¼ 1) is due to difficulties in under-
standing the sentences in this open-set speech material
with relatively good real-life similarity. In contrast, if a
closed-set speech material is used, such as a matrix
sentence test (Kollmeier et al., 2015), the difference in
slope between CI and NH listeners is much smaller (Hey
et al., 2014; Theelen-van den Hoek et al., 2014), and the j
factor is higher: approximately 4 (Wagener et al., 1999).
This may be of help to obtain a more reliable SRT50n
value, but the ecological validity of the speech material is
much less than the sentences used in this study.

The question is whether a larger SD of the SRT50n
estimate in CI users is problematic. From the perspective
of CI recipients, a perceived increase in speech intelligi-
bility is more important than a change in SRT50n. If the
slope of the intelligibility curve at 50% is shallow, a larger
shift in SNR is needed to obtain a relevant increase in
speech intelligibility. This allows a less accurate estimate
of the SNR. A typical SD value for the SA procedures is
1.7 dB for 26 sentences of the speech material used in this
study. An SNR difference of 1.7 dB corresponds to an
intelligibility difference of 10%. In NH listeners, the SD
of the SA methods is 0.6 dB, corresponding to an intelli-
gibility difference of 9%. So, in terms of intelligibility, the
accuracy of the speech-in-noise test in CI users is compa-
rable with the accuracy in NH listeners.

Because of the relatively large SDs in the CI group, it
is often not possible to compare two conditions or two
algorithms within an individual. The test–retest SD is �2
times the SD of a single measurement. A significant dif-
ference at the .05 level requires a difference of at least

1.96 � �2 � SD. In our example, 1.96 � �2 � 1.7¼ 4.7 dB.
Therefore, only differences in conditions that result in
large SRT differences can be reliably detected in individ-
uals. If one wants to compare two conditions in a
research setting, the relatively high SD can be compen-
sated by the group size.

General Discussion and Limitations

In clinical practice, often the first sentence is presented
repeatedly with increasing SNR until the sentence is rec-
ognized (Plomp & Mimpen, 1979). We also used this
procedure in the simulations, but we used a relatively
small step of 2 dB and restricted the number of repeti-
tions to a maximum of 3. This restriction prevented for
initial SNRs that are (much) greater than the SRT50n
because these SNRs would have resulted in more vari-
ability in the SRT50n estimate (according to Figure 5).
We recommend to make an educated guess of the
SRT50n and to use this guessed SRT50n minus 2 to
4 dB as initial SNR. Such an educated guess may be
based on norm data, preliminary data, a familiarization
run, or on known relationships of the SRT50n with
other clinically available speech recognition data, such
as word scores (e.g., Gifford et al., 2008). Only if one has
too little knowledge for an educated guess, it is better to
use the procedure of repeating the initial trials at higher
SNR (þ2dB) with a maximum of three repetitions.

In this study, the target proportion correct was 0.5,
regardless of the maximum speech intelligibility in quiet.
Another option is to choose the target as half the max-
imum speech intelligibility in quiet. Then, the target is at
the steepest part of the intelligibility function, and
the function is more symmetrical around the target.
This would lead to a smaller SD and bias for SRT50n.
However, this option has three drawbacks: First, each
participant is tested at his own target level, making it
impossible to compare the SRT50n values among par-
ticipants; second, the perceived difficulty of the test
would become too high, which increases the risk that a
participant gives up; third, the individual pmax must be
measured beforehand.

This study has some limitations. First, the VU sen-
tences were selected for equal intelligibility at sentence
level in NH listeners and not at word level in CI listeners.
We have taken this into account by making variations in
SRT and slope per sentence in the simulation model, but
this is only an approximation. Second, the search for the
best adaptive procedure was only done with use of
parameters for the context model and the intelligibility
function which were derived from data obtained with the
VU sentences. However, the context parameters of the
VU sentences are expected to be comparable with other
open-set sentence materials. For example, they are com-
parable with the context parameters of the G€ottingen
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sentence test reported by Bronkhorst et al. (2002). Only

if a very different speech type is used, such as a matrix

test (Kollmeier et al., 2015), it would be safer to repeat
the simulations with a context model and an intelligibil-

ity function that are suitable to these materials.
To test if the results of this study are applicable to the

matrix test, we did some simulations for matrix tests.

The simulations were based on the context parameters
of the Olsa test that were reported by Bronkhorst et al.

(2002). For the intelligibility function, we used

pmax¼ 0.82, and a slope of 13.5� 4.6%/dB at Pt¼ 0.5,

based on values of Hey et al. (2014). Simulations for a

list length of 30 trials with the averaged ndss SA algo-
rithm with b¼ 4 resulted in a test–retest SD of 0.75 dB,

giving a 95% confidence interval of about 3 dB. This

agrees well with the range of test–retest differences

reported by Hey et al. in their Figure 3. This indicates

that SA algorithms work well for the matrix test. In

matrix tests, a maximum-likelihood estimation of
SRT50n is used. This estimation is computationally

complex and may sometimes produce more than one

maximum, especially if the number of sentences is

small (Pedersen & Juhl, 2017). As an alternative, an

SA algorithm could be used because SA algorithms are
nonparametric and provide easy to calculate estimations

of the SRT50n.
In this study, nonparametric SA algorithms were used

to estimate the SRT50n. However, as discussed in the

Introduction section, maximum-likelihood and
Bayesian methods are also valuable options to estimate

the SRT50n. Doire et al. (2017) reported on a robust

Bayesian method and compared this method with the

estimation methods of Brand and Kollmeier (2002)

and Shen and Richards (2012). They reported simulation
results for several psychometrical functions. One of these

functions, having a slope of 0.075 dB–1 and a lapse rate

of 0.1, is comparable with the simulations of the CI

group in this study. In our study, the number of statis-

tically independent trials for 26 sentences is 52 because

the effective number of independent words in the VU
sentences is 2 (Dingemanse & Goedegebure, 2019).

Results of this study can therefore be compared with

52 trials in the Doire et al. study. For 52 trials, Doire

et al. reported an SD of 2 dB and a bias of –1 dB for

SRT50n for all methods used. In this study, the values
are better: SD¼ 1.3 – 1.5 dB, and the bias is around –0.5

to –0.3 dB (Figure 6 at pmax¼ 0.9). On the other hand,

the method of Doire et al. may be more robust for initial

SNRs that are relatively far from the true SRT50n. For

future research, we recommend a comparison between
the nonparametric SA methods, parametric maximum-

likelihood-based methods, and Bayesian methods, all

with the same listener simulation model as used in this

study. Furthermore, more research is needed on how to

extend the different methods to measure threshold,

slope, and pmax concurrently.

Conclusions

In conclusion, this study showed that SA methods based

on word scoring provide efficient estimations of the

SRT50n in sentence-in-noise measurements, both in CI

recipients and in NH listeners, if used with optimized

parameters that govern the step size sequence.

Although intelligibility functions in CI users have less

steep slopes and a lower maximum intelligibility score

in quiet, SA algorithms are capable to estimate the

SRT50n efficiently. They have the advantage that knowl-

edge of the maximum intelligibility score in silence and

slope is not needed in the estimation of SRT50n.
The SA algorithms proposed in this study provided

more efficient SRT50n estimates than clinical used adap-

tive procedures. Therefore, they are recommended for

clinical use. They may also lead to more statistical

power of speech-in-noise tests if used in research or

equivalently in a smaller number of participants that is

needed to achieve sufficient statistical power.
The different SA algorithms used in this study provide

equally accurate estimations of the SRT50n. This was

found both for CI users and NH listeners. The averaged

SA algorithm with a step size factor of 4 is recommended

for clinical use because it is relatively easy, and it is appli-

cable to a wide range of hearing-impaired listeners. In CI

users, the most accurate estimate of SRT50n is obtained if

the initial SNR is chosen below the SRT50n, the step size

is relatively small, and at least 20 sentences per condition

are used. The within-staircase SD turned out not to be

suitable as a measure for test reliability.
The SD of the SRT50n estimate increases with decreas-

ing maximum intelligibility in quiet. The score of words

from sentences in quiet should be at least 70% correct for

reliable use of adaptive estimation of SRT50n.
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