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Abstract: Wilson’s disease (WD) is an autosomal recessive disorder caused by ATP7B pathogenic
variants. This study aimed to show the geographical distribution and haplotype spectrum of three
prevalent pathogenic variants (p.R778L, p.P992L, p.T935M) in mainland Chinese population and
clarify whether the founder effect may account for their origins. We firstly summarized the frequency
and geographical distribution of p.R778L, p.P992L and p.T935M in 715 WD patients. Then, to
construct haplotypes associated with the three variants, Sanger sequencing and microsatellite typing
at three dinucleotide-repeat markers (D13S314, D13S301, D13S316) flanking the ATP7B gene were
performed in 102 WD families. An obvious regional-specific distribution feature was found in
p.T935M. Linkage disequilibrium at the three markers was shown in all the three variants and we
found the common haplotypes specific for p.R778L, p.P992L and p.T935M respectively, represented
successively by 10-7-7, 10-9-5 and 12-4-8, which all exhibited great significance vs. the control
chromosomes (p < 0.01). Meanwhile, haplotypes for the three variants differed from the studies
in other regions to some extent. The common haplotypes we found indicate that three prevalent
pathogenic variants emerge due to the founder effect. Furthermore, the study contributes to expand
our knowledge of the genetic diversity of WD from a cross-regional perspective.
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1. Introduction

Wilson’s disease (WD), an autosomal recessive disorder, is characterized by abnormal
copper metabolism resulting in the damage of various organs, predominantly hepatic and
neurological impairment [1]. The diagnosis of the disease can be based on the typical clinical
symptoms and corresponding biochemical findings such as reduced serum ceruloplasmin
concentrations and elevated urinary copper excretion [2,3]. It has a prevalence rate of
around 1/30,000 to 1/10,000 as well as a carrier frequency of about 1 in 90 among most
populations [4,5], and it is believed that the prevalence is higher in China [6].

In 1993, the ATP7B gene accounting for the disease was identified [7–9]. At the same
time, several highly polymorphic short tandem repeats (STRs) spanning the WD locus were
found. These microsatellite markers were previously applied in the genetic linkage analysis
of Chinese WD patients, which showed great contribution to the molecular diagnosis of
potential carriers and asymptomatic patients [10]. In addition, Thomas et al. used the
markers to explore the haplotype-variant associations [11,12], which were beneficial for
explaining the origins of different variants. In this way, with recurrent pathogenic variants
gradually identified in European populations, some scholars speculated about the origin
from a common ancestor and then unveiled the possible founder effect for them [13–15]. For
instance, one study comprised of Hungarian patients discovered the common haplotype
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for their most frequent variant p.H1069Q in a large proportion of subjects, pointing its
origin from somewhere in eastern Europe [15].

Investigations of founder variants can help us trace the origins of variants, the evo-
lution of the disease as well as the migration and growth of human populations [16],
and there indeed exist different circumstances about common variants and population
cultures of WD between Europe and Asia. Studies have previously summarized the geo-
graphical distribution of ATP7B in diverse populations in the world and found the higher
prevalence of specific variants in certain populations, such as p.H1069Q in Europe and
p.R778L in far east Asian countries [17,18]. Therefore, several haplotype studies in Asia
were also performed to dig out the characteristics of their own common variants. In In-
dia, researchers recently considered the impact of traditional marriages in the same caste,
and then detected the underlying founder effect for 14 WD recurrent variants including
p.C271* and p.G711W [19]. Studies in other regions including Japan, China and Korea
also conducted the haplotype analysis of ATP7B variants before [20–23], however, due to
their target towards the whole variant spectrum, the number of their samples concerning
frequent pathogenic variants such as p.R778L seemed inadequate, making the conclusion
not so convincing. Meanwhile, there remained frequent differences among the variants
and haplotype results of their studies.

Therefore, aiming to better decipher the genetic information about the potential
founder effect of prevalent ATP7B variants, we utilized the p.R778L, p.P992L and p.T935M,
the three most common pathogenic variants in the Chinese WD patients [24], to acquire their
geographical distribution and analyze the haplotype-variant correlation with relatively
large samples in a statistical way.

2. Materials and Methods
2.1. Subjects

To analyze the geographical distribution of three prevalent pathogenic variants, we
recruited 715 WD patients reported in our previous study [3]. Then, 102 unrelated WD
families were recruited for the current haplotype study. These families consisted of patients
who had been identified with one or two of the three common variants by next-generation
sequencing (NGS) and their unaffected relatives. They were enrolled between June 2015,
and October 2020, in the Second Affiliated Hospital of Zhejiang University School of
Medicine. All subjects originated from Chinese mainland. WD patients were clinically
diagnosed according to the Leipzig Score [2]. This study was approved by the Ethics
Committee of the Second Affiliated Hospital of Zhejiang University School of Medicine.
Participants or their guardians provided informed consents.

2.2. Genotype Analysis

Genomic DNA was extracted using Blood Genomic Extraction Kit (Qiagen, Hilden,
Germany) from peripheral EDTA-treated blood. The ATP7B variants of patients and
their relatives were verified through Sanger sequencing, with a procedure described in
our previous report [24]. For patients who were detected with only one heterozygous
pathogenic variant, we performed multiplex ligation-dependent probe amplification assay
(MLPA) with the ATP7B MLPA kit (SALSA P098-D1, MRC-Holland, the Netherlands) [25].

2.3. Haplotype Analysis

To derive the haplotype on each WD or normal chromosome, we used three microsatel-
lite markers (D13S314, D13S301, D13S316) flanking the WD locus, which had previously
been used for linkage analysis [10]. Specific primers for the amplification of these markers
were described in previous studies [11,12], and one of each pair was labeled with fluo-
rescent dye. The PCR was carried out in 10 µL total volume containing 50 ng genomic
DNA, 1 mM of each primer and 7 µL KAPA 2G Robust Mix (KAPA Biosystems, Boston,
MA, USA). The thermal condition was adjusted according to the previous study [22].
The PCR products were then quantified with deionized water. The mix including 4.2 µL



Genes 2021, 12, 336 3 of 10

Genescan 550HD size standard (Applied Biosystems, Foster City, CA, USA) with highly
deionized formamide and 0.8 µL diluted PCR products was denatured at 95 ◦C for 5 min
and chilled quickly to 4 ◦C. All the samples underwent the electrophoresis on the ABI
Prism 3730 genetic analyzer (Applied Biosystems, Foster City, CA, USA) and the data were
handled using the GeneMarke software (Applied Biosystems, Foster City, CA, USA). The
size measurement was repeated three times independently for each sample.

2.4. Statistical Analysis

The geographical and allele distribution as well as haplotype association of three
prevalent pathogenic variants were analyzed by chi-square test, with a Bonferroni correc-
tion or Fisher’s exact test when appropriate. WD chromosomes with the three variants
were compared with normal chromosomes from the probands’ unaffected family members,
as the controls. The analysis was performed in SPSS 20.0 (IBM Corp., Armonk, NY, USA).
p value < 0.05 was regarded as statistically significant.

3. Results
3.1. Geographical Distribution of Three Prevalent Pathogenic Variants

Among 715 unrelated WD patients, p.R778L, p.P992L and p.T935M were the three
most prevalent pathogenic variants. Their allelic frequency was 31.7, 15.7 and 6.6%,
respectively, which was close to what we reported previously [24]. Among 709 patients
with geographical information, as shown in Figure 1a, the majority (579, 81.7%) were from
southeastern China. Five regions accounted for the main proportion, in the order of Fujian
province (261, 36.8%), Zhejiang (168, 23.7%), Jiangsu (71, 10.0%), Shanghai (56, 7.9%) and
Jiangxi (43, 6.1%). Then, we compared the allelic frequency of three prevalent variants in
these regions. There was no obvious difference in the allelic frequency of p.R778L among
these regions (Figure 1b). For p.P992L, though its allelic frequency in Jiangxi (19/86, 22.1%)
was significantly higher than that of Zhejiang (33/336, 9.8%) (p < 0.01), no other difference
among the regions was seen (Figure 1c). However, as shown in Figure 1d, we found that
the allelic frequency of p.T935M in Fujian (71/522, 13.6%) was significantly higher than
that of Zhejiang (15/336, 4.5%), Jiangsu (1/142, 0.7%), Shanghai (0/112, 0.0%) or Jiangxi
(2/86, 2.3%) (p < 0.01), impressively indicating the tendency for aggregation.

3.2. Linkage Disequilibrium at Three Markers for Three Prevalent Pathogenic Variants

Among 102 WD patients with the three prevalent pathogenic variants, biallelic variants
were identified in each of them and successfully segregated in the corresponding relatives.
There were 74 patients with c.2333G > T (p.R778L), 27 with c.2975C > T (p.P992L) and 13
with c.2804C > T (p.T935M). Among them, 26 patients were with homozygous p.R778L,
two with homozygous p.P992L, one with homozygous p.T935M, eight with p.R778L and
p.P992L, and four with p.R778L and p.T935M. The rest were all compound heterozygotes
with one of the three prevalent variants and other variants.

To clarify the association of each specific marker with the variants, we firstly observed
the allele distribution of p.R778L, p.P992L and p.T935M at each marker. The allele size defi-
nition for the three microsatellite markers (D13S314, D13S301, D13S316) used was based on
a previous study [21]. In total, there were 100 chromosomes with p.R778L, 29 with p.P992L,
14 with p.T935M and 177 normal chromosomes in this study. As shown in Figure 2a,
D13S314 exhibited significant linkage disequilibrium at allele 10 for chromosomes with
p.R778L (98.0%) and p.P992L (82.8%) vs. control ones (26.0%, p < 0.01), while entirely
linked at allele 12 for p.T935M (100 vs. 37.3%, p < 0.01). In terms of D13S301, we found
the significant association of p.R778L with both allele 7 (65.0 vs. 36.7%, p < 0.01) and allele
8 (33.0 vs. 9.6%, p < 0.01), p.P992L with allele 9 (79.3 vs. 6.2%, p < 0.01) and p.T935M
with allele 4 (78.6 vs. 20.3%, p < 0.01), respectively (Figure 2b). As shown in Figure 2c,
D13S316 exhibited significant linkage distribution at allele 7 for p.R778L (89.0 vs. 7.9%,
p < 0.01), allele 5 for p.P992L (86.2 vs. 43.5%, p < 0.01) and allele 8 for p.T935M (100.0 vs.
39.0%, p < 0.01). These results revealed that all three prevalent pathogenic variants had
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great linkage disequilibrium at each microsatellite marker, which might contribute to the
haplotype association.
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Figure 2. (a–c) Allele distribution of p.R778L, p.P992L and p.T935M at each of the three microsatellite markers (D13S314,
D13S301, D13S316) in Wilson’s disease (WD) patients from mainland China. Brown boxes indicate normal chromosomes as
the controls. Orange boxes indicate chromosomes with p.R778L, yellow boxes indicate chromosomes with p.P992L, and
blue boxes indicate chromosomes with p.T935M. Asterisks indicate the frequency of chromosomes with the corresponding
variant was significantly higher than that of control chromosomes in the same allele group (** p < 0.01).

3.3. Haplotype Association of Three Prevalent Pathogenic Variants

With the alleles acquired at three microsatellite markers, we constructed the haplo-
types for three prevalent pathogenic variants in 102 patients and found haplotype–variant
correlations (Table 1). In light of the possibility that the new allele could be obtained
through slippage during DNA replication from generation to generation [26], haplotypes
differing by no more than one repeat unit at a single marker were gathered to one group.

The most prevalent pathogenic variant in China, p.R778L, was found to associate
with three haplogroups (A, B, C). Haplogroup A was overwhelmingly common on WD
chromosomes (97/100, 97.0%) vs. control ones (17/177, 9.6%, p < 0.01). It could be
subsequently subdivided into haplotype variants A1–A4 (10-7-7; 10-7-8; 10-8-7; 10-8-8)
and variant A1 (10-7-7) accounted for the largest proportion (57.0%). Haplogroup B (10-
7-9) and C (12-5-7; 12-6-7) were found to be relatively scarce (1.0 and 2.0%, respectively)
when compared with haplogroup A, suggesting that haplogroup A could exactly represent
almost all the genetic information of p.R778L.

However, the haplotype spectrum of p.P992L was more complex, including six hap-
logroups (D, E, F, G, H, I). Among them, haplogroup E was more common on WD chromo-
somes (21/29, 72.4%) than control ones (6/177, 3.4%, p < 0.01). It contained two variants
(E1, E2), among which variant E1 (10-9-5) occupied the main part (69.0%) and variant E2
(10-9-6) was only found on one WD chromosome (3.4%). Haplogroup D (9-7-5), F (10-9-8),
G (10-11-5), H (12-4-5; 12-5-5) and I (12-5-8) appeared sporadically, accounting for 3.4,
6.9, 3.4, 10.3 and 3.4% on WD chromosomes, respectively. Contrary to p.P992L, p.T935M
presented a uniform state. There was only one kind of haplogroup on WD chromosomes,
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haplogroup J, which consisted of two variants J1 (12-4-8) and J2 (12-5-8), showing great
significance vs. control ones (100 vs. 15.3%, p < 0.01). Additionally, variant J1 (12-4-8) was
more common (78.6%).

Table 1. Haplotypes with D13S314, D13S301, D13S316 for three prevalent pathogenic variants in Wilson’ s disease (WD)
patients from mainland China.

Variant Group 1 Haplotype No. of Chromosomes (%)

D13S314 D13S301 D13S316 WD Control (n = 177)

p.R778L (n = 100)

A

A1 10 7 7 57(57.0) 4(2.3)
A2 10 7 8 7(7.0) 3(1.7)
A3 10 8 7 30(30.0) 8(4.5)
A4 10 8 8 3(3.0) 2(1.1)

Subtotal 97(97.0) ** 17(9.6)

B 10 7 9 1(1.0) 0(0.0)

C
C1 12 5 7 1(1.0) 0(0.0)
C2 12 6 7 1(1.0) 0(0.0)

p.P992L (n = 29)

D 9 7 5 1(3.4) 13(7.3)

E
E1 10 9 5 20(69.0) 6(3.4)
E2 10 9 6 1(3.4) 0(0.0)

Subtotal 21(72.4) ** 6(3.4)

F 10 9 8 2(6.9) 0(0.0)

G 10 11 5 1(3.4) 0(0.0)

H
H1 12 4 5 1(3.4) 5(2.8)
H2 12 5 5 2(6.9) 8(4.5)

I 12 5 8 1(3.4) 9(5.1)

p.T935M (n = 14)
J J1 12 4 8 11(78.6) 18(10.2)

J2 12 5 8 3(21.4) 9(5.1)

Subtotal 14(100.0) ** 27(15.3)

“1” represent different haplogroups are represented by corresponding letters. The haplotype variants in the same haplogroup are displayed
by the same letter with Arabic numbers in order. Asterisks indicate the frequency of chromosomes with the corresponding variant in this
haplogroup was significantly higher than that of control chromosomes (** p < 0.01).

4. Discussion

The origin of prevalent ATP7B pathogenic variants in Chinese WD population remains
to be elucidated. Consequently, in this study, we first depicted the geographical distribution
characteristics of three common variants (p.R778L, p.P992L, p.T935M) using a large WD
cohort and then provided the haplotype spectrum of the three variants with a maximum
sample size to date.

According to previous studies, the prevalent ATP7B pathogenic variants can vary by
different populations in the world, and even show genetic heterogeneity in one certain
country such as India, due to its ethnic diversity [17,18]. There also exist different consti-
tutions of variants in the Chinese population of various districts. Though p.R778L was
always detected as the most common pathogenic variant, the second common pathogenic
variant was discovered to be p.A874V in one study of northern Chinese population [27]
and p.I1148T primarily in the Guangdong province, Southern China [28], rather than
p.P992L. All of these imply that ATP7B variants can have the characteristic of regional-
specific distribution. As we discovered in this study, p.T935M was significantly associated
with Fujian province, hinting at the possibility of a founder effect, while both p.R778L
and p.P992L were not found to show such a specific tendency. These findings about the
regional distribution of variants can help develop time-saving approaches and accelerate
the genetic diagnosis of WD in specific regions, considering the vast diversity of the ATP7B
variant spectrum.

We then observed in the haplotype spectrum that both p.R778L and p.T935M mainly
had one haplogroup constituted by D13S314, D13S301 and D13S316, which could be
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represented by 10-7-7 and 12-4-8, respectively. Although there indeed existed some variants
in the haplogroup, it could be noticed that there were only slight variations (no more
than one repeat unit at a single locus), which could be explained by the allele slippage
event [26]. This indicates the obvious founder effect of these two variants, especially
p.T935M, which showed total single haplogroup and concentrated geographic distribution.
For p.P992L, there were more kinds of haplogroups and their distribution seemed scattered,
as haplogroups differed by more than one repeat unit at a single marker, even with the size
interval over 10 bp. Despite this, we still found that haplogroup D, particularly variant
D1, 10-9-5, accounted for the majority in the series. Therefore, such variations might not
indicate independent origins of the same variant, but emerge as a result of multiple allele
slippages or recombination events with other haplogroups on an old common ancestor
during a very long period [12].

To compare our studies with others, in Table 2, we summarized the results involving
the three prevalent variants in other areas including Japan, Taiwan, China and Hong
Kong, China [20–22]. Both Japan and Taiwan, China, had two related studies, and we
chose one with more samples, respectively. Consistent with our study, it was also rare
that there was only one pure haplotype for each variant in those regions. Meanwhile, the
haplotypes of three variants all showed discrepancies to an extent in comparison with their
studies. Firstly, it was noticeable that the most apparent difference between Japanese and
Chinese population lay in the marker D13S314. For Taiwan, China, when comparing the
most common haplotype of p.R778L and p.P992L, we found that the allele at each marker
in our study exceeded that of theirs by nearly 2–3 units. Furthermore, the data of the
study from Hong Kong, China, could be the closest with ours, though there still remained
variations, mainly in the marker D13S301. Apart from them, Korean scholars also studied
the haplotype feature of p.R778L before [23], though the same marker they utilized was
D13S316 alone and they used a different allele size definition. We also noticed the similar
phenomenon that their main allele size for p.R778L at this marker was 164, which showed
great distance from our result 142. The reasons accounting for the multiplicity among the
studies could include the lack of consensus on allele size definition, different amplification
primer sequences or approaches to the marker size measurement used and importantly,
the heterogeneity which originally existed among different regions [21].

Unlike the diversity of haplotype pattern among Asian regions, it is noteworthy that
the most prevalent ATP7B pathogenic variant for Europe, p.H1069Q, was found with
the same haplotype in an overwhelming proportion of subjects from various European
countries including Austria, Germany, and the United Kingdom [15]. This may indicate
different circumstances about the migration and growth of human populations between
the two continents, which could be explained by relevant history.

Actually, the other studies for the three variants all reflected certain tendencies of
founder effect, however, the number of WD chromosomes carrying each variant might
not be so adequate, which should constitute the strength of our study. On the other hand,
our study also has some limitations. For instance, the method of capillary electrophoresis
may induce tiny deviations in some families, which sometimes cannot uncover the most
precise size of the marker. In addition, first-degree siblings of probands were not recruited
in this study to strengthen the evidence. Furthermore, to better understand the founder
effect in WD, other frequent pathogenic variants in China might also need further distinct
investigation.
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Table 2. Haplotypes with D13S314, D13S301, D13S316 for three prevalent pathogenic variants in Wilson’s disease (WD)
patients from Japan, Taiwan, China and Hong Kong, China.

Study Variant
Haplotype

No. of Chromosomes
D13S314 D13S301 D13S316

Japan [20]
p.R778L

5 5 6 1
5 7 4 2
5 7 5 1
5 7 5.5 4
5 7 7 1

p.P992L 6 9 4 3

Taiwan, China [21]
p.R778L 8 4 4 4

8 4 5.5 4

p.P992L 8.5 6.5 2 2
8.5 6.5 5.5 3

Hong Kong, China [22]

p.R778L

10 4 7 5
10 5 7 2
10 6 7 5
10 9 7 1
13 3 7 1

p.P992L 10 7 4 7
10 7 8 1

p.T935M 13 1 8 1
13 3 8 1

5. Conclusions

In summary, our study accomplished the first analysis about geographical distribution
and haplotype spectrum with large samples for three prevalent pathogenic variants of
ATP7B encompassing p.R778L, p.P992L and p.T935M in the Chinese mainland. We showed
that p.T935M had a tendency of regional-specific distribution and all of three variants could
possess underlying founder effect for their inheritance and the haplotypes varied from one
region to another to some extent. The results facilitate the explanation for the origins of
ATP7B variants with high frequency in China as well as provide a better knowledge of the
genetic diversity of WD from a cross-regional perspective.
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